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Abstract

We consider two-sample tests for functional data with observations which may be uni- or multi-dimensional. The
new methods are formulated as L2-type criteria based on empirical characteristic functions and are convenient from
the computational point of view. Asymptotic properties are presented. Simulations and two real data applications are
conducted in order to evaluate the performance of the proposed tests vis-à-vis other methods.
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1. Introduction

In recent years, methods for analyzing data expressed in the form of functions have received much attention. As
a result there is currently a wide spectrum of models and methods for functional data analysis from mean/covariance
function estimation and functional principal component analysis or regression, clustering and classification, including
methods for time series modeling of functional objects. For an overview, the reader may refer to [16, 27, 44]. Recent
review papers [11, 51] and special issues [19, 20, 35, 50] also provide up-to-date information on research in this area.

This paper addresses the general two-sample problem in the context of functional observations from a nonpara-
metric perspective. Suppose that we observe data X1i j and X2i j arising from two different groups. For each fixed i,
X1i j is viewed as a realization of a curve x1i(t) observed at distinct time points t1i1, . . . , t1im1i , and we index the curves
by i ∈ {1, . . . , n1} for the first group. Likewise suppose that X2i j is a realization of a curve x2i(t), observed at times
t2i1, . . . , t2im2i and indexed by i ∈ {1, . . . , n2} for the second group. The observation times t1i j, t2i j are assumed to
belong to some closed bounded interval T that we often take to be [0, 1]. Although we work under the assumption of
independence between groups, we allow for noise in the observations. Specifically we consider the model

X1i(t) = x1i(t) + ε1i(t), X2i(t) = x2i(t) + ε2i(t), (1)

In this notation, Xki j and xki j correspond to Xki(t) and xki(t) at distinct time points tki j with k ∈ {1, 2}. Within
Model (1), we wish to test the null hypothesis

H0 : ∀t∈T x1(t) =L x2(t), (2)

where =L stands for equality in law and {x1(t), t ∈ T} denotes a generic instance of the independent and identically
distributed (iid) random functions {x1i(t), t ∈ T}with i ∈ {1, . . . , n1}, and {x2(t), t ∈ T} denotes a generic instance of the
iid random functions {x2i(t), t ∈ T} with i ∈ {1, . . . , n2}. We also assume that the errors {ε1i(t), t ∈ T}, i ∈ {1, . . . , n1},
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and {ε2i(t), t ∈ T}, i ∈ {1, . . . , n2}, are iid with zero mean. More specific assumptions are listed in Section 3. Note that
the null hypothesisH0 in (2) refers to equality of marginal distributions, i.e., for each fixed t, which is certainly much
narrower that the global version of H0 that incorporates marginal as well as joint distributions of the two stochastic
processes. We nevertheless deal with this more general version of the null hypothesis starting in Section 2.3.

Previous work on the two-sample problem with functional data includes testing for a common location [12, 27–
29, 53] and for a common covariance operator [17, 37, 40, 54], both for independent data and functional time series.
The more general problem of testing for common principal components is considered in [2]. For a broader treatment
of the functional two-sample problem, see [25, 42]. Here however, we deviate from these papers by proposing proce-
dures that rely on the empirical characteristic function (ECF). Apart from other favorable features which will become
apparent along the way, note that ECF-based procedures for scalar data are readily extended to multidimensional
observations, which is not always true if one uses classical procedures based on the empirical distribution function.

The remainder of the paper is as follows. In Section 2 we introduce the test criteria while in Section 3 we study
the large-sample behavior of the new method. Section 4 is devoted to computational and other interesting aspects of
the test criteria, and resampling techniques for the implementation of the procedures are provided. In Section 5, we
present the results of a Monte Carlo study on the finite-sample properties of the method, along with two illustrations.
Finally, we end in Section 6 with conclusions and discussion. Some technical material is deferred to the Appendix.
For an earlier version of this paper, the reader is referred to [33].

2. Test statistics

2.1. Univariate case

Our approach for testingH0 in (2) will be based on the fact that this null hypothesis is tantamount to the identity

∀t∈T ∀u∈R ϕx1(t)(u) = ϕx2(t)(u) (3)

and vice versa. Here and in what follows, ϕz(t)(u) = E(eιuz(t)) with ι =
√−1 will denote the characteristic function (CF)

of the stochastic quantity z(t). As in [30], we adopt the Fourier formulation (3) ofH0 as our point of departure. Also
we assume that the curves x1i(t) and x2i(t) may be recovered following nonparametric techniques (e.g., local linear
regression) and write x̂1i(t) and x̂2i(t) for the resulting curve estimators. Consider the corresponding ECFs, viz.

ϕ̂x̂1(t)(u) =
1
n1

n1∑

i=1

eιux̂1i(t), ϕ̂x̂2(t)(u) =
1
n2

n2∑

i=1

eιux̂2i(t), (4)

computed from x̂11(t), . . . , x̂1n1 (t) and x̂21(t), . . . , x̂2n2 (t), respectively. Then in view of (3) we suggest the test statistic

DW =

∫

T

∫

R
d̂t(u)W(u)dudt, (5)

where
d̂t(u) =

∣∣∣̂ϕx̂1(t)(u) − ϕ̂x̂2(t)(u)
∣∣∣2 , (6)

and W > 0 denotes a weight function such that
∫
R W(u)du < ∞.

2.2. Multivariate case

The latent curves x1(t), x2(t) may also be multidimensional. This is a new area where functional data are ob-
served over time t, but realizations are complex geometrical structures in dimension p > 1; see [3, 7, 23, 32] for
recent statistical techniques for multivariate functional data. Along the same lines as in the previous section, we will
consider testing H0 with a criterion analogous to (5). However, in order to avoid nonparametric estimation, which is
problematic in high dimension, we suggest to modify our assumptions regarding Model (1).

We assume that observations are collected over time t = t j with j ∈ {1, . . . ,m}, for both groups, i.e., we have a
common sampling design between the two groups with m being large; see also Section 2.3 for a data-dependent value
of m. Moreover we assume that sampling noise is equidistributed between the two groups, viz. ε1(t) =L ε2(t), with
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a common CF that never vanishes. These assumptions are often realized in practice. Under these assumptions and
using the Fourier identities ϕXk(t)(u) = ϕxk(t)(u)ϕεk(t)(u) with k ∈ {1, 2} resulting from Model (1), we conclude that the
null hypothesisH0 in (2) holds if and only if

∀t∈T ∀u∈Rp ϕX1(t)(u) = ϕX2(t)(u).

In view of this fact, we analogously propose the test statistic

∆W =

∫

T

∫

Rp
δ̂t(u)W(u)dudt, (7)

with W : Rp 7→ (0,∞) such that
∫
Rp W(u)du < ∞, where

δ̂t(u) =
∣∣∣̂ϕX1(t)(u) − ϕ̂X2(t)(u)

∣∣∣2 , (8)

with

ϕ̂X1(t)(u) =
1
n1

n1∑

i=1

eιu
>X1i(t), ϕ̂X2(t)(u) =

1
n2

n2∑

i=1

eιu
>X2i(t),

which correspond to the ECFs ϕX1(t)(u) and ϕX2(t)(u), respectively, considered at fixed time points t1, . . . , tm.
Clearly our test statistic is based on a Cramér–von Mises type quadratic distance. While this is by far the dominant

approach in the context of ECF-testing, the option of a Kolmogorov–Smirnov ECF statistic based on the supremum
norm has also been considered in [9, 43]. However it is well known that a quadratic distance statistic is often more
powerful than the corresponding supremum-based distance statistic, and certainly easier to implement particularly in
higher dimension; see, e.g., [8]. Therefore, and in line with previous papers in the functional context [1, 25, 42], we
opt for the quadratic distance statistic ∆W in (7) and thereby, among other things, avoid the computational burden of
taking a maximum of the ECF process over a high-dimensional u-region; see (8).

