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a b s t r a c t

We compare the hazard rate functions of the largest order statistic arising from
independent heterogeneous gamma random variables and that arising from i.i.d. gamma
random variables. Specifically, let X1, . . . , Xn be independent gamma random variables
with Xi having shape parameter 0 < r ≤ 1 and scale parameter λi, i = 1, . . . , n. Denote by
Yn:n the largest order statistic arising from i.i.d. gamma random variables Y1, . . . , Yn with
Yi having shape parameter r and scale parameter λ̃ = (

n
i=1 λi)

1/n, the geometric mean of
λ′

is. It is shown that Xn:n is stochastically larger than Yn:n in terms of hazard rate order. The
result derived here strengthens and generalizes some of the results known in the literature
and leads to a sharp upper bound on the hazard rate function of the largest order statistic
from heterogeneous gamma variables in terms of that of the largest order statistic from
i.i.d. gamma variables. A numerical example is finally provided to illustrate the main result
established here.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Order statistics play a prominent role in statistical inference, reliability theory, life testing, operations research, andmany
other areas; see, for example, the two encyclopedic volumes by [2,3]. Denote by X1:n ≤ · · · ≤ Xn:n the order statistics arising
from random variables X1, . . . , Xn. Then, it is well-known that the kth order statistic Xk:n corresponds to the lifetime of a
(n − k + 1)-out-of-n system, a very popular structure of redundancy in fault-tolerant systems in reliability theory that has
been studied extensively in the literature. Series and parallel systems are the building blocks of more complex coherent
systems, wherein the lifetime of a parallel system corresponds to the largest order statistic Xn:n and the lifetime of a series
system corresponds to the smallest order statistic X1:n. Many authors have studied various aspects of order statistics when
the observations are independent and identically distributed (i.i.d.). The case when observations are non-i.i.d., however,
often arises naturally in different situations. Due to the complexity of the distribution theory in this case, limited work can
be found in the literature; see, for example, [6,2,3], and the recent review article of Balakrishnan [1] for comprehensive
discussions on the independent and non-identically distributed (i.ni.d.) case.

The exponential distribution has a nice mathematical form and the unique memoryless property and hence has widely
been applied in many fields. Many papers have appeared on the stochastic comparison of order statistics arising from
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i.ni.d. exponential randomvariables including [19,20,12,7,9–11,5,13,14,17,18,22–27]. The gammadistributionhas beenused
extensively in reliability and survival analysis due to its flexibility in shape and some nice distributional properties; formore
details on this distribution, one may refer to Johnson et al. [8]. Assuming that X is a gamma random variable with shape
parameter r and scale parameter λ, X has its probability density function as

f (x; r, λ) =
λr

Γ (r)
xr−1e−λx, x > 0, r > 0, λ > 0.

It is an extremely flexible family of distributionswith decreasing, constant, and increasing hazard rateswhen 0 < r < 1, r =

1 and r > 1, respectively. This paper will focus on the largest order statistic arising from heterogeneous gamma variables,
i.e., the lifetime of a parallel system with independent heterogeneous gamma components. The results established here
extend the corresponding ones in the literature for the exponential case.

Let us first recall some notions of stochastic orders. Throughout this paper, the term increasing is used formonotone non-
decreasing and decreasing is used for monotone non-increasing. For two random variables X and Y with densities fX and fY ,
and distribution functions FX and FY , respectively, let FX = 1− FX and F Y = 1− FY be the corresponding survival functions.
X is said to be smaller than Y in the likelihood ratio order (denoted by X ≤lr Y ) if fY (x)/fX (x) is increasing in x; X is said to
be smaller than Y in the hazard rate order (denoted by X ≤hr Y ) if F Y (x)/FX (x) is increasing in x; X is said to be smaller than
Y in the stochastic order (denoted by X ≤st Y ) if F Y (x) ≥ FX (x). It is well-known that the likelihood ratio order implies the
hazard rate order which in turn implies the usual stochastic order. For a comprehensive discussion on various stochastic
orderings, one may refer to Shaked and Shanthikumar [21].

