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the Gaussian orthogonal ensemble or the Gaussian unitary ensemble, respectively.
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1. Introduction

In recent years there has been considerable interest in generalizingmany of the results on classical moment theory to the
case of matrix measures. Wiener andMasani [26] introducedmatrix measures on the unit circle in the study of multivariate
stochastic processes and their spectral theory. Whittle [25] followed the same approach and established a connection to
matrix polynomials, that is, polynomials with matricial coefficients. Already Karlin and McGregor [17] studied a random
walk with a doubly infinite transitionmatrix with help of matrix polynomials, however without special consideration of the
matricial structure. Delsarte et al. [3] orthogonalized polynomials with respect to matrix measures on the unit circle. Duran
and van Assche [11], Duran [8,9] and Duran and Lopez-Rodriguez [10] were the first who investigated matrix orthogonal
polynomials with respect to matrix measures on the real line and generalized many results from the scalar case to the
matrix case. Typical examples include the three-term-recursion, quadrature formulas and ratio asymptotics. Applications
to stochastic processes with two-dimensional state space were discussed by Dette et al. [6], who expressed transition
probabilities and the recurrence of states in terms of matrix measures and matrix orthogonal polynomials.

In contrast to moment spaces corresponding to (probability) measures the structure of moment spaces corresponding
to matrix measures is much richer and not very well understood. In the scalar case Chang et al. [2] investigated a uniform
distribution on the moment space corresponding to measures on the interval [0, 1]. Their investigation was motivated by
the consideration of a ‘‘typical’’ point in the moment space and they studied the asymptotic properties of random moment
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vectors with increasing dimension. Gamboa and Lozada-Chang [12] considered large deviation principles for random
moment sequences on this space, while Lozada-Chang [18] investigated similar problems formoment spaces corresponding
to more general functions defined on a bounded set. More recently, Gamboa and Rouault [14] discussed random spectral
measures related to moment spaces of measures on the interval [0, 1] and moment spaces related to measures defined on
the unit circle. Dette and Nagel [4] considered distributions onmoment spaces corresponding to scalar measures on the real
line with an unbounded support.

For matrix measures the corresponding moment of a matrix measure is given by a symmetric (Hermitian) matrix and
Dette and Studden [7] obtained a characterization of the compact moment space corresponding to matrix measures on a
compact interval. Dette and Nagel [5] used these results to investigate the asymptotic properties of random vectors with
values in the moment space corresponding to matrix measures on the interval [0, 1]. The aim of the present paper is to get
a better understanding of the properties in the non compact case. For this purpose we define probability distributions on
matrix moment spaces corresponding to measures with an unbounded support and study their asymptotic behavior with
an increasing dimension.

The remaining part of this paper is organized as follows. In Section 2we introduce the basic notation, define distributions
on the moment spaces corresponding to matrix measures on unbounded intervals and state our main results. In Section 3
we consider matrix orthogonal polynomials and their relation to moments of matrix measures. In Section 4 we use this
relation to prove our main results. Finally in Section 5 we extend these results to matrix moment spaces corresponding to
matrix measures with complex entries. Finally some technical details have been deferred to the Appendix.

2. Matrix moment spaces

Throughout this paper let (Sp(R),B(Sp(R))) denote the measurable space of all p × p symmetric matrices with real
entries, where B(Sp(R)) is the Borel field corresponding to the Frobenius norm ∥A∥ =


tr (A2) on Sp(R). For properties

of this norm and general results in matrix theory we refer to the book of Horn and Johnson [16]. The set S+
p (R) ⊂ Sp(R)

denotes the subset of positive definite matrices and for a matrix A ∈ Sp(R), |A| is the determinant of A. Let T be a subset
of the real line with corresponding Borel field B(T ). A (Sp(R)-valued) matrix measureΣ on a measurable space (T ,B(T ))
is a p × p matrix of signed measures on (T ,B(T )) such that for all Borel sets A ⊂ T the matrix Σ(A) is symmetric and
nonnegative definite. Additionally we require the matrix measure to be normalized, that isΣ(T ) = Ip, where Ip denotes the
p × p identity matrix. We consider on Sp(R) the integration operator

dX :=


i≤j

dxij, (2.1)

the product Lebesgue measure with respect to the independent entries of a symmetric matrix. For an integrable function
f : Sp(R) → R the integral

f (X)dX (2.2)

is the iterated integral with respect to each of the elements xij, i ≤ j (see Muirhead [20] or Gupta and Nagar [15]). The kth
moment of a matrix measure is then defined as

Mk(Σ) :=


xkdΣ(x) (2.3)

for k ≥ 0. The set of all R-valued matrix measures on (T ,B(T )) for which all moments exist is denoted by Pp(T ) and we
define the nth moment space of matrix measures by

Mp,n(T ) :=

(M1(Σ), . . . ,Mn(Σ))

T
|Σ ∈ Pp(T )


. (2.4)

Analogous to the compact case in Dette and Nagel [5] we obtain a characterization of the moment spaces Mp,n([0,∞)) and
Mp,n(R) in terms of Hankel matrices, which are defined for matricesMk ∈ Sp(R), k ≥ 0 as

H2m =

M0 · · · Mm
...

...
Mm · · · M2m

 , H2m =

 M1 − M2 · · · Mm − Mm+1
...

...
Mm − Mm+1 · · · M2m−1 − M2m

 , (2.5)

and

H2m+1 =

 M1 · · · Mm+1
...

...
Mm+1 · · · M2m+1

 , H2m+1 =

 M0 − M1 · · · Mm − Mm+1
...

...
Mm − Mm+1 · · · M2m − M2m+1

 . (2.6)

The following lemmas give a characterization of Mp,n([0,∞)) and Mp,n(R). The proof follows by similar arguments as in
Dette and Studden [7] and is therefore omitted. Note that the authors consider non-normalizedmeasures, but the arguments
can be extended to matrix probability measures.
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Lemma 2.1. A vector of matrices (M1, . . . ,Mn)
T

∈ Sp(R)n is an element of the moment space Mp,n([0,∞)) if and only if for all
k ≤ n the Hankel matrices Hk are nonnegative definite.

The vector (M1, . . . ,Mn)
T is an interior point of Mp,n([0,∞)) if and only if for all k ≤ n the matrices Hk are positive definite.