Note that a multivariate two-sample test may be based on the equality of distributions of all inner products. It is
well-known that two p-dimensional random vectors x1 and x2 satisfy x1 =L x2 if and only if u>x1 =L u>x2, for each
direction-vector u ∈ Rp. In order to circumvent the problem of having to consider all possible directions u, some
two-sample procedures test the equality over a set of randomly chosen values of u, which are often normalized to pro-
jections, viz. u>u = 1. The use of random projection methods has its roots in the celebrated Johnson–Lindenstrauss
lemma which states that, for any two vectors in fixed dimension, there is a lower dimension map which is approxi-
mately distance-preserving; see [6] for a review of random projection methods in higher dimension.

In this connection, the natural question then concerns the number of directions that are sufficient to completely de-
termine the underlying law. For example in the context of multinormality testing, it is shown in [46] that non-normality
is characterized by having the measure of the set of all normal projections equal to zero. Still the issue persists as to
how in practice one can implement a test based on a characterization of this type. In this line of research there exist
methods of, so-called, random projections relying on the equality of specific, often data-driven, directions u; see, e.g.,
[1, 10, 18, 39]. Alternatively, the approach based on CFs takes into account all possible directions by means of the
distributional equality of all trigonometric pairs, viz. (sin(u>x1), cos(u>x1)) =L (sin(u>x2), cos(u>x2)) for all u ∈ Rp.
Clearly the use of all directions leads to inherently consistent procedures. The trigonometric transformation also has
the advantage of being bounded and, as shown below, it leads to computationally convenient procedures.

2.3. Global testing
We extend the test of Section 2.1 to the case of global testing, i.e., testing for the full process including marginals

and joint distributions. In this connection we note that, under weak assumptions culminating into the celebrated Kol-
mogorov consistency theorem, if all finite-dimensional distributions of two processes coincide, then these processes
are equal in distribution. In turn it is well-known that each finite-dimensional distribution is completely determined
by the corresponding CF. For simplicity of presentation, suppose that the two processes are observed without noise at
common times, say t = t j = j/m with j ∈ {1, . . . ,m}. In line with the previous sections, we suggest the test criterion

ΥW,m =

∫

Rm

∣∣∣Φ̂1m(u) − Φ̂2m(u)
∣∣∣2W(u)du, (9)
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where

Φ̂km(u) =
1
nk

nk∑

i=1

eιu
>Xki ,

with Xki = (Xki1, . . . , Xkim)> for all i ∈ {1, . . . , nk} and k ∈ {1, 2}, while Xki j = Xki(t j) for all j ∈ {1, . . . ,m}.
The difference here is that we allow the number of observation times to grow with the sample sizes n1, n2, viz.

m = mn1,n2 → ∞ as min(n1, n2) → ∞. Thus we are in the realm of high dimension. In this connection we also let the
weight function depend on t j, i.e., W = Wt1,...,tm , in a way that will be specified later.

In the context of high dimension, we could also consider groups of local observation times of size L with m = RL,
and formulate a test statistic as in (9), say ΥW,mr , on each group of observations corresponding to the specific group of
observation times mr = {trL+1, . . . , trL+L} for all r ∈ {0, . . . ,R − 1}. This is in line with interval-wise testing procedures
suggested in [41], which allows to locate portions of the domain that may lead to the rejection of the null hypothesis.
Also this approach would somewhat alleviate the effect of high dimension, but this comes at the cost of having to
implement a multiple test procedure based on ΥW,m0 , . . . ,ΥW,mR−1 . In contrast, a test based on ΥW,m0 + · · · + ΥW,mR−1 ,
which could be preferable from the point of view of dimension reduction, would obscure the information drawn from
the individual test statistics. Clearly further research is necessary in this direction.

3. Asymptotics

Here we formulate assertions on the limit behavior of ∆W defined in (7) and of DW defined in (5). Clearly both
criteria implicitly depend on the number of time points at which the curves are observed, and hence since in what
follows this number is assumed to be common for both curves, we will write ∆W,m and DW,m, where m denotes the
aforementioned number of time points.

We start with formulation of the assumptions for each statistic. They are slightly different. Specifically for ∆W,m

we assume the following.

(A.1) All random functions {x1i1 (t), t ∈ b0, 1c}, {ε1i1 (t), t ∈ b0, 1c} for i1 ∈ {1, . . . , n1}, {x2i2 (t), t ∈ b0, 1c}, {ε2i2 (t), t ∈
b0, 1c} for i2 ∈ {1, . . . , n2} are mutually independent.

(A.2) For i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}, {ε1i1 (t), t ∈ b0, 1c} and {ε2i2 (t), t ∈ b0, 1c} are iid with zero mean and for
some C > 0 and η > 0,

E
∫

T
||ε1i(t)||2+ηdt ≤ C, ∀t1,t2∈b0,1c E ||ε1i(t1) − ε1i(t2)||2 ≤ C|t1 − t2|,

where || · || is the Euclidean norm.

(A.3) For i1 ∈ {1, . . . , n1}, {x1i(t), t ∈ b0, 1c} are iid p-dimensional random functions satisfying for some η > 0 and
C > 0,

E
∫

T
||x1i(t)||2+ηdt ≤ C, ∀t1,t2∈b0,1c E ||x1i(t1) − x1i(t2)||2 ≤ C|t1 − t2|.

(A.4) For i1 ∈ {1, . . . , n2}, {x2i(t), t ∈ b0, 1c} are iid p-dimensional random functions satisfying for some η > 0 and
C > 0,

E
∫

T
||x2i(t)||2+ηdt ≤ C, ∀t1,t2∈b0,1c E ||x2i(t1) − x2i(t2)||2 ≤ C|t1 − t2|.

(A.5) min(n1, n2) → ∞ in such a way that n1/(n1 + n2) → θ ∈ (0, 1) and also min(m1,m2) → ∞, i.e., m1 and m2 tend
to infinity together with min(n1, n2).

(A.6) m1 = m2 = m→ ∞, t1i1 j = t2i2 j = t j for all i1 ∈ {1, . . . , n1}, i2 ∈ {1, . . . , n2}, and t j = j/m for all j ∈ {1, . . . ,m}.
(A.7) The weight function W is non-negative and such that W(±u1, . . . ,±up) = W(u1, . . . , up) for all real u1, . . . , up,

and 0 <
∫
||u||2W(u)du < ∞.
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For the test statistic DW,m we consider (A.1), (A.3), (A.4), (A.5), (A.6), (A.7) and additionally the following.

(A.2a) For all i1 ∈ {1, . . . , n1}, i2 ∈ {1, . . . , n2} and j ∈ {1, . . . ,m}, ε1i1 j and ε2i2 j are independent random variables
with zero mean such that E|εkik j|2+λ ≤ C for some positive C > 0 and some λ > 0. Moreover, ε1i1 j with i1 ∈
{1, . . . , n1} and j ∈ {1, . . . ,m} are identically distributed; likewise, ε2i2 j with i2 ∈ {1, . . . , n2} and j ∈ {1, . . . ,m}
are identically distributed.

(A.8) The kernel function K is continuous symmetric positive on b−1,+1c and zero otherwise. Also as m → ∞, the
bandwidth h = hm satisfies hm → 0 and mhm → ∞

Most of the assumptions, notably Assumption (A.6), can be weakened at the cost of increased technicality. Notice
also that, e.g., a Brownian bridge as well as many Gaussian processes satisfy (A.2) but not (A.2a), and that Assump-
tion (A.8) refers to kernel estimators x̂k, of the curves x1, x2 appearing in (4). In what follows, denotes convergence
in distribution.

Theorem 1. Under Assumptions (A.1)–(A.7) and under the null hypothesis, as min(n1, n2)→ ∞,

(n1 + n2)∆W,m  
1

θ(1 − θ)
∫ 1

0

∫

Rp
{Vθ(t,u)}2W(u)dudt,

where {Vθ(t,u); t ∈ T,u ∈ Rp} is a Gaussian process with zero mean and covariance structure

cov{Vθ(t1,u1),Vθ(t2,u2)} =
1

θ(1 − θ) cov[sin{u>1 X1(t1)} + cos{u>1 X1(t1)}, sin{u>2 X1(t2)} + cos{u>2 X1(t2)}].