Let X1, . . . , Xn be independent exponential random variables with Xi having hazard rate λi, i = 1, . . . , n. Let Y1, . . . , Yn
be a random sample of size n from an exponential distribution with hazard rate λ̄ =

n
i=1 λi/n, the arithmetic mean of λ′

is,
and denote by Yn:n the corresponding largest order statistic. Dykstra et al. [7] then showed that

Xn:n ≥hr Yn:n, (1)

which was further strengthened by Kochar and Xu [13] as

Xn:n ≥lr Yn:n. (2)

[10] also strengthened the result in (1), under a weaker condition, by proving that if Z1, . . . , Zn is a random sample of size n

from an exponential distribution with hazard rate λ̃ =
n

i=1 λi
 1

n , the geometric mean of λ′

is, then

Xn:n ≥hr Zn:n. (3)

Recently, Kochar and Xu [14] proved that the largest order statistic from heterogeneous exponential variables is more
skewed in the sense of the convex transform order than that from homogeneous exponential variables, which is quite a
general conclusion as there is no restriction on the parameters.

It is natural to askwhether andhow the result in (3) can be extended from the exponential case to the gammadistribution.
This paper confirms this result for the casewhen the shape parameter is atmost 1. Specifically, let X1, . . . , Xn be independent
gamma randomvariableswith Xi having shape parameter 0 < r ≤ 1 and scale parameterλi, i = 1, . . . , n, and let Z1, . . . , Zn
be a random sample of size n from a gamma distribution with shape parameter r and scale parameter λ̃ =

n
i=1 λi

 1
n . We

then show that

Xn:n ≥hr Zn:n, (4)

thus generalizing and strengthening the corresponding result for the exponential case established earlier in the literature.

2. Main result

In this section, before presenting our main result, we first present several useful lemmas. The first one, due to Bon and
Pǎltǎnea [5], plays an important role in establishing the main result which presents a sufficient condition to reach the
maximum point of a symmetrical function in a compact set.

Lemma 1. Let φ : ℜ
n
+

→ ℜ+ be a symmetric and continuously differentiable mapping. If for any n-dimensional vector
y = (y1, . . . , yn) ∈ ℜ

n
+
with yp = min yi and yq = max yi, we have

(yp − yq)


∂φ(y)
∂yp
n

i≠p
yi

−

∂φ(y)
∂yq
n

i≠q
yi

 < 0, for yp ≠ yq,

then the following inequality holds:

φ(y1, . . . , yn) ≤ φ(ỹ, . . . , ỹ  
n

),
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where ỹ =
n

i=1 yi
 1

n is the geometric mean of y = (y1, . . . , yn).

Lemma 2. For 0 < r ≤ 1 and y ∈ ℜ+, the function

f (x) = x +
e−x 1

0 ur−1e−xudu

is increasing in x ∈ ℜ+.

Lemma 3. For 0 < r ≤ 1 and yi ∈ ℜ+(1 ≤ i ≤ n), we have
n

i=1

e−yi 1
0 ur−1e−yiudu

1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu
≥ yp +

e−yp 1
0 ur−1e−ypudu

,

where, as before, yp = min yi.

The technical details of the proofs of Lemmas 2 and 3 are presented in the Appendix.

Theorem 1. Let X1, . . . , Xn be independent gamma random variables with Xi having shape parameter 0 < r ≤ 1 and scale
parameter λi, i = 1, . . . , n, and let Y1, . . . , Yn be a random sample of size n from a gamma distribution with shape parameter
r and a common scale parameter λ ≥ λ̃ =

n
i=1 λi

1/n. Then,
Xn:n ≥hr Yn:n.

Proof. Let Zλ be the largest order statistic in a random sample of size n from a gamma distribution with common shape
parameter r and scale parameter λ. Assume λ < µ. We then have Zλ ≥lr Zµ from Theorem 1.C.33 of [21] and thus Zλ ≥hr Zµ.
Based on this fact, we only need to prove the result for the case when λ = λ̃. The density function of Xn:n is

fXn:n(t) =

n
i=1

t r−1e−λit t
0 ur−1e−λiudu

n
j=1

 t

0

λr
j

Γ (r)
ur−1e−λjudu, t > 0,

and so its hazard rate function is given by

rXn:n(t) =
fXn:n(t)

FXn:n(t)

=

n
j=1

 t
0

λrj
Γ (r)u

r−1e−λjudu

1 −

n
j=1

 t
0

λrj
Γ (r)u

r−1e−λjudu

n
i=1

t r−1e−λit t
0 ur−1e−λiudu

=
1
t
φ(λ1t, . . . , λnt),

where the symmetric function φ : ℜ
n
+

→ (0, 1) is defined as

φ(y1, . . . , yn) =

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

n
i=1

e−yi 1
0 ur−1e−yiudu

.

