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Variance-corrected tests for covariance structures with high-dimensional data

Guangyu Mao
School of Economics and Management, Beijing Jiaotong University, Beijing, 100044, PR. China

Abstract

It has been reported in the literature that the identity and sphericity tests of Chen et al. [4] suffer from severe size dis-
tortion when they are applied to heavy-tailed data. This paper provides a theoretical explanation for this observation.
New, variance-corrected identity and sphericity tests are constructed. The proposed tests are simple extensions of the
tests due to Chen et al. [4] but simulation results show that they have much better statistical performance than the
latter, and two other existing tests.
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1. Introduction

Testing for the covariance structure of a random vector is an important topic in multivariate analysis. For a variety
of reasons, when analyzing a data set, we may be interested in whether or not the covariance matrix of the underlying
population is equal to a specified positive-definite matrix or that it is proportional to an identity matrix, or even that it
has a diagonal structure, etc. When the dimension of the random vector p is far less than the sample size n, tests for
different covariance structures under the assumption that p is fixed and n — oo have been studied for a very long time,
and they are well documented; see, e.g., Muirhead [11].

Over the past decade, due to the growing availability of high-dimensional data sets, which are typically such that
p is comparable to, or even far larger than n, more and more attention has been paid to testing covariance structures
for these kinds of data. It is now well understood that to construct effective tests under high-dimensional settings, it
is more appropriate to postulate that p — oo and n — oo simultaneously, denoted by (p,n) — oo below. Under this
assumption, a considerable body of literature for testing high-dimensional covariance structures has been developed.
Related contributions include, but are not limited to, Ledoit and Wolf [9], Srivastava [13], Bai et al. [2], Chen et al.
[4], Fisher et al. [6], Cai and Jiang [3], Srivastava et al. [14], Fisher [5], Qiu and Chen [12], Wang and Yao [17],
Srivastava et al. [16], Zou et al. [20], Zheng et al. [19], He and Chen [7], and Jiang and Wang [8].

In this paper, we are interested in testing two hypotheses about a high-dimensional random vector: (i) the covari-
ance matrix is equal to an identity matrix; (ii) the covariance matrix is proportional to an identity matrix. Concretely,
suppose xi, ..., X, is arandom sample generated from the population of a p-dimensional random vector with unknown
positive-definite covariance matrix X,. We aim to test

Ho 2, =1, vs. Hy : 2, # I,

and B -
Hy:%, =0l vs. Hy : 2, # oI,

respectively, where 7, is an identity matrix of dimension p, and ¢ is an unknown but finite positive constant. For
simplicity, we refer to the tests for H, and H, as an identity test and a sphericity test, respectively.

In the literature, under the high-dimensional setting p > n, various tests for H, and H, have been developed by
Ledoit and Wolf [9], Srivastava [13], Chen et al. [4], Fisher et al. [6], Srivastava et al. [14], Fisher [5], Wang and Yao
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[17], Srivastava et al. [16] and Zou et al. [20], to name a few. Of these papers, Chen et al. [4] is the earliest one that
investigates the two tests for non-normal populations; it has attracted much attention. However, as partly noted by
Zou et al. [20], the tests proposed by Chen, Zhang and Zhong (henceforth CZZ) may suffer from severe size distortion
when they are applied to heavy-tailed data, even in large samples.

Motivated by the findings in Zou et al. [20], in the present paper we try to explore theoretically why CZZ’s
tests perform poorly when the data come from heavy-tailed distributions. Roughly speaking, we find that when
approximating the distributions of their test statistics, CZZ neglected O(p~') bias terms in the asymptotic variances
of the test statistics. Even though the bias terms are asymptotically negligible when p — co, as will be explained
below, they generally deviate much from zero even for large p in the presence of heavy tails. Therefore, omitting
the O(p~!) bias terms is the source of severe size distortion. Based on our theoretical analysis, we propose a simple
method to correct the bias in the asymptotic variance of CZZ’s test statistics. This leads to two variance-corrected
(VC) tests: a VC identity test and a VC sphericity test. Simulation studies show that the VC tests can bring remarkable
improvement when the data are heavy-tailed.

The rest of this paper is organized as follows. In the next section, we explore theoretically why CZZ’s tests have
severe size distortion when they are applied to heavy-tailed data, and we propose the VC tests. Section 3 is devoted
to simulation studies about the VC tests. A short conclusion is provided in Section 4. All proofs are postponed to
Appendix A.

2. Variance-corrected tests

Before proceeding to the formal theoretical analysis, we first introduce the following assumption.

Assumption 1. Let x; = (xqq,... ,xpl)T, e Xy = (Xny - ,xp,l)T be p-dimensional random vectors such that, for
each je{l,...,n},
Xj=pu+ Z;/ZZJ',

where u is a p-dimensional constant vector, and 7 = (211, - . - ,z,,l)T, cesZn = Ziny .- ,z,m)T are iid p-dimensional
random vectors satisfying: (i) E(z;) = 0; (ii) var(zy) = I,; (iii) E(z?l) =¢&forallie{l,...,p}; (v) E(z;‘l) = k for all
ief{l,...,p}; (v) moments of z;; are finite up to the eighth order for alli € {1, ..., p}, and
E -5 =BG - EGY)
q 1 q

i
for all mutually distinct integers iy, ... ,igand ty, ..., 0, > 0with €; +--- +{, = 8.