We define the vectors of matrix moments

hT
2m = (Mm+1, . . . ,M2m),

hT
2m−1 = (Mm, . . . ,M2m−1),

h̄T
2m = (Mm − Mm+1, . . . ,M2m−1 − M2m),

h̄T
2m−1 = (Mm − Mm+1, . . . ,M2m−2 − M2m−1),

and the symmetric matrices

M−

n+1 := hT
nH

−1
n−1hn, n ≥ 1, (2.7)

M+

n+1 := Mn − h̄T
n H̄

−1
n−1h̄n, n ≥ 2, (2.8)

where for the sake of completeness we set M−

1 = 0p, M+

1 = M0 and M+

2 = M1. If (M1, . . . ,Mn)
T is in the interior of

Mp,n([0,∞)), there exist in contrast to the compact case no upper bound for the (n + 1)th moment. A vector of symmetric
matrices (M1, . . . ,Mn+1)

T is a moment vector in Mp,n+1([0,∞)) if and only if

M−

n+1 ≤ Mn+1 (2.9)

where the matrices are compared with respect to the Loewner ordering. That is, A ≤ B if and only if B − A is nonnegative
definite and A < B if and only if B − A is positive definite. The inequality (2.9) follows because Mn+1 − M−

n+1 is the Schur
complement of Mn+1 in Hn+1 and the matrix Hn+1 is nonnegative definite if and only if the matrix Hn−1 and the Schur
complement Mn+1 − M−

n+1 are nonnegative definite. (M1, . . . ,Mn+1)
T is an interior point of Mp,n+1([0,∞)) if and only if

M−

n+1 < Mn+1 holds. For the remaining case of the whole real line, we obtain the following characterization of elements of
the corresponding moment space.

Lemma 2.2. The vector of matrices (M1, . . . ,Mn)
T

∈ Sp(R)n is a moment vector in Mp,n(R) if and only if for all k with 2k ≤ n
the Hankel matrices H2k are nonnegative definite.

The vector (M1, . . . ,Mn)
T in the interior of Mp,n(R) if and only if for all k with 2k ≤ n the Hankel matrices H2k are positive

definite.

Consider the moment vector (M1, . . . ,M2n)
T

∈ IntMp,2n(R). There exist no bounds (with respect to the Loewner
ordering) for the next moment, that is for any M2n+1 ∈ Sp(R) the matrix vector (M1, . . . ,M2n+1)

T is an interior point in
Mp,2n+1(R). For the next even moment we can define as in (2.7) the matrix M−

2n+2. Then (M1, . . . ,M2n+2)
T is a moment

vector if and only ifM−

2n+2 ≤ M2n+2 and it is in the interior of Mp,2n+2(R) if and only if M−

2n+2 < M2n+2.
Now we define a density on the moment space Mp,n([0,∞)) by

g(γ ,δ)p,n (Mn) =

n
k=1

cp,k
(Mk−1 − M−

k−1)
−1(Mk − M−

k )
γk · exp


−δktr (Mk−1 − M−

k−1)
−1(Mk − M−

k )

1

{Mk>M−

k }
, (2.10)

where the parameters satisfy γk > 1
2 (p − 1) and δk > 0 and we will show in Section 4 that the normalization constant is

given by

cp,k =
δ
pγk+

1
2 p(p+1)(n−k+1)

k

Γp

γk +

1
2 (p + 1)(n − k + 1)

 . (2.11)

Here Γp denotes the multivariate gamma function, which is defined by

Γp(z) :=


S+
p (R)

|X |
z− 1

2 (p+1)e−tr (X)dX

(see Muirhead [20]). The density g(γ ,δ)p,n is the matrix analog of the density on the scalar moment space considered by Dette
and Nagel [4], which in turn is the natural extension of ‘‘beta-type’’ densities in the compact case. Our next result gives
the asymptotic distribution of the vector of the first k components of random matrix moments distributed according to
the density g(γ ,δ)p,n . For this purpose recall that a random symmetric p × p matrix is governed by the Gaussian orthogonal
ensemble (GOEp), if its density is given by

fG(X) = (2π)−p/2π−p(p−1)/4e−
1
2 tr X

2
. (2.12)
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We define the matricial Marchenko–Pastur distribution ηp by

dηp(x) :=

√
x(4 − x)
2πx

1{0<x<4}dx · Ip, (2.13)

and obtain from the diagonal structure of this measure that the kth moment satisfies Mk(ηp) = ckIp, where ck is the kth
moment of the scalar Marchenko–Pastur distribution, that is, the kth Catalan number (see e.g. Tulino and Verdú [23]).

Theorem 2.3. Assume that the vector of random moments Mn ∈ Mp,n([0,∞)) has a distribution with density g(γ ,δ)p,n where
δi = n 1

2 (p+1) for all i. For k ≥ 1 denote byM (n)
k the projection of Mn onto the first kmatrices and let Mk(ηp) = (c1Ip, . . . , ckIp)T

contain the first k moments of the matricial Marchenko–Pastur distribution ηp. Then the convergence
n
1
2
(p + 1)(C−1

⊗ Ip)(M
(n)
k − Mk(ηp))

D
−−−→
n→∞

Xk

holds, where C ∈ Rk×k is a lower triangular matrix with entries C1,1 = · · · = Ck,k = 1,

Ci,j =


2i

i − j


−


2i

i − j − 1


, j < i,

and Xk = (X1, . . . , Xk)
T is a vector of independent, GOEp-distributed random matrices.

The proof of Theorems 2.3 and 2.4 below is referred to Section 4, which contains also several results of independent interest.
It requires some more detailed explanation of the relation between the moment of a matrix measure and the coefficients
of matrix orthogonal polynomials, which will be presented in the following section. For the definition of a density on the
moment space Mp,n(R)we also need some basic facts about matrix polynomials. A matrix polynomial is a polynomial

P(x) = Anxn + An−1xn−1
+ · · · + A0,

with coefficients Ak ∈ Rp×p. If Σ ∈ Pp(R) is a matrix measure, we define the (left) inner product on the space of matrix
polynomials by

≺ P(x),Q (x) ≻ :=


P(x)dΣ(x)Q (x)T =


p

k,l=1


P(x)ikQ (x)jldµkl(x)


1≤i,j≤p

. (2.14)

This inner product is matrix valued and R-linear in both arguments. Since it is not real valued, it is not a scalar product
but we nevertheless have the property that ≺ P(x), P(x) ≻= 0p implies P(x) = 0p. A scalar product may be defined as
tr ≺ ·, · ≻, however, we need to preserve the matrix structure of the product. The inner product (2.14) was considered by
Duran [8] and several applications are discussed in Sinap and van Assche [21]. It is possible to construct matrix polynomials
Pk(x) orthogonal with respect to ≺ ·, · ≻, that is,

≺ Pn(x), Pm(x) ≻ = 0p (2.15)

for n ≠ m. The degree of a matrix polynomial Pn(x) =
n

k=0 Akxk is n, if An ≠ 0p and Pn(x) is called monic, if An = Ip. In
order to construct monic orthogonal polynomials up to degree N with respect to a matrix measure Σ , we assume that the
Hankel matrix

H2N−2 =

 M0 · · · MN−1
...