Similarly, the hazard rate function of Yn:n can be written as

rYn:n(t) =

 t
0

λ̃r

Γ (r)u
r−1e−λ̃udu

n
1 −

 t
0

λ̃r

Γ (r)u
r−1e−λ̃udu

n nt r−1e−λ̃t t
0 ur−1e−λ̃udu

=
1
t
φ(λ̃t, . . . , λ̃t  

n

).

To reach the desired result that Xn:n ≥hr Yn:n, it suffices to show that

φ(y1, . . . , yn) ≤ φ(ỹ, . . . , ỹ  
n

),
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where ỹ =
n

i=1 yi
 1

n for any vector y = (y1, . . . , yn) ∈ ℜ
n
+
. As before, let yp = min yi and yq = max yi. Now, we observe

∂φ(y)
∂yp

=

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

e−yp
 1

0 ure−ypudu −
 1
0 ur−1e−ypudu


 1

0 ur−1e−ypudu
2

+

n
i=1

e−yi 1
0 ur−1e−yiudu

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu
1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

2

e−yp

yp
 1
0 ur−1e−ypudu

=

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu


e−yp

 1
0 ure−ypudu −

 1
0 ur−1e−ypudu


 1

0 ur−1e−ypudu
2

+

n
i=1

e−yi 1
0 ur−1e−yiudu

1

1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu

e−yp

yp
 1
0 ur−1e−ypudu


.

Since the function φ is permutation symmetric, each partial derivative has the same structure. On the other hand, by using
integration by parts, we find

y
 1

0
ure−yudu = r

 1

0
ur−1e−yudu − e−y.

Thus, we have
∂φ(y)
∂yp
n

i≠p
yi

−

∂φ(y)
∂yq
n

i≠q
yi

sgn
= r


e−yp 1

0 ur−1e−ypudu
−

e−yq 1
0 ur−1e−yqudu


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu



+
e−yp 1

0 ur−1e−ypudu


n

i=1

e−yi 1
0 ur−1e−yiudu

−


yp +

e−yp 1
0 ur−1e−ypudu



×


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu



−
e−yq 1

0 ur−1e−yqudu


n

i=1

e−yi 1
0 ur−1e−yiudu

−


yq +

e−yq 1
0 ur−1e−yqudu



×


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu


= θ1 + θ2, say,

where ‘
sgn
= ’ means equality of signs and

θ1 = r


e−yp 1

0 ur−1e−ypudu
−

e−yq 1
0 ur−1e−yqudu


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu


and

θ2 =
e−yp 1

0 ur−1e−ypudu


n

i=1

e−yi 1
0 ur−1e−yiudu

−


yp +

e−yp 1
0 ur−1e−ypudu


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu



−
e−yq 1

0 ur−1e−yqudu


n

i=1

e−yi 1
0 ur−1e−yiudu

−


yq +

e−yq 1
0 ur−1e−yqudu


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu


.
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Fig. 1. Plots of the hazard rate functions when r = 0.5.

It is easy to see that the function

e−y 1
0 ur−1e−yudu

=
1 1

0 ur−1e(1−u)ydu

is decreasing in y ∈ ℜ+ which implies that θ1 ≥ 0. Next, we will show that θ2 is also nonnegative. From Lemma 3, it is
known that

n
i=1

e−yi 1
0 ur−1e−yiudu

−


yp +

e−yp 1
0 ur−1e−ypudu


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu


≥ 0,

and so we have

θ2 ≥
e−yq 1

0 ur−1e−yqudu


yq +

e−yq 1
0 ur−1e−yqudu


−


yp +

e−yp 1
0 ur−1e−ypudu


1 −

n
j=1

 1

0

yrj
Γ (r)

ur−1e−yjudu


≥ 0,

where the last inequality is obtained by using Lemma 2. Now, we get

(yp − yq)


∂φ(y)
∂yp
n

i≠p
yi

−

∂φ(y)
∂yq
n

i≠q
yi

 ≤ 0,

and the desired result can then be derived from Lemma 1. Hence, the theorem. �

Remark 1. It is evident that the result in Theorem 1 generalizes and strengthens those in [7,10] from the exponential case to
the gamma distribution. One may wonder here whether we could establish more general comparison results between two
largest order statistics both ofwhich arise fromheterogeneous variables under somemajorization (cf. [15]) type assumptions
on the scale parameter vectors. For the special case when n = 2, such results have been obtained recently by Zhao and
Balakrishnan [25] for the dispersive and the star orderings. Such results, however, do not hold in general for the case when
n > 2; see, for example, [4] for a counterexample with respect to the hazard rate order.