The assumption is similar to that adopted by CZZ. When z;y,...,z,1 are mutually independent, Assumption (v)
automatically holds, but the latter is sufficient to ensure the validity of our theoretical results. In the literature, besides
CZZ, (v) was used, e.g., by Bai and Saranadasa [1], Srivastava and Kubokawa [15], Zhang et al. [18], Srivastava et al.
[16], and He and Chen [7].

CZZ observed that tr(E%)/ p —2tr(Z,)/p > —1 with equality if and only if Hj is true, and ptr(Z?,) / {tr(Zl,,)}2 >1
with equality if and only if Fj is true. This led them to construct, under Assumption 1, unbiased estimators Ty, and
T, for tr(X,) and tr(Zf,), respectively. CZZ then proposed statistics for testing Hy and Ho. The two estimators are
given by

Tl,n = Yl,n - Y3,n, (1)
TZ,n = Y2,n - 2Y4,n + YS,m (2)
where
1 & T 1 © T
Yi, = ;;xi Xi, Yan = P A X; Xj

*

1 [IRN 1

T 2 _ T T _ T T
— Z(xi X)) Yap=— in Xjx;xg, Ysp = — Z X; XX Xe,
n = ny < n3 <

Y2,n



in which n; = n H;zl(n — j) for each i € {1,2,3}, and },* denotes summation over mutually distinct indices. For
example, Zz ;x Mmeans summation over {(i, k) : i # j, j # k, k # i}.
CZZ proved that under Assumption 1, one has, as (p,n) — oo,

nV, ~ N(0,4)under Hy and nU, ~» N(0,4) under Ho, 3)
where ~~ denotes convergence in distribution, and
Vi =Ton/p=2T10+1/p, U, = p(T2u/T},) - 1.

It can thus be expected that under the null hypotheses, the distributions of nV,,/ vvar(nV,) and nU,/ vvar(nU,) can
be well approximated by the standard Normal distribution, N'(0, 1).

As can be surmised from Eq. (3), CZZ employed the asymptotic variances of nV, and nU, when (p,n) — oo,
namely 4, to estimate var(nV,) and var(nU,), respectively. If var(nV,) and var(nU,) deviate much from 4 for finite
p and n, however, their tests may then suffer from severe size distortion. To see the difference between var(nV,) and
var(nU,), and their limits, it is helpful to first compute the exact variances of T, and 7>, as well as their covariance.

Proposition 1. Under Assumption 1 and H,
(i) var(Ty,) = o*plk = 1)/n + 20*p/ny;
(ii) var(T»,) = 208 p(b1n® + ban® + byn + by)/n3, where
by =2k—-2, by=2p+*>— 14k -4 + 15,
by = —6p — 5k° + 36k + 2882 — 45, by = 4p + 6k* — 36k — 4887 + 62;
(iii) cov(Typ, Tap) = 209p{(k — Dn — k — & + 3}/ny.
Calling on this proposition, we can show the following results.

Theorem 1. (i) Under Assumption 1 and H,

2
var(nV,) = —— (c;n® + con + ¢3), (4)
pn3

where ¢; = 4p + 2k> — 4k =2, ¢ =-12p— 10k% + 28k + 16&2 — 6, and c3 = 8p + 12k* — 48k — 48&% + 52.
(it) Under Assumption 1 and Hy, var(nU,) is approximately equal to the right-hand side of Eq. (4) via the delta
method.

As we can see from (i), the leading term of var(nV,) is 4 + 2(x* — 2k — 1)/p. As a result, lim(, o0 Var(nV,) = 4,

which confirms CZZ’s results. However, the approximation var(nV,) ~ 4 may be poor if z;, ..., z, and hence xi, ..., x,
are heavy-tailed, because x may be much large in this case.
To see this, suppose that for each j € {1,...,n}, z1;,...,z,; are iid random variables generated from the standard-

ized LN(0, 1), where LN(0, 1) refers to the standard log-normal distribution. It is easy to verify that k = 114 by the
probabilistic properties of the log-normal distribution. Thus, var(nV,) = 4 + 25534/p + o(1). Suppose we are now
testing Hp at the 5% level using CZZ’s identity test and the dimension of the data set is 25,534. Since

Pr(nV,/2 < 1.645) = Pr(nV,/ V5 < 3.29/ V5) ~ ®(3.29/ V5) ~ 0.93,

where @ is the cumulative distribution function of the standard Normal distribution, the actually controlled size is
about 7%, not 5%. In other words, the approximation var(nV,) =~ 4 is not sufficiently accurate. Therefore, when
facing heavy-tailed data, CZZ’s identity test may be oversized due to large deviation of the O(p~') bias from zero.
The same analysis goes for CZZ’s sphericity test. Theorem 1 also shows that increasing p is instrumental in alleviating
the size distortion for CZZ’s tests, but this is not true for #.

Since we have derived the exact forms of the O( p’l) bias terms in var(nV,) and var(nU,,), and given that they are
the main sources of size distortion, it is natural to correct these biases. Because in the O(p~') bias terms the fourth
moment of z; is the unique unknown quantity, we can reach our aim if « can be consistently estimated. Now, suppose
&y and gy are two consistent estimators of k under H{ and ‘ﬂo respectively. We have the following results.

3



Theorem 2. (i) Under Assumption 1 and ‘H,
nVy,
\/4 + 22 = 2y — 1)/p

~> N(0,1) as (p,n) — oo;

(i) Under Assumption 1 and Ho,
nU,
\/4 +22, - 2ky — D)/p

~ N(0, 1) as (p,n) — oo.