Theorem 2. Under Assumptions (A.1)–(A.5) and (A.7) the following holds true, as min(n1, n2)→ ∞:

∆W.m
P→

∫ 1

0

∫

Rp

[
E[sin{u>X1(t)} + cos{u>X1(t)} − sin{u>X2(t)} − cos{u>X2(t)}]

]2
W(u)dudt.

Theorem 2 covers alternatives. As soon as the right-hand side of the above limit relation is positive, (n1 + n2)∆W,m

tends to infinity in probability which, together with Theorem 1, implies that the test is consistent.
Next, we formulate analogous assertions for DW,m suitable for the one-dimensional setup (p = 1).

Theorem 3. Under Assumptions (A.1), (A.2a), (A.3)–(A.8) with p = 1 and under the null hypothesis, as min(n1, n2)→
∞,

(n1 + n2)DW,m  
1

θ(1 − θ)
∫ 1

0

∫

R
{Ṽθ(t, u)}2W(u)dudt,

where {Ṽθ(t, u) : t ∈ T, u ∈ R} is a Gaussian process with zero mean and covariance structure

cov{Ṽθ(t1, u1), Ṽθ(t2, u2)} =
1

θ(1 − θ) cov[sin{u1x1(t1)} + cos{u1x1(t1)}, sin{u2x1(t2)} + cos{u2x1(t2)}].

Theorem 4. Under Assumptions (A.1), (A.2a), (A.3)–(A.8), the following holds true, as min(n1, n2)→ ∞:

DW,m
P→

∫ 1

0

∫

R

[
E[sin{ux1(t)} + cos{ux1(t)} − sin{ux2(t)} − cos{ux2(t)}]]2W(u)dudt.

Theorems 3 and 4 have similar interpretations for DW,m as Theorems 1 and 2 do for ∆W,m.

4. Computations and interpretations

4.1. Univariate case
By assuming smoothness conditions on x1i1 (t) and x2i2 (t), we employ the local linear regression technique to

estimate all individual functions x1i1 (t) and x2i2 (t). We compute the value (â0, â1) of the vector (a0, a1) that minimizes

m∑

j=1

{Xkik j − a0 − a1(tik j − t)}2Khkik
(t − tik j)
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for k ∈ {1, 2}, where Kh(·) = h−1K(·/h). Here K, the kernel function, is a bounded, symmetric, compactly supported
probability density, and hkik is the bandwidth for the curve xkik (t). Then,

â0 = x̂kik (t) =
Akik2(t)Bkik0(t) − Akik1(t)Bkik1(t)

Akik0(t)Akik2(t) − Akik1(t)2 ,

where

Akikr =
1

mhkik

m∑

j=1

(
t − tik j

hkik

)r

K
(

t − tik j

hkik

)
, Bkikr =

1
mhkik

m∑

j=1

Xkik j

(
t − tik j

hkik

)r

K
(

t − tik j

hkik

)
.

Our procedures enjoy the advantage of computational simplicity. To see this we proceed from (6) and by using
simple algebra and trigonometric identities, we get

d̂t(u) =
1
n2

1

n1∑

i,`=1

cos[u{x̂1i(t) − x̂1`(t)}] +
1
n2

2

n2∑

i,`=1

cos[u{x̂2i(t) − x̂2`(t)}] − 2
n1n2

n1∑

i=1

n2∑

`=1

cos[u{x̂1i(t) − x̂2`(t)}]. (10)

Then by making use of (10) in (5), we conclude that the test statistic can be written as

DW =
1
n2

1

n1∑

i,`=1

IW,T(x̂1i, x̂1`) +
1
n2

2

n2∑

i,`=1

IW,T(x̂2i, x̂2`) − 2
n1n2

n1∑

i=1

n2∑

`=1

IW,T(x̂1i, x̂2`),

where
IW,T(z1, z2) =

∫

T

∫

R
cos[u{z1(t) − z2(t)}]W(u)dudt. (11)

The weight function W in (11) may be chosen in a way that avoids numerical integration in the inner inte-
gral

∫
cos{u(z)}w(u)du, but for further details on this we refer to the next section. Then again having computed∫

cos{u(z)}W(u)du = g{z(t)}, say, one also has to compute the outer integral
∫

g{z(t)}dt over T. However, even in the
simplest case of local linear smoothers, the closed form obtained for x̂kik (t) is quite complicated and therefore one
needs to resort to numerical integration. Nevertheless, integration in closed bounded domains is a well studied numer-
ical problem and there exist several routines available for this purpose. Hence we do not expect any complications to
be associated with this part of our procedure. For simplicity we take T = [0, 1].

4.2. Multivariate case
For simplicity, the integration of time T is approximated by

∫

T
δ̂t(u)dt ≈ 1

m

m∑

j=1

δ̂t j (u).

Then we proceed from (8) by using (10) and obtain

δ̂t j (u) =
1
n2

1

n1∑

i,`=1

cos{u>(X1i j − X1` j)} + 1
n2

2

n2∑

i,`=1

cos{u>(X2i j − X2` j)} − 2
n1n2

n1∑

i=1

n2∑

`=1

cos{u>(X1i j − X2` j)}.

Consequently the test statistic can be written as

∆W,m =
1
m

m∑

j=1


1
n2

1

n1∑

i,`=1

IW (X1i j − X1` j) +
1
n2

2

n2∑

i,`=1

IW (X2i j − X2` j) − 2
n1n2

n1∑

i=1

n2∑

`=1

IW (X1i j − X2` j)

 , (12)

where
IW (x) =

∫

Rp
cos(u>x)W(u)du. (13)

The criterion (12) is the functional version of a maximum mean discrepancy statistic in the sense of [22] with
associated kernel k(x, y) = IW (x− y). In this connection and as already mentioned, the weight function W in (13) may
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be chosen in a way that avoids numerical integration, which is problematic in higher dimension. To see this, recall that
the CF of any spherical random variable Z is given by ϕZ(u) = Ψ(‖u‖), for some family-specific scalar function Ψ(·),
where ‖u‖ denotes the usual Euclidean norm. Hence if fZ(z) denotes the density corresponding to ϕZ(u), we have

∫

Rp
cos(u> z) fZ(z)dz = Ψ(‖u‖).

The latter implies that if fZ is used as weight function W in (13), then the resulting test statistic, say ∆Ψ,m, reduces to

∆Ψ,m =
1
m

m∑

j=1


1
n2

1

n1∑

i,`=1

Ψ(‖X1i j − X1` j‖) +
1
n2

2

n2∑

i,`=1

Ψ(‖X2i j − X2` j‖) − 2
n1n2

n1∑

i=1

n2∑

`=1

Ψ(‖X1i j − X2` j‖)
 . (14)

The test criterion in (14) is further advanced by considering specific families of spherically symmetric distributions
with a simple CF. Such a family of distributions is the family of spherical stable distributions with Ψ(u) = e−uα , where
α ∈ (0, 2] stands for the characteristic exponent. Interesting special cases of spherical stable distributions are the
multivariate Cauchy and normal distributions corresponding to α = 1 and α = 2, respectively.

We will elaborate here on the case of the spherical stable distribution as weight function in (13). In fact we slightly
generalize from the spherical to the elliptical stable law and consider as weight function W the stable density with
corresponding CF equal to e−‖u‖

α/γ. With this choice, the test criterion in (12), say ∆α,γ,m, takes the form

∆α,γ,m =
1
m

m∑

j=1


1
n2

1

n1∑

i,`=1

exp(−‖X1i j − X1` j‖α/γ) +
1
n2

2

n2∑

i,`=1

exp(−‖X2i j − X2` j‖α/γ)

− 2
n1n2

n1∑

i=1

n2∑

`=1

exp(−‖X1i j − X2` j‖α/γ)

 . (15)

Interestingly there is a connection between the test criterion in (15) and another two-sample test statistic in the
literature. To see this, take a two-term expansion e−‖x‖

α/γ = 1 − ‖x‖α/γ + o(γ−1), as γ → ∞, in the test statistic (15),
and write after some algebra

lim
γ→∞ γ∆α,γ,m =

1
m

m∑

j=1


2

n1n2

n1∑

i=1

n2∑

`=1

‖X1i j − X2` j‖α − 1
n2

1

n1∑

i,`=1

‖X1i j − X1` j‖α − 1
n2

2

n2∑

i,`=1

‖X2i j − X2` j‖α
 . (16)

The criterion on the right-hand side of (16) is the so-called energy statistic of [47] adapted to the functional
context. We mention in this connection that energy statistics have gained considerable popularity lately as they have
been employed not just for two-sample testing but also for testing for independence as well as in nonparametric
analysis of variance. The reader is referred to the review [48] for more information on energy statistics.