As a direct consequence of Theorem 1, we can obtain an upper bound on the hazard rate function of Xn:n from
heterogeneous gamma variables in terms of the hazard rate function of Yn:n from an i.i.d. gamma sample. We now present a
numerical example to illustrate this fact. Let (X1, X2, X3) be a vector of independent heterogeneous gamma randomvariables
with common shape parameter r = 0.5 and scale parameter vector (λ1, λ2, λ3) = (1, 2, 6), and let h(t; 1, 2, 6) denote the
hazard rate function of X3:3. Let (Y1, Y2, Y3) be an i.i.d. gamma random sample with common shape parameter 0.5 and scale
parameter 3 (the arithmetic mean of (1, 2, 6)), and let h(t; 3, 3, 3) denote the hazard rate function of Y3:3. Let (Z1, Z2, Z3)
be an i.i.d. gamma random sample with common shape parameter 0.5 and scale parameter 3√12 (the geometric mean of
(1, 2, 6)), and let h(t; 3√12, 3√12, 3√12) denote the hazard rate function of Z3:3. Fig. 1 presents a plot of the hazard rate
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Fig. 2. Plots of the hazard rate functions when r = 3.

functions of these three largest order statistics, which can be seen to be in accordance with the result of Theorem 1. It can
also be seen that the upper bound given by h(t; 3√12, 3√12, 3√12) is better than that offered by h(t; 3, 3, 3).

3. Concluding remarks

In this paper, we have discussed the hazard rate comparison between the largest order statistics from heterogeneous and
homogeneous gamma random variables when the common shape parameter is at most 1. One natural question that arises is
whether the result in Theorem 1 also holds for the case when the shape parameter is larger than 1 and it is possible that this
may be true as shown in Fig. 2 (the hazard rate plots under the same setup as in Fig. 1, but the shape parameter is now3). This
remains as an open problem.Moreover, it would be interesting to seewhether the result in Theorem 1 can be established for
the likelihood ratio order. For the exponential case, such results have been obtained by Khaledi and Kochar [10] and Kochar
and Xu [13]. We are currently working on these problems and hope to report these findings in a future paper.
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Appendix. Proofs of Lemmas 2 and 3

Proof of Lemma 2. Taking derivative with respect to x, we get

f ′(x) = 1 +
−e−x

 1
0 ur−1e−xudu + e−x

 1
0 ure−xudu 1

0 ur−1e−xudu
2

= 1 −
1 1

0 ur−1ex(1−u)du
+

e−x
 1
0 ure−xudu 1

0 ur−1e−xudu
2 . (5)

It is evident that the last term on the RHS in (5) is nonnegative, and so it is enough if we show that

1 −
1 1

0 ur−1ex(1−u)du

is also nonnegative, which is true upon noting that

1 −
1 1

0 ur−1ex(1−u)du
≥ 1 −

1 1
0 ur−1du

= 1 − r
≥ 0. �
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We will need the following three propositions to prove Lemma 3.

Proposition 1 ([16]). For real numbers αi, βi and λi, i = 1, . . . , n, if βi > 0 and λi > 0, then

min
1≤i≤n


αi

βi


≤

n
i=1

αiλi

n
i=1

βiλi

≤ max
1≤i≤n


αi

βi


.

Equalities hold if and only if (α1, . . . , αn) and (β1, . . . , βn) are proportional.

Proposition 2. For xi ∈ (0, 1), 1 ≤ i ≤ n, the following inequality holds:

1 −

n
i=1

(1 − xi) ≤

n
i=1

xi.