...
MN−1 · · · M2N−2


of themoments ofΣ is positive definite. By Lemma2.2 this is equivalent to the fact that (M1, . . . ,M2N−2)

T
∈ IntMp,2N−2(R).

If Pn(x) =
n

k=0 Akxk is a monic matrix polynomial of degree n < N , then for any z ∈ Rp
\ {0},

zT ≺ Pn(x), Pn(x) ≻ z = zT (AT
0, . . . , A

T
n)H2n(A

T
0, . . . , A

T
n)

T z

= (zTAT
0, . . . , z

TAT
n)H2n(z

TAT
0, . . . , z

TAT
n)

T > 0.

This shows that ≺ Pn(x), Pn(x) ≻ is positive definite.1 Then the Gram–Schmidt-procedure can be applied to the matrix
monomials Ip, xIp, x2Ip, . . . , which results in P0(x) = Ip and recursively

Pn(x) = xnIp− ≺ xnIp, Pn−1(x) ≻≺ Pn−1(x), Pn−1(x)≻−1 Pn−1(x)− · · ·− ≺ xnIp, P0(x) ≻≺ P0(x), P0(x)≻−1 P0(x)
(2.16)

1 The assumption that the polynomials Pn(x) is monic is indeed necessary, otherwise ≺ Pn(x), Pn(x) ≻ would be singular for all vectors z which are in
the kernel of all matrices A1, . . . , An .



H. Dette et al. / Journal of Multivariate Analysis 131 (2014) 17–31 21

for 1 ≤ n ≤ N . The basic properties of the inner product yield (2.15) for n ≠ m. Note that if H2N is not positive definite,
≺ PN(x), PN(x) ≻may be singular and PN+1(x) cannot be defined. In the following discussionwe suppose thatH2N is positive
definite for all N ≥ 1. As in the scalar case, the monic orthogonal matrix polynomials satisfy a three term recursion

xPn(x) = Pn+1(x)+ Bn+1Pn(x)+ AnPn−1(x), n ≥ 1 (2.17)
withmatricial recursion coefficientsAn, Bn+1 ∈ Rp×p. By an induction argument, the recursion coefficients can be recursively
calculated from

≺ Pn(x), xnIp ≻= AnAn−1 . . . A0, (2.18)

≺ Pn(x), xn+1Ip ≻= Bn+1An . . . A0 + AnBnAn−1 . . . A0 + · · · + An . . . A1B1A0 (2.19)
where A0 =≺ Ip, Ip ≻= Ip = M0 (see Wall [24] for the scalar versions). Eq. (2.18) gives the identity

Ak =≺ Pk(x), Pk(x) ≻≺ Pk−1(x), Pk−1(x)≻−1

and from Eq. (2.19) we get a recursion for Bk. The mapping M2n−1 → (B1, A1, . . . , Bn) is even invertible, since Eqs. (2.18)
and (2.19) allow a recursive calculation of the moments from the recursion coefficients. For our probabilistic analysis we
introduce the symmetrized matrices

Ak(M2n−1) :=≺ Pk−1(x), Pk−1(x)≻−1/2
≺ Pk(x), Pk(x) ≻≺ Pk−1(x), Pk−1(x)≻−1/2 (2.20)

for 1 ≤ k ≤ n − 1 and for 1 ≤ k ≤ n,

Bk(M2n−1) :=≺ Pk−1(x), Pk−1(x)≻−1/2 Bk ≺ Pk−1(x), Pk−1(x)≻1/2 . (2.21)
Here we write Ak(M2n−1) and Bk(M2n−1) to emphasize the dependence of the recursion coefficients from the moments.
Now we define a density on the moment space Mp,2n−1(R) by

h(γ ,δ)2n−1(M2n−1) =

n
k=1

cBk exp

−δ2k−1trBk(M2n−1)

2
·

n−1
k=1

cAk |Ak(M2n−1)|
γk exp (−δ2ktrAk(M2n−1))1{Ak>0p} (2.22)

with parameters γk > −1, δk > 0. The normalization constants cBk and cAk are given by

cBk =
1

2p/2


2δ2k−1

π

p(p+1)/4

, (2.23)

cAk =
δ
pγk+p(p+1)(n−k)
2k

Γp(γk + (p + 1)(n − k))
. (2.24)

Again, this density defines the natural analog of the distributions analyzed in the scalar case. The following result gives a
central limit theorem for the corresponding vector of random moments. The centering constants are the moments of the
matrix-semicircle distribution ρp defined by

dρp(x) :=
1
2π


4 − x21{−2<x<2}dx · Ip. (2.25)

Theorem 2.4. Assume that the vector of randommomentsM2n−1 ∈ Mp,2n−1(R) has a distribution with density h(γ ,δ)2n−1, where the
parameters of the density satisfy δ2i = n(p+ 1) and δ2i−1 =

1
2n(p+ 1) for all i ≥ 1. For k fixed denote byM (n)

k = (M1, . . . ,Mk)
the vector of the first k matrices of M2n−1. Then

n(p + 1)(D−1
⊗ Ip)(M

(n)
k − Mk(ρp))

D
−−−→
n→∞

Xk,

where Mk(ρp) are the first moments of the matrix-semicircle distribution, the matrices in Xk = (X1, . . . , Xk)
T are independent

and GOEp-distributed and D is a k × k lower triangular matrix with Di,j = 0 if i + j is odd, D1,1 = · · · = Dk,k = 1 and the
remaining entries are given by

Di,j =


i

i−j
2


−


i

i−j
2 − 1


.

Remark 2.5. Dette and Nagel [5] proved a similar result for random matrix moments uniformly distributed on the space
Mp,n([0, 1]). It is also possible to obtain results of this type for a more general class of densities

f (γ ,δ)p,n (Mn) =

n
k=1

cp,k|(M+

k − M−

k )
−1(Mk − M−

k )|
γk |(M+

k − M−

k )
−1(M+

k − Mk)|
δk1

{M−

k <Mk<M+

k }

where γ = (γk)k, δ = (δk)k are fixed sequences of parameters with γk, δk > 1
2 (p − 1). If γk = δk = 0 for all k, we obtain

the uniform distribution on Mp,n([0, 1]) considered in this reference.
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3. Matrix orthogonal polynomials

An important tool for the proof of the results in Section 2 is matrix polynomials. If the support of a matrix measure Σ
is a subset of [0,∞), it follows by similar arguments as in Dette and Studden [7] that there exists a sequence of matrices
Zn ∈ Rp×p, such that for n ≥ 1 the recursion coefficients in (2.17) of the monic matrix polynomials are given by

AT
n = Z2n−1Z2n, (3.1)

BT
n = Z2n−2 + Z2n−1, (3.2)

where for the sake of completeness we define Z0 = 0p (note that these authors define the inner product in a different
way). Throughout this paper we call the variables Zk (and similar quantities) canonical variables. Dette and Studden [7] also
showed the representation

Zn = (Mn−1 − M−

n−1)
−1(Mn − M−

n ) (3.3)

for n ≥ 1 whereM−

0 = 0p. Since we assume all Hankel matrices H2N to be positive definite, we haveMn−1 > M−

n−1.
This section will provide a recursive method to calculate the moments from the recursion coefficients or from the

canonical variables Zn. A similar result in the scalar case was shown by Skibinsky [22]. We first need to make some defi-
nitions. Denote by P(x)T = (P0(x)T , P1(x)T , P2(x)T , . . .) the vector of monic orthogonal matrix polynomials and by F(x)T =

(Ip, xIp, x2Ip, . . .) the vector of matricial monomials. If

J =


B1 Ip
A1 B2 Ip

A2 B3 Ip
. . .