We refer to the identity test and sphericity test based on the theorem as variance-corrected (VC) tests. The theorem
holds since the test statistics are asymptotically equivalent to CZZ’s when

L oP LD
Ky >k and Ky — K,

P . . N N . . .
where — means convergence in probability. Note that when &y and &y are inconsistent, Theorem 2 may still hold
provided that &;,/p = 0,(1) and k;,/p = 0,(1). Here we require the consistency of the two estimators because our aim
is to reduce the influence of the O(p~') biases.

Let X be the p X n matrix whose (i, j) element is x;; — 23:1 x;j/n. Accordingly, the sample covariance matrix can

be defined by f),, = XX /(n - 1). To estimate x under FHy, it is reasonable to consider the estimator

= %in‘; ®)

where X; ; is the (i, j) element of X. The estimator Ry was proposed by Wang and Yao [17] and is generally consistent
as discussed in their Remark 2.1. To estimate x under H, we can use

g L1 X X/ (np)
Ky = & s (6)
{trXp)/ p)?

due to the fact that tr(f),,) /p is a consistent estimator of o> according to Chen et al. [4].

For the estimators in Eqs. (5) and (6), we may expect that &y —« = Op,(1/ /np) under Hy and ky —«k = O,(1/ \/np)
under 7j(0. If this is true, both the leading terms in the differences between var(nV,) and var(nU,), and their cor-
responding corrected variances in Theorem 2 are —12n3/n3, which is of order O(n~") and does not depend on «.
As a consequence, the corrected variances can largely remove the influence of «. Besides, if &j,/p = 0,(1) and
k%j/ p = 0,(1) hold under the alternatives, consistency of the VC tests can be justified by CZZ’s Theorem 3 and 4 since
they are asymptotically equivalent to CZZ’s tests.

Remark 1. By virtue of Theorem I, we may do a complete correction for CZZ’s tests, i.e., we may estimate var(nV,)
or var(nU,) by n*>(é1n* + é&n + ¢3)/(pn3), where ¢, ¢, and ¢3 are obtained by replacing k and & in ¢y, ¢y and c3

by consistent estimators respectively. In this case, we can estimate & by &y = ,’.’:1 ;le )N(?j/(np) under Hy, or

e:fU = (np)~! Zle ;le )?;’j/{tr(ﬁl,,)/p}3/2 under '7:(0. However, our extensive simulation studies (not reported in this
paper) show that further improvement is generally limited if the complete correction is carried out. Therefore, we
recommend the correction introduced above for practical use.

3. Simulation studies

To evaluate the proposed VC tests, we compared several existing tests in the literature with ours by simulation.
When testing Hj, we made a comparison between IT¢zz (CZZ’s identity test) with ITy¢ (the VC identity test). When
testing 7:(0, we compared STz, (CZZ’s sphericity test), STy¢ (the VC sphericity test), ST¢, (the corrected John’s test
of Wang and Yao [17]), and STp¢s (the bias-corrected sign test of Zou et al. [20]).
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As we can see from (1) and (2), the forms of CZZ’s statistics are complicated. However, as noted recently by Mao
[10], Ty, and T, are identical to two other unbiased estimators for tr(Z,) and tr(EIZ,) proposed by Srivastava et al.
[16], viz.

¢ 1 3. 82 2. N2 ' ) 2
Tin =ty Ton = (1= 2= DE)) + (= D€, = ;u}xj) b
where %; = x; — Y;_, x¢/n. Thus, CZZ’s test statistics and ours can be quickly computed by using the traces of flp
and 2.

The corrected John’s test of Wang and Yao [17] is based on the statistic {(n — 1)U, — p — ky + 2}/2, where

U, = ptlr(Ef,)tlr(Ep)’2 — 1. Under Hy, Wang and Yao [17] proved that the statistic converges in distribution to N(0, 1)

as (p,n) — oo and p/n — ¢ € (0,00). The bias-corrected sign test of Zou et al. [20] are designed to test H, for
p-dimensional random vectors from an elliptical distribution. The test statistic is of the form (0 — DPOn,p), Where

a0 =2+/(p— D)/tm(p +2)} and

~ p - (x; — n,p)T(xj - n,p)
Q = ~ ~ >
n i,j ” Xi — Hn,p ” X ” Xj = Unp ”

where 9n,p = argming 2?:1 Il xj =6 ll, 6, is an unknown term defined by Eq. (5) in Zou et al. [20]. When ¢,,, is
appropriately estimated (see discussion therein), the authors showed that the resulting statistic converges in distribution
to N(0, 1) as (p,n) — o and p = O(n?).

Let (e;;) be a double array of iid random variables. In our simulation, we considered three scenarios for generating
the e;;’s, viz.

(i) e;~ G4, \/§/ 2), Gamma distribution with shape parameter 4 and scale parameter \/5/ 2;
(i) e;; ~ P(9), basic Pareto distribution with shape parameter 9;
(iii) e;; ~ LN(O,1).

The kurtosis of these three distributions is 4.5, 19.8, and 114, respectively. Therefore, only the first scenario corre-
sponds to the case of light tails. All ¢;; were standardized to be of zero mean and unit variance, and then used to gen-
erate zj,...,2, Or X1, ..., X, directly. The performance of the tests was compared in terms of their empirical size and
power. Our simulation considers different combinations of p € {60, 120, 240, 480, 600} and n € {50, 80, 120, 180, 240}.
For each combination, we generated 2500 independent replicates. All the tests were performed at the 5% level.