Proof. The proof is carried out by induction. The result is trivially true for the case when n = 1. Now let us assume that the
inequalities hold for allm(1 ≤ m < n). We then have

1 −

m+1
i=1

(1 − xi) = 1 −

m
i=1

(1 − xi)(1 − xm+1)

= 1 −

m
i=1

(1 − xi) + xm+1

m
i=1

(1 − xi)

≤

m
i=1

xi + xm+1

=

m+1
i=1

xi,

which is the required result. �

Proposition 3. For 0 < r ≤ 1 and yi ∈ ℜ+(1 ≤ i ≤ n), we have

1 −

n
i=1

 1

0

yri
Γ (r)

ur−1e−yiudu ≤

n
i=1

e−yi

yi
 1
0 ur−1e−yiudu + e−yi

. (6)

Proof. It can be readily seen that the left hand side of (6) is nonnegative since each term in the product is no more than 1.
From Proposition 2, it follows that

1 −

n
i=1

 1

0

yri
Γ (r)

ur−1e−yiudu ≤

n
i=1


1 −

 1

0

yri
Γ (r)

ur−1e−yiudu


.

So it suffices to show that, for each yi ∈ ℜ+,

1 −

 1

0

yri
Γ (r)

ur−1e−yiudu ≤
e−yi

yi
 1
0 ur−1e−yiudu + e−yi

,

which is equivalent to showing that 1

0

yri
Γ (r)

ur−1e−yiudu +
yr−1
i

Γ (r)
e−yi ≥ 1.

This is seen to be true upon observing that 1

0

yri
Γ (r)

ur−1e−yiudu +
yr−1
i

Γ (r)
e−yi ≥

 1

0

yri
Γ (r)

ur−1e−yiudu +


∞

1

yri
Γ (r)

ur−1e−yiudu = 1. �
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Proof of Lemma 3. From Proposition 3, we have

n
i=1

e−yi 1
0 ur−1e−yiudu

1 −

n
j=1

 1
0

yrj
Γ (r)u

r−1e−yjudu
≥

n
i=1

e−yi 1
0 ur−1e−yiudu

n
i=1

e−yi

yi
 1
0 ur−1e−yiudu+e−yi

. (7)

On the other hand, upon using Proposition 1 and Lemma 2, we have

n
i=1

e−yi 1
0 ur−1e−yiudu

n
i=1

e−yi

yi
 1
0 ur−1e−yiudu+e−yi

≥ yp +
e−yp 1

0 ur−1e−ypudu
. (8)

Now, upon combining (7) and (8), we obtain the required result. �
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[5] J.L. Bon, E. Pǎltǎnea, Comparisons of order statistics in a random sequence to the same statistics with i.i.d. variables, ESAIM: Probability and Statistics

10 (2006) 1–10.
[6] H.A. David, H.N. Nagaraja, Order Statistics, 3rd ed., John Wiley & Sons, Hoboken, New Jersey, 2003.
[7] R. Dykstra, S.C. Kochar, J. Rojo, Stochastic comparisons of parallel systems of heterogeneous exponential components, Journal of Statistical Planning

and Inference 65 (1997) 203–211.
[8] N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, second ed., vol. 1, John Wiley & Sons, New York, 1994.
[9] S. Khaledi, S. Farsinezhad, S.C. Kochar, Stochastic comparisons of order statistics in the scale models, Journal of Statistical Planning and Inference 141

(2011) 276–286.
[10] B. Khaledi, S.C. Kochar, Some new results on stochastic comparisons of parallel systems, Journal of Applied Probability 37 (2000) 283–291.
[11] B. Khaledi, S.C. Kochar, Stochastic orderings of order statistics of independent random variables with different scale parameters, Communications in

Statistics—Theory and Methods 36 (2007) 1441–1449.
[12] S.C. Kochar, J. Rojo, Some new results on stochastic comparisons of spacings from heterogeneous exponential distributions, Journal of Multivariate

Analysis 59 (1996) 272–281.
[13] S.C. Kochar, M. Xu, Stochastic comparisons of parallel systems when components have proportional hazard rates, Probability in the Engineering and

Informational Sciences 21 (2007) 597–609.
[14] S.C. Kochar, M. Xu, Comparisons of parallel systems according to the convex transform order, Journal of Applied Probability 46 (2009) 342–352.
[15] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.
[16] D.S. Mitrinović, P.M. Vasić, Analytic Inequlities, Springer-Verlag, Berlin, 1970.
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