. . .
. . .

 (3.4)

is the block-tridiagonal matrix of the recursion coefficients, the recursion (2.17) can be written as

JP(x) = xP(x). (3.5)

The infinite Hankel matrix of the moments ofΣ is denoted by

M = (Mi+j)i,j≥0, (3.6)

and let L be the lower block-triangular matrix containing the coefficients of the matrix polynomials, that is

P(x) = LF(x). (3.7)

Furthermore, R is the shift-operator

R =

0p Ip 0p · · ·

0p 0p Ip 0p
...

. . .
. . .

. . .

 .
Although we consider matrices of infinite size, a multiplication of two matrices involves only a finite sum and all products
are well-defined. The following lemma is due to Dette and Nagel [5].

Lemma 3.1. The matrix L defined by (3.7) is non-singular and the inverse K = L−1 is recursively defined by

RK = KJ .

Let D = diag(D0,D1, . . .) be the block-diagonal matrix with diagonal entries Dn = ≺ Pn(x), Pn(x) ≻ then the moment matrix
M of Σ has the representation

M = KDK T .

If we write out the block entries in RK = KJ , we see that the blocks of the matrix K can be calculated with the recursion

Ki+1,j = Ki,j−1 + Ki,jBj+1 + Ki,j+1Aj+1, 0 ≤ j ≤ i

where Ki,j = 0p if j < 0 and Ki,i = Ip (note that the numbering of the blocks in K starts at 0). By the last assertion in
Lemma 3.1, the momentMn is then given by the block in the position n, 0 in the matrix KDK T and therefore

Mn = Kn,0D0,0K0,0 = Kn,0M0.

In order to obtain a recursion for the matrices Zn, we need the following lemma to express the canonical variables as the
recursion coefficients of another measure. The proof is given in the Appendix.
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Lemma 3.2. Let Σ be a matrix measure on [0,∞) andΣs the symmetric matrix measure on R defined by

Σs([−x, x]) = Σ([0, x2]) (3.8)

for all x ≥ 0. Then the monic matrix polynomials orthogonal with respect toΣs satisfy the recursion

xPn(x) = Pn+1(x)+ Zn(Σ)TPn−1(x), n ≥ 0

where Zn(Σ) is the matrix in the recursion of the polynomials orthogonal with respect toΣ .

Lemma 3.1 together with Lemma 3.2 enables us to prove a recursive relation to compute the moments of Σ from the
canonical variables Zn.

Theorem 3.3. Let Σ ∈ Pp([0,∞)) be a matrix probability measure with canonical variables Zn defined in (3.3). Define the
triangular array of matrices Gi,j, i, j ≥ 0 by Gi,j = 0 if i > j, G0,j = Ip and

Gi,j = Gi,j−1 + Zj−i+1Gi−1,j

for j ≥ i ≥ 1. Then Gn,n = Mn(Σ).

Proof. For the matrix measure Σ on [0,∞) we define the symmetric measure Σs by (3.8). According to Lemma 3.2 the
monic orthogonal polynomials Pn(x) of Σs of even (odd) degree are even (odd) functions. This implies for the block matrix
K = (Ki,j)i,j≥0 in Lemma 3.1, which satisfies F(x) = KP(x), that block Ki,j is the matrix of zeros if i + j is odd. Furthermore,
the blocks in the matrix J of the recursion coefficients are Bn = 0p and An = ZT

n . Here Zn is calculated from the moments of
Σ , not ofΣs. The equation RK = KJ gives the recursion

Ki+2j,i = Ki+2j−1,i−1 + Ki+2j−1,i+1ZT
i+1. (3.9)

Now define

Gi,j = K T
i+j,j−i for 1 ≤ i ≤ j, else Gi,j = 0p,

then the matrices Gi,j satisfy the asserted recursion. From the equationM = KDK T in Lemma 3.1 we obtain

Mn(Σ) = M2n(Σs) = K0,0D0 K T
2n,0 = K T

2n,0 = Gn,n.

Here we used thatΣ is a probability measure and D0 = M0 = Ip. �

4. Weak convergence of randommatrix moments

4.1. Matrix measures on the half-line and proof of Theorem 2.3

4.1.1. Convergence of canonical variables
Dette and Nagel [5] use symmetrized canonical moments to study random matrix moment on the interval [0, 1]. The

auxiliary variables in the study of the randommoments on the half-line are symmetrized versions of the canonical variables
Zk in the recursion of matrix polynomials orthogonal on [0,∞). For moments Mn = (M1, . . . ,Mn)

T in the interior of
Mp,n([0,∞))we define

Zk := (Mk−1 − M−

k−1)
−1/2(Mk − M−

k )(Mk−1 − M−

k−1)
−1/2

∈ S+

p (R) (4.1)

for k = 1, . . . , n. The symmetric matrix Zk is positive definite and similar to Zk. We obtain a mapping

ψp,n :


IntMβ

p,n([0,∞)) −→ S+

p (R)
n

Mn −→ Zn = (Z1, . . . ,Zn)
T ,

(4.2)

that maps a moment vector to the vector of corresponding canonical variables. If Zk andM1, . . . ,Mk−1 are given,Mk can be
calculated with Eq. (4.1). Recursively, all moments M1, . . . ,Mn can be recovered from canonical variables Z1, . . . ,Zn and
the mappingψp,n is one-to-one. The next theorem gives the distribution of the canonical variables Zn of the random vector
of moments with density g(γ ,δ)p,n defined in (2.10). Recall that the distribution of a random variable X ∈ Sp(R) is given by the
Laguerre orthogonal ensemble LOEp(γ ,W )with parameter γ > 1

2 (p− 1) and scale matrixW ∈ S+
p (R), if it has the density

fL(X) =
1

Γp(γ )|W |γ
|X |

γ−
1
2 (p+1)e−trW−1X1

{X∈S+
p (R)}

(4.3)

(see e.g. Muirhead [20]). IfW = Ip, we call this distribution central Laguerre orthogonal ensemble and write X ∼ LOEp(γ ).