First, we investigate the empirical size of IT¢zz and ITy¢. Under Hy, zy, . . . , 2, were produced by setting, for each
Jjefll,....n}, (2. .,zpj)T = (ey}s-. .,epj)T. Simulation results are summarized in Table 1. As we can see, when
the data are Gamma, both IT¢zz and ITy¢ perform well. However, as the kurtosis grows, IT¢zz becomes noticeably
oversized. In contrast, ITy¢ still can maintain acceptable size. Besides, we can find that increasing # is unhelpful to
relieve the size distortion of IT¢zz, but increasing p does help. These phenomena confirm our theoretical analysis
above.

To study the empirical power of IT¢zz and ITyc, we consider three alternatives: (i) x; has neighbor correlation;
(ii) x; has non-unit variance; (iii) x; has both neighbor correlation and non-unit variance. In case (i), we set

X = (X1 Xp) T =1 X (€1 nep)| W2 X (2] s pat )]s 7

where w; = 84/85 and w, = 13/85 for scenario (i) and (ii); w; = 15/17 and w, = 8/17 for scenario (iii). Thus, x;; is
only correlated with its neighbors: x;_; j and xi,1 ;.

As Table 2 shows, the empirical power of ITy¢ tends to 1 as (p,n) — oo for all scenarios. Therefore, [Ty is a
consistent test. In case (ii), we let (1}, ... ,zpj)T = (ejs.--» epj)T and 02 = 1.5. The results in Table 3 also confirm
the consistency of ITyc. In case (iii), to generate x;, we continued to employ the sampling scheme of case (i) but
scale x;; such that var(x;;) = 1.5. Compared to Tables 2-3, the results in Table 4 suggest that ITyc will possess higher
power when both the neighbor correlation and the non-unit variance are present.



Table 1: Empirical size (%) of identity tests
ITCZZ ITVC
Scenario pln 50 80 120 180 240 50 80 120 180 240

60 7.16 540  6.96 6.32 6.12 648 496 6.04 584 536

120 6.60  6.52 6.08 5.88 5.56 632 6.12 576 5.56 520

GA@4,V2/2) 240 504 488 5.24 5.68 5.76 488 476 512 560 5.68
480 564 508 484 5.44 5.32 552 496 484 544 528

600 620 556 5.48 548 5.68 6.12 544 548 540 5.64

60 15.64 16.64 18.00 19.12 18.68 640 652 636 620 5.88

120 1192 1224 1348 1480 1440 556 540 5.64 628 5.76

PAO) 240 9.48 9.80 992 1040 10.36 5.88 544 532 572 548
480 8.08 7.52 7.96 7.64 7.68 536 524 524 512 536

600 7.28 7.64 7.36 7.20 7.96 492 560 524 536 6.08

60 2524 27.16 2848 31.00 32.04 6.16 6.60 592 580 5.04

120 2272 2472 2584 28.68 29.28 536 572 552 536 5.16

LN(,1) 240 20.56 23.12 25.16 2636 25.76 504 548 516 536 524
480 18.12 20.12 21.84 23.60 22.64 5.16 540 576 5.64 5.04

600 16.88 19.56 20.76 2252 22.36 528 572 592 520 492

*IT¢zz, the identity test of Chen et al. [4]; Ty, the variance-corrected identity test proposed in this paper.

Next, we shift our attention to the four tests for ;. To generate data for studying the size of the tests, the sampling
scheme for Table 1 was employed, except that we let o> = 2. Table 5 collects the simulation results. It shows that for
the scenario of light tails, the four tests perform similarly except that STpcs tends to be oversized when p is small.
Since STpcs is justified under the condition p = O(n?), this finding may be caused by the violation of the condition.
For the other two scenarios, all the tests except STy suffer from obvious size distortion. Therefore, STy ¢ outperforms
the other rivals. Besides, the simulation results confirm our theoretical analysis again that increasing p will alleviate
the size distortion of ST¢zz.

To investigate the power performance, we continue to sample xi, ..., x, by (7) but scale x;; such that var(x;;) = 2.

Table 2: Empirical power (%) of identity tests against neighbor correlation

ITczz ITyc
Scenario pln 50 80 120 180 240 50 80 120 180 240

60 32.96 54.12 81.40 97.76  100.00 31.52 5220 79.84 97.32 100.00

120 30.88 56.00 81.60 98.44 99.92 30.20 54.56 8092 98.24 99.92

GAM4, V2/2) 240 31.28 54.24 83.56 99.16 99.96 30.84 5396 83.28 99.12 99.96
480  30.40 56.52 84.28 98.88  100.00 30.16 56.28 84.04 98.80 100.00

600 32.00 56.04 84.64 99.24  100.00 31.52 55.88 84.60 99.24 100.00

60 3476  49.96 69.60 88.64 97.24 17.24  27.08 42.68 68.64 86.88
120 34.56 5240  74.80 93.92 98.96 2048 33.64 5588 8292  96.40
PAO) 240 33.28 5352 79.44 96.20 99.68 23.52 4052 67.64 92.52 99.24

480  34.20 55.60 80.44 97.48 99.88 27.88 47.80 7428 96.04 99.80
600 34.12 55.80 82.16 98.12 99.96 28.96 49.08 77.24 97.16 99.80