We close this section with a discussion on the weight function. To begin with, it is clear from the arguments
presented above that this function does not need to be confined within the family of spherical distributions. In fact the
density of any multivariate symmetric around zero distribution may be used in (13), provided that it has a simple CF.
By way of example, extra choices available are the uniform distribution over the unit hypercube [−1, 1]p, the Laplace
distribution, finite mixtures of symmetric stable or mixtures of Laplace distributions, as well as combinations thereof.

Now the more general issue about a ‘good’, and potentially optimal, choice for the weight function has several
underpinnings. Intuitively speaking this choice should depend on the problem under study, but to motivate the discus-
sion we first note that the ECF is a more accurate estimator of the underlying CF when u is near the origin; see, e.g.,
[14, 36, 52]. While this observation certainly limits the available choices, it clearly leaves lots of room that includes,
e.g., all weight functions discussed in this section, as they all assign maximum weight at u = 0, and progressively
fall-off to zero as u → ∞. In this connection, the ECF literature has hitherto been dominated by the extensive use
of Wγ(u) = e−‖u‖

2/γ, which probably has its roots in the central role of the normal distribution in statistics; see, e.g.,
[4, 26]. Nevertheless, Wγ continues to feature prominently even under nonparametric or semiparametric settings such
as testing for independence [13] and testing for the error distribution in regression models [34].

A detailed study of potentially power-efficient weight functions for goodness-of-fit testing in finite dimension
was undertaken by Lindsay et al. [38]. Their context is more general in that ECF statistics are a special case, but
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nevertheless their suggestions for choosing a proper weight function (kernel in their terminology) are mostly about a
simple null hypothesis (without estimated parameters) and quite technical and not at all easy to implement in higher
dimension. In fact the authors only provide specific results in the case of testing for normality in finite dimension
assisted by Monte Carlo, and still these results are for specific directions (alternatives) away from the null hypothesis.

Similar conclusions hold for the work of Tenreiro [49], who narrows down the search of power optimality by
fixing the Gaussian function Wγ as weight function and then performs an analysis of proper values of γ for testing
multinormality. It becomes clear from the preceding discussion that the whole issue of weight-function choice and op-
timality is pretty much open even in finite dimension, and that in the current functional context, it defines a formidable
research project in its own right. Therefore in what follows we adapt a more pragmatic approach and provide some
practical guidelines on the basis of our Monte Carlo results.

4.3. Global case

Following analogous calculations as in (12) the test statistic in (9) may be written as

ΥW,m =
1
n2

1

n1∑

i, j=1

IW (X1i − X1 j) +
1
n2

2

n2∑

i, j=1

IW (X2i − X2 j) − 2
n1n2

n1∑

i=1

n2∑

j=1

IW (X1i − X2 j), (17)

with IW resulting from (13) by setting p = m. We suggest to use the density of the zero-mean normal distribution
Nm(0,Σ−1) with covariance matrix Σ−1 as weight function, which leads to

IW (x) = e−x>Σ−1 x/2. (18)

The suggested form of the covariance matrix is specified by letting the elements depend on the observation times as
σ j,` = σ(t j, t`) for all j, ` ∈ {1, . . . ,m}. In this regard setting σ j,` = min(t j, t`) borrows the covariance structure of a
Wiener process, while σ j,` = e−|t j−t` |/2 of an Ornstein–Uhlenbeck process.

Alternatively one may consider a data-driven weight function by replacing Σ with an estimate, say Σ̂n1,n2 , of the
population covariance matrix of the pooled sample X11, . . . ,X1n1 ,X21, . . . ,X2n2 . The advantage of the latter choice is
that then the test statistic becomes affine invariant provided that this estimate satisfies Σ̂n1,n2 (AX11+b, . . . , AX2n2 +b) =

AΣ̂n1,n2 (X11, . . . ,X2n2 )A>, for each nonsingular m × m matrix A and each b ∈ Rm.
In this connection we note that since the null hypothesisH0 : x1(t) =L x2(t), which is equivalent to X1(t) =L X2(t)

due to the assumptions in Section 2.3, is closed with respect to full-rank affine transformations, any genuine test
statisticD = D(X11, . . . ,X2n2 ) based on {X1i1 }, {X2i2 } with ik ∈ {1, . . . , nk} and k ∈ {1, 2}, should also be invariant with
respect to such transformations, i.e., we should have

D(AX11 + b, . . . , AX2n2 + b) = D(X11, . . . ,X2n2 ).

A necessary and sufficient condition for a test statistic D to be affine invariant is that it is based on the so-called
‘Mahanalobis squared radii’, given for all ik ∈ {1, . . . , nk}, j ∈ {1, . . . , n`}, and k, ` ∈ {1, 2} with k ≤ `, by

Mk,`(ik, j`) = (Xk,ik − X`, j` )
> Σ̂

−1
n1,n2

(Xk,ik − X`, j` ).

We close this section by noting that there exist alternative choices of weighting, such as the one suggested in [25]
motivated by the Karhunen–Loève expansion.

4.4. Resampling procedures

As already shown in Section 3, the null distribution of the test statistics considered depends, among other things,
on the underlying stochastic properties of the random fields x1(t) and x2(t) involved. In order to deal with this issue,
we apply appropriate resampling procedures for computing critical points and actually carrying out the tests. To this
end, letD = D(ξ1, . . . , ξn) be a generic notation for a test statistic which depends on a sample of size n of observations
ξ1, . . . , ξn. Clearly in our case n = n1 + n2. We will apply the permutation procedure whereby we randomly generate
a permutation b = (b1, . . . , bn) of (1, . . . , n), and compute the test statistic Db = D(ξb1 , . . . , ξbn ). The procedure is
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repeated for each b ∈ {1, . . . , B}, and the critical point of the test of size α is determined as the corresponding 1 − α
quantileD(1−α)B of the valuesD1, . . . ,DB. The null hypothesis is then rejected ifD > D(1−α)B.

For univariate data, the critical point of the test statistic in (5) is computed by permuting random functions
{x̂11(t), . . . , x̂1n1 (t), x̂21(t), . . . , x̂2n2 (t)} for t ∈ T. With multivariate data, defining Xk j = (Xk j1, . . . , Xk jm), permutations
for the criterion in (7) are performed on

{
X11, . . . ,X1n1 ,X21, . . . ,X2n2

}
. Note that permutation tests for the two-sample

problem have already been successfully applied in the context of high-dimensional/functional data; see, e.g., [5, 25].

5. Simulation study

5.1. Study 1: Univariate case
In the univariate case, we generate data {(tki j, Xki j) : j ∈ {1, . . . ,mki}}nk

i=1 for k ∈ {1, 2} as follows. The sampling
design for the curves is assumed balanced, i.e., for all i, m1i = m2i = m, and regular. Specifically, suppose that for all
k ∈ {1, 2} and i ∈ {1, . . . , nk}, tki· are discrete uniform fixed time points on [0, 1]. It is assumed that

x1i(t) =

15∑

k=1

e−k/2Nk1iψk(t), x2i(t) =

15∑

k=1

e−k/2Nk21iψk(t) + δ

15∑

k=1

k−2Nk22iψ
∗
k(t),

where Nk1i,Nk21i,Nk22i are iid N(0, 1) variables, and δ ≥ 0 controls the deviation from the null hypothesis; we have
δ = 0 underH0. Here ψ1(t) ≡ 1 for all t and ψk(t) =

√
2 sin{(k − 1)πt} are orthonormal basis functions. Also

ψ∗k(t) =



1 if k = 1,√
2 sin{(k − 1)π(2t − 1)} if k is odd and k > 1,√
2 cos{(k − 1)π(2t − 1)} if k is even,

are orthonormal basis functions. The level of significant is set to 0.05 with sample size n1 = n2 ∈ {15, 25, 50}, and
m ∈ {21, 101} time points for each curve. The corresponding inner integral in (11) is computed by averaging the
function values over the grid of observation time points. We also tried the versions of the test criterion in (15) that
correspond to characteristic exponent α ∈ {0.5, 1.0, 1.5, 2.0}, always with γ = 1. The distribution of each test statistic
is approximated by the empirical distribution that is based on B = 1000 permutations.