24 H. Dette et al. / Journal of Multivariate Analysis 131 (2014) 17–31

Theorem 4.1. If the vector of random moments Mn has a distribution with density g(γ ,δ)p,n and Zn = (Z1, . . . ,Zn) = ψp,n(Mn),
then the random matrices Z1, . . . ,Zn are independent and

Zk ∼ LOEp


γk +

1
2
(p + 1)(n − k + 1), δ−1

k Ip


for k = 1, . . . , n.

Proof. By definition ofψp,n the canonical variable Zk depends only onM1, . . . ,Mk, and consequently the Jacobian determi-
nant is obtained as ∂vec(Zn)

∂vec(Mn)

 =

n
k=1

 ∂vec(Zk)

∂vec(Mk)

 =

n
k=1

|Mk−1 − M−

k−1|
−

1
2 (p+1)

=

n
k=2

|Z1 . . .Zk−1|
−

1
2 (p+1)

=

n
k=1

|Zk|
−

1
2 (p+1)(n−k).

Here we use the fact, that for X, A ∈ Sp(R) the determinant of the Jacobi matrix J(ΦA) of the transformationΦA : X → AXA
is given by

|J(ΦA)| = |A|
p+1

(see e.g. Mathai [19]). The joint density of the canonical variables Z1, . . . ,Zn is given by

g(γ ,δ)Z (Zn) =

n
k=1

cp,k|Zk|
γk+

1
2 (p+1)(n−k) exp(−δktrZk)1{Zk>0p},

andwe obtain the distribution according to definition (4.3). Note that this argument also gives the value of the normalization
constant in (2.11). �

The following result provides the weak convergence of the Laguerre orthogonal ensemble if the parameter tends to
infinity.

Theorem 4.2. Suppose Xn ∼ LOEp(γn) is a sequence of random matrices with parameters γn → ∞. Then it holds that

1
√
γn


Xn − γnIp

 D
−−−→
n→∞

GOEp.

Proof. The moment generating function of Xn (i.e., the joint moment generating function of all real random variables in Xn)
can be written as a function

E

etr (KXn)


(4.4)

of a symmetric matrix K ∈ Sp(R) (compare Gupta and Nagar [15]). By definition (4.3),

E

etr (KXn)


=


S+
p (R)

1
Γp(γn)

|X |
γn−

1
2 (p+1)e−tr Xetr (KX)dX

= |Ip − K |
−γn


S+
p (R)

|Ip − K |
γn

Γp(γn)
|X |

γn−
1
2 (p+1)e−tr (Ip−K)XdX = |Ip − K |

−γn

for K < Ip. The moment generating function of the standardized random variable is therefore given by

E

e
tr

K 1√

γn
(Xn−γnIp)


= E


e
tr


1√
γn

KXn


e−
√
γntr K =

Ip −
1

√
γn

K
−γn e−

√
γntr K .

Let κ1, . . . , κp denote the eigenvalues of the matrix K , then the moment generating function can be written as
p

i=1


1 −

κi
√
γn

−γn

e−
√
γnκi =

p
i=1

exp

−γn log


1 −

κi
√
γn


−

√
γnκi


.

Now expanding the logarithm yields for −Ip < K < Ip

E

e
tr

K 1√

γn
(Xn−γnIp)


=

p
i=1

exp


γn

∞
k=1

1
k


κi

√
γn

k

−
√
γnκi



=

p
i=1

exp


1
2
κ2
i +

∞
k=3

1
k
κk
i
√
γn

2−k


−−−→
n→∞

p
i=1

exp

1
2
κ2
i


= exp


1
2
tr K 2


.
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Because exp( 12 tr K
2) is the moment generating function of the Gaussian orthogonal ensemble the assertion of Theorem 2.3

follows. �

The random canonical variables Zk are distributed according to the Laguerre orthogonal ensemble and the weak
convergence for n → ∞ follows directly from Theorem 4.2. Note that Zk ∼ LOEp(γk +

1
2 (p + 1)(n − k + 1), δ−1

k Ip)
implies that

δkZk ∼ LOEp


γk +

1
2
(p + 1)(n − k + 1)


is distributed according to the central Laguerre orthogonal ensemble. The appropriately standardized randommatrix

δk(Zk − Ip) =
1

√
δk
(δkZk − δk)

tends in distribution to the Gaussian orthogonal ensemble if δk depends on n and tends to infinity with the same rate as
γk +

1
2 (p + 1)(n − k + 1). This yields the following result.

Theorem 4.3. Assume that the vector of random moments Mn has a distribution with density g(γ ,δ)p,n defined in (2.10) and
parameters δk =

1
2 (p + 1)n for all k. Then for each component Zk of Zn = (Z1, . . . ,Zn) = ψp,n(Mn) the weak convergence

1
2
(p + 1)n(Zk − Ip)

D
−−−→
n→∞

GOEp

holds.

The non-standardized canonical variable Zk converges under the assumptions of Theorem 4.3 in probability to the
identity matrix. Recalling the definition of the matricial Marchenko–Pastur distribution (2.13) and definition (4.1) the
diagonal structure is carried over to the canonical variables. Therefore we obtain from the scalar case (see Lemma 3.3 in
Dette and Nagel [4])

Z0
n = ψp,n(Mn(ηp)) = ψ1,n(cn)⊗ Ip = (1, . . . , 1)T ⊗ Ip = (Ip, . . . , Ip)T .

In other words, the random canonical variables Zk converge in the situation of Theorem 4.3 in probability to the
corresponding variables of the matricial Marchenko–Pastur distribution ηp. By the continuity of the mapping ψ−1

p,n , the
randommomentsMk converge to the moments ckIp of the matricial Marchenko–Pastur distribution.

4.1.2. Proof of Theorem 2.3
For a proof of Theorem 2.3 we need the following concept of differentiability on the level of matrices. It has been applied

previously by Dette and Nagel [5] and Gamboa et al. [13] to proveweak convergence ofmatricial random variables in related
situations.

Definition 4.4. Let O be an open subset of Sp(R)n. A mapping F : O −→ (Rp×p)m is called matrix differentiable at X0, if
there exists a matrix L ∈ Rmp×np, such that

F(X0
+ H)− F(X0) = LH + o(∥H∥)

as ∥H∥ → 0. In this case we define the matrix derivative of F at X0 as

F ′(X0) =
∂F
∂X
(X0) = L.