60 96.16 99.16 99.84 99.92 99.96 72.80 87.16 9344 97.40 98.16

120 98.32 99.80 99.92  100.00 100.00 81.68 93.04 96.52 98.20 99.24

LN(,1) 240  99.36  100.00 99.96  100.00 100.00 89.36 96.28 98.24 99.12 99.44
480 99.72  100.00 100.00 100.00 100.00 93.72 97.52 98.80 99.36 99.64

600 99.80 100.00 100.00 100.00 100.00 95.00 98.00 99.04 99.52 99.68

" IT¢yz, the identity test of Chen et al. [4]; ITyc, the variance-corrected identity test proposed in this paper.
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Table 3: Empirical power (%) of identity tests against non-unit variance

ITczz ITyc
Scenario pln 50 80 120 180 240 50 80 120 180 240
60 95.80 99.88 100.00 100.00 100.00 94.44 99.76  100.00 100.00  100.00
120 96.92 100.00 100.00 100.00 100.00 96.24 100.00 100.00 100.00  100.00
GAM4, \2/2) 240 97.52 99.96 100.00 100.00 100.00 97.12 99.96 100.00 100.00 100.00
480 96.80 100.00 100.00 100.00 100.00 96.68 100.00 100.00 100.00 100.00
600 97.68 100.00 100.00 100.00 100.00 97.52  100.00 100.00 100.00 100.00
60 84.92 97.20 99.92 100.00 100.00 50.60 79.72 96.28 99.64 100.00
120 90.08 99.00 99.96 100.00 100.00 66.08 92.56 99.52 99.96 99.96
PAO) 240 9432 99.60 100.00 100.00 100.00 82.76 97.76 99.88 99.92 99.96
480 96.48 99.88 100.00 100.00  100.00 90.36 99.60 99.96 99.96 100.00
600 96.28 100.00 100.00 100.00 100.00 91.96 99.64 99.96 100.00 100.00
60 56.00 72.20 85.64 95.40 98.96 12.08 16.24 25.12 42.64 60.16
120 63.44 79.28 92.40 98.96 99.84 14.96 22.76 38.40 62.52 79.44
LN(©,1) 240  70.96 88.60 97.48 99.92  100.00 20.28 33.76 56.56 80.92 91.28
480 78.80 94.96 99.60 100.00 100.00 28.48 50.16 75.96 92.28 96.60
600 81.04 95.72 99.80  100.00  100.00 33.44 57.04 81.76 94.52 97.00
* IT¢zz, the identity test of Chen et al. [4]; ITy¢, the variance-corrected identity test proposed in this paper.
Table 4: Empirical power (%) of identity tests against neighbor correlation and non-unit variance simultaneously
ITezz ITyc
Scenario pln 50 80 120 180 240 50 80 120 180 240
60 99.80 100.00  100.00 100.00  100.00 99.52  100.00 100.00 100.00 100.00
120 99.72  100.00 100.00 100.00 100.00 99.68 100.00 100.00 100.00 100.00
GAA4, \/5/2) 240 99.88 100.00 100.00 100.00 100.00 99.88 100.00 100.00 100.00 100.00
480 99.88 100.00 100.00 100.00 100.00 99.88 100.00 100.00 100.00 100.00
600 99.92 100.00 100.00 100.00 100.00 99.92 100.00 100.00 100.00 100.00
60 94.84 99.80 100.00 100.00  100.00 73.16 95.04 99.28 99.92 99.96
120 98.04 99.96 100.00 100.00 100.00 88.08 98.84 99.96 99.96 99.96
PAO) 240 98.88  100.00 100.00 100.00 100.00 95.36 99.84 99.96 100.00 100.00
480 99.44  100.00 100.00 100.00 100.00 98.72 99.96 100.00 100.00 100.00
600 99.56 100.00 100.00 100.00 100.00 98.88 99.96 100.00 100.00 100.00
60 99.64 100.00 100.00 100.00 100.00 85.32 94.24 96.80 98.72 99.12
120  100.00  100.00 100.00 100.00  100.00 91.68 97.20 98.60 99.32 99.52
LN(©,1) 240 100.00 100.00 100.00 100.00 100.00 95.52 98.28 99.24 99.56 99.72
480 100.00 100.00 100.00 100.00 100.00 96.96 98.68 99.20 99.64 99.84
600 100.00 100.00 100.00 100.00 100.00 97.64 98.88 99.48 99.64 99.88

" 1Tz, the identity test of Chen et al. [4]; Ty, the variance-corrected identity test proposed in this paper.



Table 5: Empirical size (%) of sphericity tests

STczz STyc

Scenario pln 50 80 120 180 240 50 80 120 180 240
60 696 524 652 572 588 6.48 452 572 520 512
120 656 644 6.2 588 548 636  6.08 5.68 520 5.04
GAM4, V2/2) 240 512 504 524 564 568 504 476 512 552 540
480 580 500 480 536 536 5.68 500 464 536 520
600  6.28 560 540 540 5.64 6.12 552 536 532 556
60 1444 1572 1652 17.60 16.60 596 592 540 552 5.12
120 11.60 11.16 12.76 1424 13.40 540 484 536 592 556
PAO) 240 952 956 976 10.16 10.08 580 532  5.08 544  5.00
480 7.80 740 792 728 748 5.28 520 516  4.88 5.40
600 688 752 716  7.08  7.96 484 552 516 512 576
60 2248 2352 24.08 2696 2824 468 468 428 436 376
120 2096 2296 2352 26.16 26.64 452 504 488 456 448
LN(@©O,1) 240 1992 21.72 23.88 2496 2428 4.88 536  4.68 480 4.84
480 1748 19.80 21.28 2256 21.76 492 536  5.68 536 492
600 1628 18.60 20.64 21.56 21.88 532 5.68 572 512 472