To evaluate the performance of test statistics, we carry out our simulations under two scenarios.

Scenario 1: The sample noise has the same distribution in the two groups, i.e., ε1(t) =L ε2(t). Due to Fourier identities,
there is no need to estimate x̂ki(t), and the testing procedure can be used for Xki j. We assumed εki j∼iidN(0, 0.01) for
all k ∈ {1, 2}, i ∈ {1, . . . , nk} and j ∈ {1, . . . ,m}. The test criterion is denoted by Dα,m for simplicity.

Scenario 2: The sample noise is non-identically distributed between the two groups. Recall from Section 4.1 that we
estimate x1i(t) and x2i(t) by means of local-linear smoothing. The bandwidth is selected by minimizing the cross-
validation objective function

h = arg min
h


1

mn1

n1∑

i=1

m∑

j=1

(X1i j − x̂1i j)2 +
1

mn2

n2∑

i=1

m∑

j=1

(X2i j − x̂2i j)2


,

and the test criterion is denoted by Dα,m. The kernel function is the biquadratic kernel, K(u) = (15/16)(1− u2)21(|u| ≤
1). Without loss of generality, we assumed that ε1i j ∼iid N(0, σ2

1) and ε2i j ∼iid N(0, σ2
2). Then in order to evaluate

the influence of the distribution of the sample noise on the test statistics, three pairs of distributions between the two
groups are considered: (i) (σ1, σ2) = (0.01, 0.1); (ii) (σ1, σ2) = (0.1, 0.3); (iii) (σ1, σ2) = (0.1, 0.5).

5.1.1. Scenario 1: The sample noise has the same distribution in both groups
Table 1 and Figure 1 display the Type I error and power rates based on simulations when the sample noise distribu-

tion is the same for the two groups. The results illustrate that the test controls size well under the null hypothesis with
δ = 0 and the power increases for larger values of time points m, sample size n1 = n2, and the distance parameter δ.
Now since our design is identical to that in [25], we were able to compare our results with those therein and found that
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Table 1: Rejection rate for the ECF test Dα,m at 5% significance based on 1000 permutations when the distribution of the sample noise is the same
in both groups.

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.2 0.4 0.6 0.8 1 2

α = 0.5
15 20 0.038 0.061 0.078 0.218 0.634 0.922 1

100 0.050 0.034 0.116 0.618 0.982 1 1
25 20 0.058 0.052 0.13 0.406 0.908 1 1

100 0.064 0.044 0.238 0.918 1 1 1
50 20 0.054 0.052 0.192 0.854 1 1 1

100 0.040 0.062 0.522 1 1 1 1

α = 1
15 20 0.058 0.048 0.082 0.242 0.652 0.966 1

100 0.046 0.086 0.136 0.670 0.996 1 1
25 20 0.050 0.062 0.120 0.462 0.958 1 1

100 0.036 0.076 0.252 0.946 1 1 1
50 20 0.066 0.054 0.206 0.912 1 1 1

100 0.056 0.046 0.600 1 1 1 1

α = 1.5
15 20 0.058 0.054 0.080 0.258 0.696 0.976 1

100 0.046 0.076 0.160 0.728 1 1 1
25 20 0.050 0.070 0.120 0.494 0.976 1 1

100 0.040 0.076 0.276 0.966 1 1
50 20 0.066 0.052 0.218 0.932 1 1 1

100 0.060 0.046 0.634 1 1 1 1

α = 2
15 20 0.046 0.072 0.144 0.388 0.804 0.980 1

100 0.054 0.094 0.360 0.918 1 1 1
25 20 0.058 0.092 0.226 0.696 0.982 1 1

100 0.066 0.146 0.542 0.988 1 1 1
50 20 0.074 0.124 0.518 0.980 1 1 1

100 0.132 0.342 0.976 1 1 1 1

the ECF test statistic is more powerful than the test suggested in that paper. This should not be surprising, since with
the ECF method we do not need to estimate the basis functions by smoothing the data when observations are without
noise or sampling noise is equidistributed.

Regarding the value of the characteristic exponent α, we observe a nearly monotonic increase of the rejection rate
with increasing α. This may temp us to favor test statistics with a larger α. However, a higher rejection rate holds
not only under alternatives but also under the null hypothesis, and hence one should weigh better power against the
tendency to overshoot the nominal Type I error for larger values of α.

5.1.2. Scenario 2: The sample noise is not identically distributed in the two groups
Tables 2–4 and Figure 2 display the Type I error and power rates based on simulations when the two groups have

non-identical sample noise distributions. The results again illustrate that our ECF method performs reasonably well
for this scenario too. At the same time, we point out the following findings.

(i) The Type I error grows as the standard deviation of ε2 increases. Intuitively, the higher the standard deviation,
the greater the difference in the observed data, which may lead to higher probability of rejection even whenH0
is true.

(ii) In most cases of Scenario 2, the percentage of rejection drops for larger time points m. This is different from
the behavior shown under Scenario 1. The cause of this result may relate to the smoothing procedure. Specifi-
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Figure 1: Rejection rate for the ECF test Dα,m at 5% significance based on 1000 permutations when the sample noise has the same distribution in
the two groups with n1 = n2 = 15 (dashed line), n1 = n2 = 25 (solid line) and n1 = n2 = 50 (dotted line). The thin lines correspond to m = 20, and
the thick lines to m = 100. The null hypothesis holds when δ = 0.
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Table 2: Rejection rate for the ECF test Dα,m at 5% significance based on 1000 permutations when ε1i j∼iidN(0, 0.012) and ε2i j∼iidN(0, 0.12).

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.5 1 1.5 2 3 4

α = 0.5
15 20 0.044 0.078 0.452 0.894 0.998 1 1

100 0.052 0.082 0.454 0.912 0.996 1 1
25 20 0.042 0.100 0.772 1 1 1 1

100 0.042 0.100 0.722 0.998 1 1 1
50 20 0.048 0.230 0.988 1 1 1 1

100 0.050 0.196 0.994 1 1 1 1

α = 1
15 20 0.064 0.068 0.378 0.912 1 1 1

100 0.052 0.068 0.366 0.866 0.998 1 1
25 20 0.052 0.096 0.710 0.992 1 1 1

100 0.042 0.098 0.680 0.994 1 1 1
50 20 0.048 0.180 0.99 1 1 1 1

100 0.052 0.164 0.982 1 1 1 1

α = 1.5
15 20 0.064 0.056 0.400 0.908 0.998 1 1

100 0.038 0.050 0.230 0.706 0.970 1 1
25 20 0.050 0.066 0.690 0.996 1 1 1

100 0.058 0.066 0.422 0.970 1 1 1
50 20 0.040 0.140 0.988 1 1 1 1

100 0.024 0.128 0.914 1 1 1 1

α = 2
15 20 0.068 0.056 0.310 0.998 0.998 1 1

100 0.046 0.050 0.104 0.292 0.740 1 1
25 20 0.044 0.084 0.588 0.996 1 1 1

100 0.032 0.058 0.128 0.656 0.988 1 1
50 20 0.042 0.094 0.970 1 1 1 1

100 0.046 0.070 0.396 0.998 1 1 1

cally the variance of estimation is O{1/(mh)} in the nonparametric smoothing method, which suggests that the
estimation of xki j with a small number of time points m is more likely to fluctuate and hence leads to rejection
ofH0 more often than with larger m. The same type of reverse behavior is observed with respect to the value of
the characteristic exponent, with larger α now leading to a drop in the percentage of rejection. Thus an overall
suggestion of using more data points m and a value of α that is not too small would lead to a compromise test
statistic that has reasonably good power but also respects the nominal level of significance.