Matrix differentiability is amore restrictive form of Fréchet differentiability (formore details on Fréchet differentiability, we
refer to Averbukh and Smolyanov [1]). In fact, we require the linear mapping which is the derivative in the Fréchet sense to
be a left multiplication, so that we can apply a product rule. If F ,G : O → Rp×p are matrix differentiable at X0,G(X0) = xIp,
then F · G is matrix differentiable at X0 and

(F · G)′(X0) = G(X0)F ′(X0)+ F(X0)G′(X0).

Now the assertion of Theorem 2.3 is proven analogously to Theorem 2.2 in Dette andNagel [5] and follows from Theorem 4.3
and Lemma 4.5 below, which shows that the inverse of the mapping ψp,k is matrix differentiable. The matrix derivative is
the Kronecker product of the derivative in the scalar case with the identity matrix.

Lemma 4.5. The mapping ψ−1
p,k : S+

p (R)
k

−→ IntMp,k([0,∞)) with ψ−1
p,k (Zk) = Mk is matrix differentiable at Z0

k =

(Ip, . . . , Ip)T with derivative

(ψ−1
p,k )

′(Z0
k) = C ⊗ Ip.
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Proof. For 1 ≤ r ≤ k consider the mapping

Fr : S+

p (R)
k
→ Rp×p, Fr(Z) = Zr ,

which maps the symmetric canonical variables onto the rth non-symmetric canonical variable. We have the relation

Zr = (Mr−1 − M−

r−1)
−1/2Zr(Mr−1 − M−

r−1)
1/2.

Now arguments similar to those in the proof of Theorem 4.5 in Dette and Nagel [5] show

∂Zr

∂Z
(Z0) = eTr ⊗ Ip =

∂zr
∂z
(z0)⊗ Ip.

This means that the matrix derivative is the Kronecker product of the derivative in the scalar case with the identity matrix.
By Lemma 3.2, the moments are sums of products of canonical variables and so the product rule implies the same structure
for the derivative of the mapping ψ−1

p,k , which yields

∂ψ−1
p,k

∂Z
(Z0

k) =
∂Mk

∂Z
(Z0

k) =
∂mk

∂z
(z0k )⊗ Ip,

and the assertion follows from the calculations in the scalar case (see Dette and Nagel [4]). �

4.2. Matrix measures on R and proof of Theorem 2.4

4.2.1. Convergence of recursion coefficients
In this section we prove the result for the moment space corresponding to matrix measuresΣ ∈ Pp(R). In this case the

auxiliary variables Ak and Bk are the symmetrized versions of the recursion coefficients of orthogonal matrix polynomials
defined in Eqs. (2.20) and (2.21), respectively. Note that Ak ∈ Sp(R) and Ak > 0p which follows from the symmetry of the
inner product in (2.20) and from the fact that ≺ Pk(x), Pk(x) ≻ is positive definite. The following lemma is proven in the
Appendix and shows the symmetry of the recursion variables Bk as well. Note that the matrices Ak and Ak and the matrices
Bk and Bk are similar.

Lemma 4.6. The matrix Bk defined in (2.21) is symmetric, that is Bk ∈ Sp(R).

With definitions (2.20) and (2.21) we construct the continuous mapping

ξp,2n−1 :


IntMp,2n−1(R) −→ (Sp(R)× S+

p (R))
n−1

× Sp(R)
M2n−1 −→ R2n−1 = (B1,A1,B2, . . . ,Bn)

T .
(4.5)

The symmetric recursion coefficients are in a one-to-one correspondence with the non-symmetric coefficients and the
mapping ξp,2n−1 is one-to-one. (Note that A1 = A1 and ≺ Pn(x), Pn(x) ≻= A1 . . . An.)

Theorem 4.7. Assume that the vector of random moments M2n−1 ∈ IntMp,2n−1(R) has a distribution with density h(γ ,δ)2n−1. Then
the random recursion coefficients B1,A1, . . . ,Bn are independent and

2δ2k−1Bk ∼ GOEp,

δ2kAk ∼ LOEp


γk +

1
2
(p + 1)(2n − 2k)


.

Proof. By Eqs. (2.19) and (2.21) the recursion coefficient Bk depends only on the moments M1, . . . ,M2k−1. The random
variableAk depends only onM1, . . . ,M2k by identity (2.20). The Jacobimatrix of ξp,2n−1 is therefore a lower block-triangular
matrix with determinant∂vec(ξp,2n−1(M2n−1))

∂vec(M2n−1)

 =


n

k=1

 ∂vec(Bk)

∂vec(M2k−1)




n−1
k=1

 ∂vec(Ak)

∂vec(M2k)



.

We obtain from (2.20)

Ak =≺ Pk−1(x), Pk−1(x)≻−1/2 M2k ≺ Pk−1(x), Pk−1(x)≻−1/2
+R1,

where R1 is independent fromM2k and therefore (see Mathai [19]) ∂vec(Ak)

∂vec(M2k)

 = |≺Pk−1(x), Pk−1(x)≻|
−

1
2 (p+1)

= |Ak−1 . . . A1|
−

1
2 (p+1)

= |Ak−1 . . .A1|
−

1
2 (p+1).
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Rearranging Eq. (2.19) and an application of (2.21) yields for the other recursion coefficient

Bk = ≺ Pk−1(x), Pk−1(x)≻−1/2 Bk ≺ Pk−1(x), Pk−1(x)≻1/2

= ≺ Pk−1(x), Pk−1(x)≻−1/2 M2k−1(Ak−1 . . . A1)
−1

≺ Pk−1(x), Pk−1(x)≻1/2
+R2

= ≺ Pk−1(x), Pk−1(x)≻−1/2 M2k−1 ≺ Pk−1(x), Pk−1(x)≻−1/2
+R2,

with a matrix R2 not depending onM2k−1, which gives ∂vec(Bk)

∂vec(M2k−1)

 = | ≺ Pk−1(x), Pk−1(x) ≻ |
−

1
2 (p+1)

= |Ak−1 . . .A1|
−

1
2 (p+1).

This gives for the Jacobian determinant of ξp,2n−1∂vec(ξp,2n−1(M2n−1))

∂vec(M2n−1)

 =


n

k=2

|Ak−1 . . .A1|
−

1
2 (p+1)


n−1
k=2

|Ak−1 . . .A1|
−

1
2 (p+1)



=


n−1
k=1

|Ak|
−

1
2 (p+1)(n−k)


n−1
k=1

|Ak|
−

1
2 (p+1)(n−1−k)



=

n−1
k=1

|Ak|
−

1
2 (p+1)(2n−2k−1).

The recursion coefficients have the joint density

h(γ ,δ)R (R2n−1) =

n
k=1

cBk exp

−δ2k−1trB2

k


·

n−1
k=1

cAk |Ak|
γk+

1
2 (p+1)(2n−2k−1) exp (−δ2ktrAk) 1{Ak>0p}.

