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The Law of the lterated Logarithm for the Multivariate
Nearest Neighbor Density Estimators

STEFAN S. RALESCU*

Queens College, City University of New York

We consider estimation of a multivariate probability density function f{x) by ker-
nel type nearest neighbor (nn) estimators g,(x). The development of nn density
estimation theory has had a rich history since Loftsgaarden and Quesenberry
proposed the idea in 1965. In particular, there is a vast literature on convergence
properties of g,(x) to f(x). For statistical purposes, however, it is of importance to
study also the speed of almost sure convergence. For pointwise estimation, this
problem appears to have received no attention in the literature. The aim of the pre-
sent paper is to obtain sharp pointwise rates of strong consistency by establishing
a law of the iterated logarithm for this class of estimators. We also study the local
estimation of a density function based on censored data by the kernel smoothing
method using a nearest neighbor approach and derive a law of the iterated
logarithm. 1995 Academic Press. Inc.

1. INTRODUCTION AND BACKGROUND

In many areas of statistics there has been a long standing need for a mul-
tidimensional density estimator. Density estimators are particularly impor-
tant in data exploration and the presentation of results since they allow
identification of interesting features and help one to draw conclusions
about the data. Take X,,.., X, to be n points in the p-dimensional
Euclidean space selected independently from a distribution with (unknown)
density f(x). Among the numerous schemes proposed for density estima-
tion, one of the most popular is the Rosenblatt~Parzen kernel method
which proposes the estimators

1 x—X,;
Ax)y=— K{———), (1.1
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where K is a positive real-valued function on R” that integrates to 1 and
f1,> 0 1s a smoothing parameter that tends to 0 as n— . Of particular
interest within this class are the moving window estimators fX*(x)
(Devroye. 1987, p. 19) obtained from f, when K is the uniform probability
density over the unit ball in R”. Note that f¥(x) takes the form

SHN) =N )iV (h,) =N, () me bl (1.2)

where N, (h,) is the number of observations X, ..., X, that lie in the ball of
radius A,. V' ,(/,) is the volume of the p-dimensional ball of radius 4, and
co=n"*Tp24+1) is the volume of the unit p-dimensional ball. Such
estimators are known to have good pointwise properties. See for example
Kreiger and Pickands (1981). A major drawback of f, is that it cannot
respond appropriately to variations in the magnitude of f(x), ie.. the
peakedness of the kernel 1s not data-responsive and the estimator is unable
to adjust to denseness and sparseness of data near x. To obtain some
assurance of the local control of the esimation process, Loftsgaarden
and Quesenberry (1965) proposed the & nearest neighbor {nn) density
estimator as a modification of f*¥(x) according to

k
PR v) = A 1.3
& (Y] ey RY L (x) 3

where R, ,(x) is the distance from x to its Ath nearest neighbor among
X,.... X, and k =%, is a sequence of positive integers satisfing &, — »~ and
k, /n—0 as n — oc. In what follows, we suppress the dependence of R, ,(x)
and related quantities on x and & unless confusion is likely. The nearest
neighbor estimator was designed for mudtivariate density estimation to
achieve two purposes:

1. to act like an “automatic” density estimator, thus overcoming the
well known difficult obstacle of selecting the smoothing parameter involved
in the construction of the estimator, and

2. to respond to local smoothing and provide an attractive estimator
with a natural determination of high and low density regions.

More generally, the kernel-type nn estimators take the form

1 x—X
X)= K “ . 14
ot L () ~

ni=1 n

Clearly, g *(x) could be viewed as the uniform kernel case of g,(x).
Among the many applications of nn estimators we cite discrimination
and pattern recognition problems. It should be noted that Mack and
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Rosenblatt (1979) signalled that caution in the use of nn estimators should
be employed since, due to the fast growth of the nearest neighbor distance
in the tails of the density, g,(x} may perform more poorly than f,{x) for
tails values x where the bias of g,(x) is likely to be larger. For fixups and
aspects of dealing with such difficulties, the reader is referred to Hall (1983)
and Burman and Nolan (1992).

Many researchers have been concerned with the issue of consistency
(weak, strong, pointwise, uniform) of nn estimators and an extensive
amount of research has been done and reported in the literature on this
subject. The problem has been treated in increasing generality by a number
of authors: Loftsgaarden and Quesenberry (1965), Moore and Henrichon
{1969), Wagner (1973), Moore and Yackel (1977a, 1977b), Devroye and
Wagner (1977), and Devroye (1985), among others. {For more work and
related problems concerning both nn estimators and other types of density
estimators the reader is referred to the monograph by Prakasa Rao, 1983.)
The equally important studies of the speed of asymptotic convergence
related to consistency questions have received substantially less attention,
however. A notable exception is a paper by Mack (1983) where for p=1,
the exact rate of uniform consistency of g¥* was established (see also
Deheuvels and Mason, 1992, for another proof of this result}. Concerning
laws of the iterated logarithm for the Rosenblatt—Parzen estimators (1.1),
in the case p=1 a fundamental contribution was made by Hall (1981)
whose main device was the strong uniform approximation of the empirical
process by a Kiefer process via the Hungarian embedding. These issues
were further taken up by Hirdle (1984), who obtained parallel results on
the convergence of nonparametric kernel estimators of regression functions.
Closely related laws of the iterated logarithm for sequentially calculated
density estimators have been given by Wegman and Davis (1979).

When fixed bandwidth is replaced by nearest neighbor bandwidth (or
more generally by a function of nearest neighbor distances), the problem
becomes more complex primarily due to additional computational
requirements. With few exceptions, this may be the main reason why the
asymptotic properties dealing with rates of a.s. convergence for nearest
neighbor based estimators have “eluded most researchers” as reported by
Devroye and Gyorfi (1985).