5.1.3. Comparison with the method of Horváth et al. [28]
We also compare the ECF method and the method HKR in [28] under the same simulation settings, viz.

X1i(t) = µ1(t) + ε1i(t), X2i(t) = µ2(t) + ε2i(t),

where for all k ∈ {1, 2} and i ∈ {1, . . . , nk}, εki(t) with t ∈ (0, 1) are iid Brownian bridges, and µ1(t) = 0, while
µ2(t) = δt(1 − t). The sample size is set to n1 = n2 = 50, and the number of time points is m = 10 or m = 30. The
sampling noise then has the same distribution in both groups. Using Fourier identities, we see that the null hypothesis
H0 in (2) holds if and only if

∀t∈T ∀u∈Rp E[sin{u>Y(t)}] = 0,
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Figure 2: Rejection rate for the ECF test Dα,m at 5% significance based on 1000 permutations when the distribution of the sample noise is different
between the two groups (ε1i j ∼iid N(0, 0.012), ε2i j ∼iid N(0, 0.12)) with n1 = n2 = 15 (dashed line), n1 = n2 = 25 (solid line) and n1 = n2 = 50
(dotted line). The thin lines correspond to m = 20, and the thick lines to m = 100. The null hypothesis holds for δ = 0.
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Table 3: Rejection rate for the ECF test Dα,m at 5% significance based on 1000 permutations when ε1i j∼iidN(0, 0.12) and ε2i j∼iidN(0, 0.32).

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.5 1 1.5 2 3 4

α = 0.5
15 20 0.070 0.090 0.484 0.908 0.996 1 1

100 0.056 0.080 0.488 0.896 0.996 1 1
25 20 0.054 0.150 0.774 0.992 1 1 1

100 0.042 0.142 0.744 0.998 1 1 1
50 20 0.050 0.276 0.992 1 1 1 1

100 0.054 0.286 0.994 1 1 1 1

α = 1
15 20 0.076 0.088 0.470 0.922 0.998 1 1

100 0.060 0.066 0.418 0.864 0.994 1 1
25 20 0.058 0.126 0.784 0.992 1 1 1

100 0.044 0.122 0.682 0.998 1 1 1
50 20 0.042 0.264 0.994 1 1 1 1

100 0.054 0.238 0.992 1 1 1 1

α = 1.5
15 20 0.068 0.076 0.424 0.914 0.998 1 1

100 0.054 0.062 0.244 0.682 0.974 1 1
25 20 0.050 0.104 0.738 0.992 1 1 1

100 0.038 0.090 0.450 0.982 1 1 1
50 20 0.046 0.228 0.994 1 1 1 1

100 0.052 0.142 0.940 1 1 1 1

α = 2
15 20 0.070 0.072 0.338 0.898 0.998 1 1

100 0.046 0.062 0.090 0.282 0.746 1 1
25 20 0.048 0.096 0.648 0.990 1 1 1

100 0.032 0.068 0.148 0.698 0.990 1 1
50 20 0.046 0.178 0.978 1 1 1 1

100 0.040 0.062 0.450 1 1 1 1

where Y(t) = X2(t) − X1(t). Then a test statistic analogous to (15) for γ = 1 is given by

Ψα,m =
1
m

m∑

j=1

1
2n2

n∑

i,`=1

{
e−|Yi(t j)−Y`(t j)|α − e−|Yi(t j)+Y`(t j)|α }, (19)

where Yi(t) = X2i(t) − X1i(t) for all i ∈ {1, . . . , n}. Table 5 corresponds to α = 1 for the test statistic in (19), and to the
criterion U1 of [28].

The results suggest that the performance of the ECF method is comparable to that of the HKR method, while at
the same time the ECF is seen to be more robust with respect to the number of points m. However, recall that our test
criterion in (19) refers to marginal symmetry while the HKR method is within the full functional context.

5.2. Study 2: Multivariate case
We simulate two random pairs with the same noise distribution with the following setup borrowed from [32]:

X1(t) =

(
X11(t)
X12(t)

)
=

(
U3h2(t)

U1h1(t) + U3h3(t)

)
+

( √
0.1 ε11(t)√
0.5 ε12(t)

)
,

X2(t) =

(
X21(t)
X22(t)

)
=

(
U3h2(t)

U1h1(t) + U3h3(t)

)
+ δ

(
U2h3(t)
U2h2(t)

)
+

( √
0.1 ε21(t)√
0.5 ε22(t)

)
,
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Table 4: Rejection rate for the ECF test Dα,m at 5% significance based on 1000 permutations when ε1i j ∼iid N(0, 0.12) and ε2i j∼iidN(0, 0.52).

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.5 1 1.5 2 3 4

α = 0.5
15 20 0.084 0.152 0.536 0.948 0.988 1 1

100 0.062 0.118 0.536 0.914 0.994 1 1
25 20 0.120 0.242 0.838 0.998 1 1 1

100 0.090 0.224 0.872 1 1 1 1
50 20 0.172 0.484 0.998 1 1 1 1

100 0.148 0.534 1 1 1 1 1

α = 1
15 20 0.088 0.136 0.524 0.950 0.994 1 1

100 0.064 0.088 0.454 0.896 0.992 1 1
25 20 0.104 0.204 0.838 1 1 1 1

100 0.090 0.190 0.796 1 1 1 1
50 20 0.128 0.500 0.996 1 1 1 1

100 0.136 0.478 1 1 1 1 1

α = 1.5
15 20 0.092 0.102 0.448 0.950 0.996 1 1

100 0.048 0.068 0.286 0.728 0.988 1 1
25 20 0.076 0.176 0.818 0.996 1 1 1

100 0.070 0.106 0.592 0.992 1 1 1
50 20 0.120 0.448 1 1 1 1 1

100 0.084 0.252 0.994 1 1 1 1

α = 2
15 20 0.078 0.086 0.372 0.934 0.994 1 1

100 0.052 0.060 0.118 0.312 0.794 1 1
25 20 0.082 0.154 0.770 1 1 1 1

100 0.062 0.076 0.182 0.770 0.992 1 1
50 20 0.086 0.370 0.996 1 1 1 1

100 0.068 0.100 0.576 1 1 1 1

where the three basic functions are respectively

h1(t) = (1 − |10t − 5|)+ , h2(t) = (1 − |10t − 3|)+ , h3(t) = (1 − |10t − 7|)+ ,

and U1 ∼ N(0.5, 1/12), U2 ∼ N(1, 1/12), U3 ∼ N(0, 2/3). For the noise distribution, we have ε11, ε12, ε21, ε22 ∼
N(0, 1), with δ ≥ 0 again controlling deviation from the null hypothesis; we have δ = 0 underH0.

Table 6 shows the Type I error and power rates based on simulations when samples are bivariate and the distribution
of the sample noise is the same in two groups. The results are much the same as those in the one-dimensional case
displayed in Table 1, only now the test criterion is less sensitive to the choice of the characteristic exponent α.

5.3. Study 3: Global test
Given the observation time points t j = j/m with j ∈ {0, . . . ,m}, we simulated X1(t) as a Wiener process and set

X2(t) = (1 + δ)Z(t), where Z(t) is another Wiener process, independent of X1(t). Thus δ = 0 corresponds to the null
hypothesis. Observe that here observations are assumed to be without noise. The level of significant is 0.05, with
sample size n1 = n2 = n, where n ∈ {15, 25, 50}, and m ∈ {15, 25}, for each curve. We consider the test statistic in
(17)–(18), with the matrixΣ corresponding to a Wiener process. The distribution of this test statistic was approximated
by the empirical distribution based on B = 1000 permutations and the results are shown in Table 7.