The product structure of the density yields the independence of the recursion parameters and the density of
√
2δ2k−1Bk is

given by

cBk |

2δ2k−1Ip|−

1
2 (p+1) exp


−

1
2
trB2

k


= cBk


2δ2k−1

−
1
2 p(p+1)

exp


−
1
2
trB2

k


.

Consequently
√
2δ2k−1Bk ∼ GOEp and

cBk =

2δ2k−1

1
2 p(p+1)


2π

1
2 (p+1)

−p

=
1

2p/2


2δ2k−1

π

p(p+1)/4

.

The distribution of Ak is the non-central Laguerre orthogonal ensemble LOEp(γk + (p + 1)(n − k), δ−1
2k Ip), which implies

δ2kAk ∼ LOEp(γk + (p + 1)(n − k)) and

cAk =

Γp(γk + (p + 1)(n − k))|δ−1

2k Ip|γk+(p+1)(n−k)−1

=

Γp(γk + (p + 1)(n − k))

−1
δ
pγk+p(p+1)(n−k)
2k .

This proves Theorem 4.7 and the identities (2.23) and (2.24). �

Theorem 4.8. If in the situation of Theorem 4.7 the parameters satisfy δ2k = (p + 1)n and δ2k−1 =
1
2 (p + 1)n, then we have

for the kth recursion coefficient Bk
(p + 1)nBk ∼ GOEp

and the kth rescaled recursion coefficient Ak converges in distribution to the Gaussian orthogonal ensemble, that is
(p + 1)n(Ak − Ip)

D
−−−→
n→∞

GOEp.

Theorem 4.8 is a direct consequence from the distribution in Theorem 4.7. The weak convergence of Ak follows from the
convergence of the Laguerre orthogonal ensemble in Theorem 4.2. Under the assumptions of Theorem 4.8 the matrix vector
R
(n)
k , which contains the first k matrix entries of R2n−1 = (B1,A1, . . . ,Bn)

T , converges for k fixed in probability to R0
k ,

which is the projection of

R0
= (0p, Ip, 0p, Ip, . . .)T
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onto the first kmatrix entries. It follows directly from the scalar case in Dette and Nagel [4], that

R0
k = ξp,k(M0

k ),

whereM0
k is the projection of

M0
= (0p, c1Ip, 0p, c2Ip, . . .)T

onto the first kmatrices (the generalization of definition (4.5) to an even number of matricial arguments is straightforward).
The vector M0 contains the moments of the semicircle distribution ρ multiplied with the identity matrix, therefore M0

=

M(ρp) is the moment vector of the matrix-semicircle distribution.

4.2.2. Proof of Theorem 2.4
The proof of Theorem 2.4 now follows as the proof of Theorem 2.3 from the following lemma and the weak convergence

of the random recursion coefficients in Theorem 4.8.

Lemma 4.9. The mapping ξ−1
p,k with ξ−1

p,k (Rk) = Mk is matrix differentiable at R0
k with derivative

(ξ−1
p,k )

′(R0
k) = D ⊗ Ip.

Proof. A similar argumentation as in the proof of Lemma 4.5 shows

∂Ai

∂R
(R0

k) = eT2i ⊗ Ip =
∂ai
∂r
(r0k )⊗ Ip

for 2i ≤ k and

∂Bi

∂R
(R0

k) = eT2i−1 ⊗ Ip =
∂bi
∂r
(r0k )⊗ Ip

for 2i− 1 ≤ k. From the structure of these derivatives and Lemma 3.1 we conclude that the derivative ofMi with respect to
the recursion coefficients is the Kronecker product of the derivative in the scalar case with the identity matrix and

∂ξ−1
p,k

∂R
(R0

k) =
∂Mk

∂R
(R0

k) =
∂mk

∂r
(r0k )⊗ Ip = D ⊗ Ip. �

5. Complex randommoments

To a large extent, the case of complexmatrixmeasures can be treated analogously to the case of realmatrixmeasures. For
the sake of brevity we state only the results and omit the proofs. The integration operator changes on the space of Hermitian
p × p matrices Sp(C) to

dX =

p
i=1

dxii

i<j

dRexijdImxij,

that is, we integrate with respect to the p2 independent real entries of a Hermitian matrix. The kth moment of a complex
matrix measure on T is defined as

Mk(Σ) :=


T
xkdΣ(x) ∈ Sp(C),

where Sp(C) denotes the space of p × p Hermitian matrices. The complex nth moment space is denoted by M2
p,n(T ).

5.1. Random moments of complex matrix measures on the half-line

We define the density on the complex moment space M2
p,n([0,∞)) as in the real case by

g(γ ,δ)p,n (Mn) =

n
k=1

cp,k
(Mk−1 − M−

k−1)
−1(Mk − M−

k )
γk · exp


−δktr (Mk−1 − M−

k−1)
−1(Mk − M−

k )

1

{Mk>M−

k }
, (5.1)

where the parameters satisfy γk > p − 1 and δk > 0 and the normalization constant is given by

cp,k =
δ
pγk+p2(n−k+1)
k

Γ
(2)
p (γk + 2(n − k + 1))

. (5.2)
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The canonical variables Zk in (3.3) are well defined and as in the real case the symmetrized version is given by

Zk := (Mk−1 − M−

k−1)
−1/2(Mk − M−

k )(Mk−1 − M−

k−1)
−1/2

∈ S+

p (C) (5.3)

for k = 1, . . . , n. The Hermitian matrix Zk is positive definite and similar to Zk. We obtain a mapping

ψp,n :


IntM2

p,n([0,∞)) −→ S+

p (C)
n

Mn −→ Zn = (Z1, . . . ,Zn)
∗,

(5.4)

that maps a moment vector to the vector of corresponding canonical variables. Recall that the distribution of a random
variable X ∈ Sp(C) is given by the Laguerre unitary ensemble LUEp(γ ,W ) with parameter γ > p − 1 and scale matrix
W ∈ S+

p (C), if it has the density

fL(X) =
1

Γ
(2)
p (γ )|W |γ

|X |
γ−pe−trW−1X1

{X∈S+
p (C)}

.

If W = Ip, we call this distribution central Laguerre unitary ensemble and write X ∼ LUEp(γ ). Γ
(2)
p is the complex

multivariate gamma function and given by

Γ (2)
p (z) :=


S+
p (C)

|X |
z−pe−tr XdX .

Proceeding as in Section 4 gives the following result.

Theorem 5.1. Assume that the vector of random momentsMn has a distribution with density g(γ ,δ)p,n and Zn = (Z1, . . . ,Zn) =

ψp,n(Mn), then the random matrices Z1, . . . ,Zn are independent and

Zk ∼ LUEp(γk + p(n − k + 1), δ−1
k Ip)

for k = 1, . . . , n.