STey STpcs

Scenario pln 50 80 120 180 240 50 80 120 180 240
60 816 636 7.00 6.16 6.08 992 9.00 980 10.04 9.68
120 736 680 640 588 592 544  6.04 6.08 5.28 5.00
GAM4, V2/2) 240 684 520 560 576  6.00 392 460 504 496 524
480 652 580 548 564 536 556 472 460 532 488
600  7.08 6.52 600 544  6.12 584 496 500 528 5.44
60 23.08 2232 2176 2048 19.48 1064 11.12 1256 12.84 12.76
120 2244 20.00 18.16 17.24 15.64 8.56 8.28 920 948  9.20
PAO) 240 2348 19.00 17.40 15.16 14.12 8.28 740 796 772 776
480 2448 1932 17.12 13.80 13.04 700 7.04 740 656  6.76
600 24.04 20.04 1676 14.00 12.60 620 6.64 7.08 6.08 6.92
60 33.64 3256 3024 31.56 30.72 1048 10.08 11.64 1144 11.04
120 3828 3476 3344 3292 31.24 1056 1044 1132 11.04 10.72
LN(@©O,1) 240 4036 36.68 3552 3436 3224 9.68 920 9.60 896  8.36
480 42.12 3952 37.68 3528 33.48 10.80 12.88 1296 13.28 12.40
600 4196 39.72 3740 34.60 34.00 1056 13.80 1472 14.16 1348

* ST¢yz, the sphericity test of Chen et al. [4]; STyc, the variance-corrected sphericity test proposed in this paper;
STc,, the corrected John’s test of Wang and Yao [17]; STpcs, the bias-corrected sign test of Zou et al. [20].




Table 6: Empirical power (%) of sphericity tests against neighbor correlation

STCZZ STVC
Scenario pln 50 80 120 180 240 50 80 120 180 240

60 31.84 53.60 80.56 97.52 99.96 30.68 5140 79.40 97.24 99.96

120 30.92 54.84 81.40 98.36 99.92 29.68 53.84 80.48 98.20 99.92

GA4, V2/2) 240 31.28 54.24 83.52 99.12 99.96 31.08 53.72 83.28 99.08 99.96
480 30.44 56.84 84.36 98.92  100.00 3024 5648 84.08 98.84 100.00

600 31.68 56.04 84.64 99.20  100.00 3144 55.68 84.56 99.20 100.00

60 3252 4748 66.72 87.56 96.84 16.24 25.00 4044 66.32 85.44
120 33.20 50.40 73.24 93.16 98.84 20.28 3244 54.08 82.08 96.20
PAO) 240 32.16 52.40 78.60 95.96 99.72 2324 3976 66.64 9228 99.04

480 33.36 55.24 79.88 97.40 99.88 27.52 4748 73772 9592 99.80
600 33.48 55.40 81.92 98.08 99.92 28.92 4852 77.04 97.08 99.80

60 93.68 98.80 99.52 99.88 99.88 71.00 86.28 93.16 96.92 97.96

120 97.44 99.44 99.84 99.96 99.96 80.80 9232 96.24 98.16 99.08

LN(,1) 240 98.96 99.96 99.96 99.96  100.00 88.68 96.24 98.16 99.08 99.36
480 99.56  100.00 100.00 100.00  100.00 9328 9744 98776 99.36 99.64

600 99.64 99.96 100.00 100.00  100.00 94.64 9796 99.00 99.52 99.68

STcy STpcs
Scenario pln 50 80 120 180 240 50 80 120 180 240

60 35.44 56.40 82.12 97.92  100.00 20.32 3272 4828 61.28 64.20
120 33.92 57.16 83.16 98.56 99.88 27.80 51.60 77.72 95.32 97.32
GAA, V2/2) 240 34.64 57.20 84.60 99.24 99.96 29.84 53.16 83.44 99.00 99.92
480 35.04 58.56 85.88 99.08  100.00 2976 55.92 83.60 98.88 99.96
600 35.64 58.92 85.64 99.20  100.00 30.68 55.12 83.88 99.12 100

60  44.76 56.68 71.64 89.76 97.08 35.88 59.12 82.88 98.12 99.96

120 4780  60.68 77.88 94.48 99.04 3536 5592 8140 97.52 99.84

PAO) 240 4964  61.44 80.52  96.04 99.64 3276 5536 8320 98.32 99.92
480  49.56 63.00 80.32  97.20 99.92 32.64 56.52 8348 98.56 100.00

600 50.92 64.80 83.16  97.52 99.92 3324 56.04 83.68 98.44 99.96

60 100.00 100.00 100.00 100.00 100.00 6.92 7.00  6.60 6.68 6.56

120 100.00 100.00 100.00 100.00  100.00 9.08 8.44 7.40 6.96 7.36

LN, 1) 240  100.00 100.00 100.00 100.00  100.00 10.24 1076  10.04 9.24 9.96
480  100.00  100.00 100.00 100.00  100.00 12.16 1320 1232 12.36 11.80

600 100.00 100.00 100.00 100.00 100.00 13.08 13.72 14.88 15.36 14.08

* STc¢zz, the sphericity test of Chen et al. [4]; STy, the variance-corrected sphericity test proposed in this paper; ST¢;, the
corrected John’s test of Wang and Yao [17]; STpcs, the bias-corrected sign test of Zou et al. [20].