Another round of results are shown in Table 8 for the global test statistic when the two samples are as above
but with X1 and Z generated from two independent Ornstein–Uhlenbeck processes and using an Ornstein–Uhlenbeck
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Table 5: Rejection rate for the ECF test Ψα,m, α = 1, and the HKR method at 5% significance with m time points.

δ
m = 10 m = 30

ECF HKR ECF HKR

0.0 0.052 0 0.048 0.061
0.1 0.058 0 0.078 0.071
0.2 0.098 0 0.096 0.108
0.3 0.122 0 0.132 0.174
0.4 0.206 0 0.188 0.246
0.5 0.268 0 0.284 0.331
0.6 0.358 0 0.382 0.448
0.7 0.470 0 0.498 0.530
0.8 0.578 0 0.610 0.665
0.9 0.634 0 0.712 0.751
1.0 0.770 0 0.800 0.811
1.1 0.812 0 0.854 0.889
1.2 0.910 0 0.896 0.928
1.3 0.926 0 0.952 0.960

covariance matrix Σ in the test statistic (17)–(18). Both sets of results are consistent and qualitatively analogous to
our previous findings, showing a good control of the level and reasonable behavior with respect to the sample size n,
as well as with respect to the distance parameter δ and the number m of observational times. As already mentioned
in Section 4.3, a test statistic with the covariance matrix Σ in (18) being data-dependent is also possible, but too time
consuming as in this case a high-dimensional matrix Σ and its inverse must be computed for each Monte Carlo sample.

Table 6: Rejection rate for ECF test ∆α,m at 5% significance based on 1000 permutations when samples are two-dimensional data and sample noise
is equidistributed between the two groups.

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.2 0.4 0.6 0.8 1

α = 0.5
15 20 0.038 0.076 0.178 0.458 0.804 0.966

100 0.048 0.122 0.448 0.970 1 1
50 20 0.054 0.144 0.792 0.998 1 1

100 0.046 0.428 1 1 1 1

α = 1
15 20 0.052 0.080 0.186 0.468 0.818 0.97

100 0.046 0.118 0.458 0.972 1 1
50 20 0.054 0.152 0.794 0.998 1 1

100 0.046 0.429 1 1 1 1

α = 1.5
15 20 0.042 0.070 0.198 0.486 0.818 0.968

100 0.054 0.108 0.480 0.940 1 1
50 20 0.050 0.162 0.794 0.998 1 1

100 0.044 0.444 1 1 1 1

α = 2
15 20 0.042 0.068 0.186 0.490 0.798 0.954

100 0.054 0.108 0.486 0.978 1 1
50 20 0.042 0.158 0.784 0.998 1 1

100 0.042 0.400 1 1 1 1
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Table 7: Rejection rate for ECF test ΥW,m at 5% significance based on 1000 permutations when samples come from Wiener processes.

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.1 0.2 0.3 0.4 0.5

15 15 0.060 0.060 0.190 0.270 0.410 0.570
25 0.050 0.090 0.150 0.420 0.520 0.640

25 15 0.040 0.140 0.180 0.410 0.650 0.700
25 0.050 0.080 0.330 0.530 0.630 0.760

50 15 0.060 0.090 0.460 0.670 0.930 0.950
25 0.060 0.160 0.480 0.670 0.830 0.920

Table 8: Rejection rate for ECF test ΥW,m at 5% significance based on 1000 permutations when samples come from Ornstein–Uhlenbeck processes.

Sample Size Time Points Distance Parameter: δ

n1 = n2 m 0 0.1 0.2 0.3 0.4 0.5

15 15 0.045 0.065 0.145 0.250 0.370 0.550
25 0.055 0.095 0.210 0.355 0.570 0.590

25 15 0.045 0.095 0.175 0.355 0.625 0.720
25 0.060 0.115 0.285 0.490 0.815 0.840

50 15 0.060 0.140 0.325 0.670 0.890 0.930
25 0.050 0.140 0.405 0.700 0.810 0.890

5.4. Application 1: MCO data

In order to simulate reduced blood flow for a period of one hour, Ruiz-Meana et al. [45] measured the mitho-
chondiral calcium overload (MCO) in two groups (control and treatment) every 10 seconds during an hour in isolated
mouse cardiac cells. For the treatment group, a dose of cariporide was administered, which is believed to inhibit cell
death due to oxidative stress. In fact, for technical reasons, the original experiment was performed twice, using both
the “intact”, original cells and “permeabilized” cells, a condition related to the mitochondrial membrane. The data
were made available by Febrero-Bande and Oviedo de la Fuente [15] through the R package fda.usc.

Figure 3 illustrates that the two groups of data shown, one with intact cells and the other group with permeabilized
cells, may or may not behave in the same way, but a definite conclusion is not easily reached by simple visual
inspection. We applied our ECF test Dα,m, α = 1, m = 342, together with the HKR statistic in [28]. The resulting pairs
of p-values shown in Table 9 lead to rejection of the null hypothesis for both the intact cells and the permeabilized
cells, a conclusion consistent with the conclusion drawn in [21].

Table 9: Rejection rate for the ECF test Dα,m, α = 1, and the HKR method to test the equality between the treatment and control calcium
concentrations curves in the intact and permeabilized experiments.

ECF HKR

Intact 9e−5 0
Permeabilized 0.004 0

5.5. Application 2: Australian temperature data

We apply the proposed method to temperature data collected by 224 weather stations across Australia; see [25].
The data set consists of monthly mean maximum temperatures in degrees Celsius. Figure 4 shows the temperature
curves of the 224 weather stations during 1933, 1953, 1973 and 1993. Our interest is whether weather patterns in
Australia have changed during this time period. In order to test this hypothesis, the time period is split into four
periods, namely from 1914 to 1933 (period 1), from 1934 to 1953 (period 2), from 1954 to 1973 (period 3) and from
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Figure 3: The left panel shows data in control and treatment groups of intact cells. The right panel shows data in control and treatment groups of
permeabilized cells. The black line represents the control group and the red line represents the treatment group.

1974 to 1993 (period 4). Then we carry out the proposed pairwise tests on each of the six possible pairs with our
criterion Dα,m, α = 1, m = 12 × 20.

The corresponding p-values are reported in Table 10. At the 5% level, two comparisons (period 1 vs. 4, and
period 2 vs. 4) lead to significant p-values. Hence our test suggests that the mean maximum temperature in Australia
has changed over time, and specifically more significantly so in the last period; see [25] for analogous findings.

Table 10: Rejection rate for the ECF test Dα,m, α = 1, of the pairwise tests based on the Australian weather data.

Period Period p-value

1 2 0.0553
1 3 0.0519
1 4 0.0199
2 3 0.0521
2 4 0.0391
3 4 0.1296
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Figure 4: Temperature curves for the 224 weather stations in 1933 (top left), 1953 (top right), 1973 (bottom left), 1993 (bottom right).

6. Conclusion

In this paper, we suggested a new procedure for testing the two-sample null hypothesis with functional data.
The procedure measures the distance between (marginal or joint) characteristic functions rather than the classical
distance between distribution functions. We studied the limit behavior of the new test criteria both under the null
and under alternatives. Moreover our simulations show that specific versions of the proposed method work well in
different sampling scenarios, in that they control the nominal size well under the null and at the same time show good
power performance that is enhanced with larger sample size and distance from the null hypothesis. The method is
an adaptation to the functional data set up of earlier Fourier methods for the same problem with perfectly observed
iid data and consequently inherits certain desirable properties from that context such as computational convenience,
and the possibility of immediate extension to multidimensional observations, which is not always true if one employs
classical procedures, and good performance vis-à-vis the latter procedures whenever these are applicable. A couple
of real data examples illustrate the applicability of the new procedures.
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Appendix: Proofs

Here we present auxiliary results for the proofs of Theorems 1–4. In what follows D stands for a generic constant.
Denoting g(z) = cos(z) + sin for all z ∈ R, and using elementary properties of sin and cos, we find

∆W,m =
1
m

m∑

j=1

∫

Rp


1
n1

n1∑

i=1

g(u>X1i j) − 1
n2

n2∑

i=1

g(u>X2i j)



2

W(u)du

and

DW,m =
1
m

m∑

j=1

∫

R


1
n1

n1∑

i=1

g(ux̂1i j) − 1
n2

n2∑

i=1

g(ux̂2i j)



2

W(u)du.