We proceed with asymptotic results for the random matricial moments in M2
p,n([0,∞)) for n → ∞. The following

theoremprovides theweak convergence of the Laguerre unitary ensemble if the parameter tends to infinity. For this purpose
recall that a random variable X taking values in Sp(C) is distributed according to the Gaussian unitary ensemble GUEp, if it
has the density

fG(X) = (2πp)−p/2π−p(p−1)/2e−
1
2 tr X

2
.

Theorem 5.2. Suppose Xn ∼ LUEp(γn) is a sequence of random matrices with parameters γn → ∞. Then it holds that

1
√
γn


Xn − γnIp

 D
−−−→
n→∞

GUEp.

The remaining arguments in Section 4 stay essentially unchanged, which yield the following result on the weak
convergence of random complex moments.

Theorem 5.3. Assume that the vector of random moments Mn ∈ M2
p,n([0,∞)) has a distribution with density g(γ ,δ)p,n and para-

meters δi = np for all i. For k ≥ 1 fixed denote by M (n)
k the projection of Mn onto the first k matrices and assume that

Mk(ηp) = (c1Ip, . . . , ckIp)∗ contains the first kmoments of thematricialMarchenko–Pastur distribution ηp. Then the convergence
√
np(C−1

⊗ Ip)(M
(n)
k − Mk(ηp))

D
−−−→
n→∞

Xk

holds, where C ∈ Rk×k is the lower triangular matrix in Theorem 2.3 and Xk = (X1, . . . , Xk)
∗ is a vector of independent, GUEp-

distributed random matrices.

5.2. Random moments of complex matrix measures on R

The density on M2
p,2n−1(R) in the complex case is given by

h(γ ,δ)2n−1(M2n−1) =

n
k=1

cBk exp

−δ2k−1trBk(M2n−1)

2
·

n−1
k=1

cAk |Ak(M2n−1)|
γk exp (−δ2ktrAk(M2n−1))1{Ak>0p} (5.5)
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with parameters γk > −1, δk > 0 and the normalization constants cBk and cAk are given by

cBk =
1

2p/2


2δ2k−1

π

p2/2

(5.6)

cAk =
δ
pγk+p2(2n−2k)
2k

Γ
(2)
p (γk + p(2n − 2k))

. (5.7)

Theorem 5.4. Assume that the vector of random moments M2n−1 ∈ IntM2
p,2n−1(R) has a distribution with density h(γ ,δ)2n−1. Then

the random recursion coefficients B1,A1, . . . ,Bn are independent and
2δ2k−1Bk ∼ GUEp,

δ2kAk ∼ LUEp(γk + p(2n − 2k)).

Theorem 5.5. If in the situation of Theorem 5.4 the parameters satisfy δ2k = 2np and δ2k−1 = np, then we have for the recursion
coefficient Bk

2npBk ∼ GUEp
and the rescaled recursion coefficients Ak converge in distribution to the Gaussian unitary ensemble,

2np(Ak − Ip)
D

−−−→
n→∞

GUEp.

The following result completes this section and gives a central limit theorem for the complex randommoments.

Theorem 5.6. Assume that the vector of randommomentsM2n−1 ∈ M2
p,2n−1(R) has a distribution with density h(γ ,δ)2n−1, where the

parameters satisfy δ2i = 2np and δ2i−1 = np for all i ≥ 1. For k fixed denote by M (n)
k the vector of the first k matrices in M2n−1.

Then 
2np(D−1

⊗ Ip)(M
(n)
k − Mk(ρp))

D
−−−→
n→∞

Xk,

where Mk(ρp) are the first moments of the matrix-semicircle distribution, Xk = (X1, . . . , Xk)
∗ is a vector of independent and

GUEp-distributed random variables and D is the k × k lower triangular matrix in Theorem 2.4.
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Appendix

A.1. Proof of Lemma 3.2

The monic polynomials orthogonal with respect to Σs satisfy a recursion as in (2.17). Eq. (2.16) and a simple induction
argument yield that P2n(x) is an even function and P2n−1(x) is an odd function and consequently Bn = 0p for all n. For the
other recursion coefficients we have

AT
n = (M2n−2(Σs)− M2n−2(Σs)

−)−1(M2n(Σs)− M2n(Σs)
−).

A suitable approximation of the identity by step functions shows that the even moments ofΣs are given by

M2n(Σs) =


x2ndΣs(x) =


xndΣ(x) = Mn(Σ).

Therefore Mn(Σ)
−

≥ M2n(Σs)
− and M2n(Σs)

−
≥ Mn(Σ)

−, which implies M2n(Σs)
−

= Mn(Σ)
−. We get for the recursion

coefficient
AT
n = (Mn−1(Σ)− Mn−1(Σ)

−)−1(Mn(Σ)− Mn(Σ)
−) = Zn(Σ). �

A.2. Proof of Lemma 4.6

Denote by C (n)n−1 the coefficient of xn−1 in Pn(x), then by the recursion (2.17) we have

C (k)k−1 = −Bk + C (k−1)
k−2 .
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The construction of the matrix orthogonal polynomials in (2.16) yields

C (k)k−1 = − ≺ xkIp, Pk−1(x) ≻≺ Pk−1(x), Pk−1(x)≻−1 .

Another application of the recursion gives for the recursion coefficient

Bk = C (k−1)
k−2 − C (k)k−1

= ≺ xkIp, Pk−1(x) ≻≺ Pk−1(x), Pk−1(x)≻−1

− ≺ xk−1Ip, Pk−2(x) ≻≺ Pk−2(x), Pk−2(x)≻−1

= ≺ xk−1Ip, xPk−1(x) ≻≺ Pk−1(x), Pk−1(x)≻−1

− ≺ xk−1Ip, Pk−2(x) ≻≺ Pk−2(x), Pk−2(x)≻−1

=

≺ xk−1Ip, Pk(x) ≻ + ≺ xk−1Ip, Pk−1(x) ≻ BT

k+ ≺ xk−1Ip, Pk−2(x) ≻ AT
k−1


· ≺ Pk−1(x), Pk−1(x)≻−1

− ≺ xk−1Ip, Pk−2(x) ≻≺ Pk−2(x), Pk−2(x)≻−1

= ≺ Pk−1(x), Pk−1(x) ≻ BT
k ≺ Pk−1(x), Pk−1(x)≻−1 .

The last equation implies

Bk = ≺ Pk−1(x), Pk−1(x)≻−1/2 Bk ≺ Pk−1(x), Pk−1(x)≻1/2

= ≺ Pk−1(x), Pk−1(x)≻1/2 BT
k ≺ Pk−1(x), Pk−1(x)≻−1/2

= BT
k . �
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