When the neighbor correlation is present, as we can see from Table 6, STy is generally consistent. It is worth noting
that in the log-normal case, STpcs suffers not only from an incorrect empirical size under H; but also from a low
empirical power under the alternative considered.

4. Conclusion

In this paper, motivated by the finding that CZZ’s identity test and sphericity test suffer from severe size distortion
when the data are heavy-tailed, we offered a theoretical analysis for this phenomenon. We showed that inappropriately
omitting the O(p~") bias terms in the variances of CZZ’s test statistics is the main source of size distortion. Based on
the analysis, we constructed two new tests called variance-corrected tests in this paper. They are simple extensions
to CZZ’s tests, but our simulation results suggest that they remarkably outperform the tests of Chen et al. [4], the
corrected John’s test of Wang and Yao [17], and the bias-corrected sign test of Zou et al. [20].
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Appendix A. Proofs
Before proving our main results, we first introduce a useful lemma.

Lemma 1. Under Assumption 1, we have (i) E(ZITZQ)4 = pi® +3p(p — 1); (ii) E{(ZlTZ2)2(ZzTZ3)2} = pk+plp =1
(iii) E(( 22’ 2)°) = p% (iv) B[22’ = p& (v) B adaziaga) = pr (vi) Bljaw)’) = pi (vi)
E{z{21(z{ 22)*} = pk + p(p = 1),

Proof. (i) Since E(z[22)* = X0 3P 30 37 | E(zuzizs1201)B(2i2z025020), we find

u=1
)4 *
() = ) EDEGL) +3 ) B2 2DEEy2,) = pi +3p(p - 1).
u=1 u,y

(ii) Because

)4 )4 )4 *
Bz = > Y E@d) = Y B+ Y B4z = pe+ plp— 1), (A.1)
u=1 v=1 u=1 u,y
we have
El(z] 22)%(5323)") = E(z212] 2223 2323 22) = E{tr(2223 2323 222 )}

= Eftr(n2z; 2220)} = B(z; 22)* = px+ p(p = 1).

(iii) Since

E(z] 22)* = E{tr(z223 2121} = p, (A2)
we have
E{(z] 22)°(2324)°} = Bz 22)°E(z3 24)° = p°.
(iv) Since E(z{ 22)° = 3| 30| 37| E(zuizn1251)B(zi2212252), we have
p
Bz ) = ) E(@)EE,) = pé. (A.3)
u=1
(v) Using (A.2),

T T T T T T T T T T T 2
E(z, 2023 242, 2324 21) = Eltr(2225 242, 2324 )} = B(2, 2323 2424 22) = E(z324)" = p.
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(vi) Using (A.2) again, we find that E{lezl(z;z3)2} = E(lezl)E(z;m)2 = p2.
(vii) It follows from (A.1) that E{z zi(z] 20)*} = E(z] 212] 222, 21) = E(z] 21)* = pk + p(p — 1).

This concludes the proof of Lemma 1. U
The following lemma is instrumental in computing the variance of 7> ,.

Lemma 2. Under Assumption 1 and ‘Ho, @) var(Yp,) = 208 ny p{2(/< - Dn+2p+ K2 =4k + 1}; (i) Var(Y4,,)
20%n ‘lp(n+p+/<+2§2 4); (iii) var(Ys,) = 8c%n ‘lp(p+2) (iv) cov(Ya,, Ya,) = 208n ‘1p§2 ) cov(Ya,, Ys,) =
(Vl) COV(Y4’,,, YS,n) =

Proof. (1) Since

*

var{Z(z,-TZj)z}

ij

{Z(Z z,)2 ZE(Z z,)2

= ZZ(z 1)@ 20} — (mB(z] )}
,j kt

%

= 2215(2 ) +4ZE (z z,)2(z 2%+ Z E((z] 2))%(z) 2%} — (mE(z] 22)*)?

i,jik i,j.k,l

= 2n1E(z1 2)* + 4mE{(z] 22)%(z3 23)% + m3El(z] 22)* (53 24)*) — Im E(z] 22)*),

we can use (i)—(iii) in Lemma 1 and (A.2) to conclude that

* 8 &
w2 77} G o)

n—p{2K2+6p—6+4(n—2)/<+4(n—2)(p—1)+(n—2)(n—3)p—n1p}
1

2 8
= TP o= n+2p i — b+ 1),
ni

var(Y> )

(ii) Since E(sz,k ziszijzk) = 0, one has VaI{Zf’j‘k ziTZjZ]T-Zk} = E{X; ]kz 7jZ; Tz)?>. Note that when i, j and k are
mutually different, E(z] 222 232 2 jijzk) # 0 only if (i, j, k) falls into the following eight cases:

E(z{222523)*  if (i, jok) = (1,2,3) or (3,2,1);
E(ZTZZZ;—Z3ZITZJ'Z}—ZI{) | E(ZTZZ)S lf (l7 j’ k) = (17 3’ 2)7 (27 37 1)9 (2’ 1’ 3) or (37 17 2)7
P if (k) = (1,3) or (3, 1), and j # 2.

Therefore,

* * * *
T T T T 2 T T T T T T T T
var(z % 22 zk) 2 Z E(z; zjzjz)” + 4 Z E(z; zjz; k2 kg 2i) + 2 Z E(z; zjz; zrz; zezp 2k)
ik ik i,k ikt

2mE{(z] 22)*(23 23)*} + 4mE(z] 22)° + 2n3p.