At every u ∈ Rp and t ∈ b0, 1c, we define the processes

Vn1 (u, t) =
1√
n1

n1∑

i=1

[g{u>X1i(t)} − Eg{u>X1i(t)}], Vn2 (u, t) =
1√
n2

n2∑

i=1

[g{u>X2i(t)} − Eg{u>X2i(t)}],

and Vn1,n2 (u, t) =
√

(n1 + n2)/n1Vn1 (u, t) − √(n1 + n2)/n2Vn2 (u, t).
Observe that under Assumptions (A.1)–( A.7), the random variables Vn1 (u, t) and Vn2 (u, t) are, for fixed u and t,

sums of iid random variables with zero mean, finite variances var{g(u>X1i(t))} and var{g(u>X2i(t))}, respectively, and
if additionally the null hypothesis holds true, then E[g{u>X1i1 (t)}] = E[g{u>X2i2 (t)}] for all t ∈ b0, 1c, i1 ∈ {1, . . . , n1},
i2 ∈ {1, . . . , n2}, and u ∈ Rp. Here is a useful basic lemma.

Lemma 5. Under Assumptions (A.1)–(A.5) and (A.7), the following holds true:

(a) For any compact subset F of Rp and any t ∈ [0, 1], one has

sup
n1,n2∈N

E
∫ 1

0

∫

F
{Vn1,n2 (u, t)}2W(u)dudt < ∞.

(b) There exist a > 0, C > 0, such that for any t1, t2 ∈ [0, 1] and u1,u2 ∈ Rp, one has

sup
n1,n2∈N

E|V2
n1,n2

(u1, t1) − V2
n1,n2

(u2, t2)| ≤ C(||u1 − u2||a + |t1 − t2|a).

(c) The marginal distribution of {Vn1,n2 (u, t)} converges to the marginal distribution of a Gaussian process {Vθ(u, t)}
with covariance structure defined, for all t1, t2 ∈ [0, 1] and u1, u2 ∈ Rp, by

cov{Vθ(u1, t1),Vθ(u2, t2)} =
1

θ(1 − θ) cov
[√

1 − θ g{u>1 X1(t1)} +
√
θ g{u>1 X2(t1)},
√

1 − θ g{u>2 X1(t2)} +
√
θ g{u>2 X2(t2)}

]
.

Proof. For any t ∈ [0, 1] and any u, the random vectors Xk1(t), . . . , Xknk (t) are iid random variables with E{Vknk (u, t)} =

0 and E{V2
knk

(u, t)} = var[g{u>Xkik (t)}]2 ≤ D for all k ∈ {1, 2} and some D > 0 as g is bounded. From this, assertion
(a) follows. From the assumptions, the boundedness of sine and cosine and the mean value theorem, for some D > 0,

E[g{u>1 Xkik (t1)} − g{u>2 Xkik (t2)}]2 ≤ D E{u>1 Xkik (t1) − u>2 Xkik (t2)}2 ≤ D||u1 − u2||2 + |t1 − t2|2.
Now (b) holds true because by Hölder’s inequality and Minkowski’s inequality, for k ∈ {1, 2}, and for some D > 0,

E|V2
n1,n2

(u1, t1) − V2
n1,n2

(u2, t2)| ≤ [E|Vn1,n2 (u1, t1) − Vn1,n2 (u2, t2)|2 × E|Vn1,n2 (u1, t1) + Vn1,n2 (u2, t2)|2]1/2

≤ D{E|Vn1,n2 (u1, t1) − Vn1,n2 (u2, t2)|2}1/2
≤ D[E[g{u>1 Xkik (t1)} − g{u>2 Xkik (t2)}]2]1/2

≤ D(||u1 − u2|| + |t1 − t2|).
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For any t ∈ [0, 1] and u ∈ Rp, by the assumptions Vn1,n2 (u, t) is the linear combination of independent random
variables with zero mean and finite moment of the order 2+η. Thus the assumptions of the Central Limit Theorem are
satisfied and we find Vn1,n2 (u, t) Vθ(u, t). Additionally, the covariance structure of Vθ(u, t) can be computed easily;
we find

cov{Vθ(u1, t1),Vθ(u2, t2)} =
1
θ

cov[g{u>1 X1(t1)}, g{u>2 X1(t2)}] +
1

(1 − θ) cov[g{u>1 X2(t1)}, g{u>2 X2(t2)}].
Hence (c) holds true, and the proof of the lemma is complete. �
Theorem 6. Under Assumptions (A.1)–(A.5) and (A.7) the following holds true, as min(n1, n2)→ ∞:

∫ 1

0

∫

Rp
{Vn1,n2 (u, t)}2W(u)dudt 1

θ(1 − θ)
∫ 1

0

∫

Rp
{Vθ(u, t)}2W(u)dudt,

where {Vθ(u, t) : t ∈ T,u ∈ Rp} is a Gaussian process with zero mean and covariance structure

cov{Vθ(u1, t1),Vθ(u2, t2)} =
1
θ

cov[g{u>1 X1(t1)}, g{u>2 X1(t2)}] +
1

1 − θ cov[g{u>1 X2(t1)}, g{u>2 X2(t2)}].
If additionally (A.6) is fulfilled then also, as min(n1, n2,m)→ ∞,

1
m

m∑

j=1

∫

Rp
{Vn1,n2 (u, j/m)}2W(u)du 1

θ(1 − θ)
∫ 1

0

∫

Rp
{Vθ(u, t)}2W(u)dudt.

Proof. Under our assumptions, the assertion of Lemma 5 holds true, hence the assumptions of Theorem 22 in [31] are
satisfied and by this theorem we can conclude the first assertion. In view of the assumptions, the second assertion also
holds true, and the proof of the theorem is complete. �

Proof of Theorem 1. Under the null hypothesis is true and on account of Assumption (A.2) we note that for all u,
t, i1 ∈ {1, . . . , n1} and i2 ∈ {1, . . . , n2}, E[g{u>X1i1 (t)}] = E[g{u>X2i2 (t)}], and therefore the assertions of Theorem 6
remain true if in the definition of {Vnk (u, t), u ∈ Rp, t ∈ b0, 1c} the terms Eg{u>X1i1 (t)} = Eg{u>X2i2 (t)} are omitted.
Theorem 1 follows. �

Proof of Theorem 2. It follows immediately from Theorem 6. �
Next, consider the assumptions (A.1), (A.2a), (A.3)–(A.8) and study the behavior of

∫ 1

0

∫

Rp
{V̂n1,n2 (u, t)}2W(u)dudt,

where V̂n1,n2 (u, t) is defined as Vn1,n2 (u, t) with Xkik (t) replaced by x̂kik (t) that is defined in Section 4.1 in the univariate
case. Then we can write

x̂kik (t) =
1

mh

m∑

j=1

Xkik jK̃
( t − j/m

h

)
,

where the kernel K̃ is determined from the definition in Section 4.1 that has similar properties as K. We use the
decomposition

x̂kik (t) =
1

mh

m∑

j=1

xkik jK̃
( t − j/m

h

)
+

1
mh

m∑

j=1

εkik jK̃
( t − j/m

h

)
≡ x̃kik (t) + ε̃kik (t)

and the Taylor expansion

g{ux̂kik (t)} = g{ux̃kik (t)} + uε̃kik (t)
∂g(z)
∂z

∣∣∣∣
z=uxkik (t)

+ {uεkik (t)}2Rkik (t),

where Rkik (t) is a remainder. Under these assumptions for any fixed t, the random vectors x̂kik (t) are independent.
Going through the proofs of Lemma 5 and Theorem 6, we find that under Assumptions (A.1), (A.2a), (A.3)–(A.8),
the assertions of Theorem 6 remain true if Vn1,n2 (u, t) is replaced by V̂n1,n2 (u, t). �

Proofs of Theorem 3 and 4. The proofs of both theorems follow from the above considerations and Theorem 6. �
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