In view of (ii) and (iv) in Lemma 1,

*

1
var(Yy ,) = Var(— Zx x,x xk — var| Zz zjz zk
np

i,k i,j,k

(n+p+/<+2§ —4).
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(iii) In a similar way, we can verify that

* *
2
Var( Z 7z szZg) = E( Z 'z ,-z,fa)

i, ikt i, jik.t

* *
T T 2 T T T T
8 Z E(z/ zjzp z¢)” + 16 Z E(z; zjz; zez; 2kze i)
i jik, ikt

8m3E{(] 22)%(2] 22)*} + 16m3E (2] 2223 2423 2324 1)

By (ii) and (v) in Lemma 1, we can then conclude that

*

1 80' +2
var(Ys ) = Var(— x; xjx; x; z; ijkz S7ppt2) )
3 re t/k( 3

(iv) Note that cov(Y2,, Ya,,) = E(Y2,Y4,) due to E(Ys,,) = 0. Since

Z Z (Zzozjo) ZnZ]lZ]lel} 2 Z (Zzozlo) ZIOZJIZJIZJO}

i, Jo i1,j1:k1 i05J05J1

2mB{(z] 22)72] 2323 22} = 2maE(z] 22)°,

using (A.3), we find

208 pé?
cov(You, Yan) = — Z Z (Z,OZJU) 20212, 2k ) = .

n
lo Jo i1,j1.k1 1
(v) Because E(Ys,,) = 0, we have

*

cov(Ya,, Ys,) = 1— Z Z (zluzﬂ,) z,lz,lzklza} 0.

i0,Jo i1, j1:k1,01

(vi) It is easy to see that

*

cov(Ya, Ys,) = 2— Z Z E(z; z,ozjozkoz“z,,zklza) =0.

g io, josko i1, j1.k1,61
This concludes the proof of Lemma 2. O

Lemma 3. (i) cov(Y),, Y2,) = 20°n7 p(k — 1); (ii) cov(Y1, Ya,) = O; (iii) cov(Yy, ¥s,,) = 05 (iv) cov(Y3,, Ya,) =
20007 pé?; (v) cov(Y, Yau) = 20°n; ' p; (vi) cov(Y3,, ¥s,) = 0

Proof. (i) Since E(Y;,) = p(rz, E(Y2,) = p0'4, and according to (vi) and (vii) in Lemma 1,

B D daar) = DBl ala) +2 ) Bl a2

i=1 jk i, j.k i,j
mElz] 21(z3 23)*) + 2m Blz] 21 (2] 22)%)
nip(np + 2« - 2).

Thus we have

6 _
cov(Yln,YZn)_ ZZZ 2] Zk) o5 = 20°p(x 1).

n

i=1
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(ii) Since E(Y4,,) = 0 and E(x?xix;xkx;xt:) = 0 for mutually different j, k and ¢,

V(Y. Yan) = —— ZZE(x %ix] %] %6) = E(Y1,)E(Ya,) = 0
n2 i=1 jkk

(iii) Proceeding as in (ii), we can easily verify that cov(Y} ,, ¥s5,) = 0
(iv) Since E(Y3,,) = 0 and by (A.3),
E{Z Z 2zl z?) =2 Z E(zz))* = 2n1p&*.
ij kit ij

Thus we have

20° pfz
cov(Yzu, You) = — Z ZZ 7z, Zg)2
iLj kt
(v) Using (A.2),
cov(Y3,, Ya,) = " Z Z E(Zzozjozuzjlz/lzkl) = Z E(ankl ZuZJlelel)
! Zlojolljlkl lejlkl
20 200 20%p
= ——E(z/2z7]23532) = — E(z] 22)* = .
n n n
(vi) It is easy to see cov(Y3,,Ys5,) =0
This concludes the proof of Lemma 3. U

Now, we are in a position to show Proposition 1.
Proof of Proposition 1. (i) It is straightforward to verify var(Y; ) = o*p(k — 1)/n and var(Y3,) = 20*p/n; by (i) and
(iii) in Proposition A.2 in Chen et al. [4]. The result follows immediately from (v) in that proposition, which shows
COV(Yl,n’ Y3,n) =0
(i1) In view of (v) and (vi) in Lemma 2,

var(Ty,,) = var(Ya,) + 4var(Ys,) + var(Ys ) — 4cov(Ya,, Ya,).
Thus, the result can be directly verified by (i)—(iv) of Lemma 2.
(iii) According to (ii), (iii) and (vi) in Lemma 3,
coV(T1 4, Tay) = cov(Y1p, Ya,) — cov(Y3, Ya,) + 2cOV(Y3 4, Ya ).

The result follows from (i), (iv), and (v) of Lemma 3. Il
Finally, we prove Theorem 1.

Proof of Theorem 1. (i) The result can be directly shown by letting 0> = 1 and using Proposition 1.

(ii) Let ajo = lim,_,0 tr(Z;))/p fori € {1,2}. We know that T, ,/p 2 ajpand Ty, /p kN ayo in terms of Chen et al. [4].
Then, by the delta method,

T, 1 1 1
nUn = n{z’—/zp— l} zn(a%— 1] - (—Tz,n—azo)—Z(a%)n(—Tl’n—alo)
(Tl,n) /p alo alo p alo p

e o)
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Asa consequence,

1 4
var(nU,) ~ n® {— var(Ty ) + —— var(Ty,) —
o

4
cov(T,,, T s
82 2 5 cov(T, 1,n)}

obp

which is identical var(nV,,) under H,. O
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