In view of the well-documented consistency results, it seems highly rele-
vant to ask what the corresponding rate for the almost sure pointwise con-
vergence of g,(x) to f{x) is. This is imperative in order to arrive at a much
better understanding that is now available of the full meaning of the strong
consistency result. The aim of the present paper s to answer this question
by deriving the exact rate of strong pointwise consistency and we regard
solving this problem as a significant component in the ambitious goal of
establishing the theoretical asymptotic properties of g,(x). As concluded by
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Terrell and Scott (1992} in their recent study, the nn estimator is of less
interest in low dimensions (p=1,2) but “it is well worth considering in
higher dimensions”™ (p = 3), thus “reassuring workers in classification and
other areas who use these estimators.” This puts more weight on the
stgnificance of our result which is valid in a multivariate setting.

In Section 2 we show a law of the iterated logarithm (LIL) for the nn
estimator g*(x) properly centered at g,(x) under the weakest possible
conditions on {k,}. This result gives the exact order of convergence for
gXx)— g,(x). For statistical interpretations, it is destrable to have exact
pointwise strong convergence rates for g¥(x)— f(x) but since g,(x)— f(x)
is deterministic and purely analytically handled, the corresponding LIL is
presented without difficulty as a corollary. In Section 3, under slightly
stronger conditions on {k,}, we extend the LIL for the general class of
spherically symmetric kernel-type nn estimators (1.4). Finally, a point of
interest is to obtain similar results for other types of nonparametric curve
estimators. While we do not attempt to take up this question in its full
generality, we present in Section 3 a LIL for nn kernel estimators of a
density function in the case of censored data. This solves an open problem
{see Lo et al, 1989, p.468) and hints that analogues of our results may
be possible in other cases of multivariate density estimation (e.g., nn
regression estimators).

2. THE LIL, UNiForM KERNEL CASE

In the following we shall fix some point x where the density is to be
estimated and assume f(x)>0.

When f is continuous at x and {k,} satisfies k, — o, k,/n— 0, and
k,/loglogn— oc as n— =, up to now only strong {pointwise) consistency
is known from Moore and Yackel (1977b}, ie.,

gXHx) - flx) as. (2.1)

{see also Wagner (1973) who obtained this result under a condition
equivalent to k,/logn— ). The important problem of establishing the
rate of convergence in (2.1) has remained open. We demonstrate that

. [k
l + n ’*.___‘-A :". as.
im sup —\/A——ﬁZIOglogn[‘(’"(‘) fix)]1=flx)  as
In looking for a practical technique applicable to nn estimators, we
proceed in the spirit of Moore and Yackel (1977b, Theorem 1) and take
as our starting point the observation, essentially contained in the original
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work of Loftsgaarden and Quesenberry (1965), that the variables R, ,(x)
are functions of the kth order statistic of a uniform (0, 1) sample. The
reasoning is simple and presented here to introduce the relevant notation:
let

Hir)=P{| X, — x| <r} =J" S du

e — x|l <»r

and Y,=|X,—x}|, 1<i<n By the probability integral transform,
U,=H(Y,) are iid. uniform (0, 1) rv’s, 1 <ig<n,andif ¥, , < ---<Y,.,
denote the order statistics of the Y sample, it follows that R, ,(x)=7Y,.,.
Hence, since H is nondecreasing, if U,., < --- < U,., are the oder statistics
of the U sample we can write H(R, ,(x))=U,.,. This representation is
attractive both theoretically and from the computational viewpoint.

To obtain the LIL we need to assume slightly stronger regulanty
conditions on {k,}. namely that

kuTle ku/n\'(snlO
such that
nd,

———1 . (2.2)
log log n

We note that the introduction of an auxiliary sequence {J,} to ensure

regularity on the rate of increase of k, is necessary due to a technical

requirement in view of the fact that there exists no nonultimately constant,

nondecreasing sequence of positive integers k, — oc such that &, /n | 0.
Define b,(x) by H(b,(x))=k,/n and set g,(x)=k, /ncy(b,(x))".

THEOREM Y. If f is continuous at x and {k,} satisfies condition (22),

then
: k" —
limsup+ [——— [ gXx)— g, (x)]=f(x) a.s. (2.3)
p e 2loglogn

Proof. To demonstrate our result, we first note that the mean value
theorem entatls

('/n:k _k/n :(Ru_bn) H’(é)
for some random quantity & =&(n, x) such that

min(b,, R,) <& <max(b,, R,). (2.4)
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This in turn implies that \/k,,s"2loglorg7r'1[g,’,‘(.\‘)~g,,<.\')] may be
expressed as (1/¢,) L, 11, I, 1V, where

—nl, , +k,

B 2k, log log n’

/ l\ N\ 2
m=("
) ( nb? )

1L, = (k, /m)'" V7 H(E)

n

and

o1
lvl::‘Rne‘/hu) ! Z [hu(l"us““"") 1[’]/1 : ’[Rn(kn"“‘”) l‘l’]"

=0
Under condition (2.2) of the theorem, on account of Theorem 6 of Kiefer
(1972) we have
limsup +1,=1 as.

Next, observe that by the continuity of f at x,

k,in=Hb, = ’ fluydie=cyfix)y b+ o(b/) as n— o (25)

woovc ol f
which implies
lim 1L, = [cof(x)]%

"

To handle 1i1, note that

Y

H((r=1limg¢ ! [ ‘ Sluy du— J flu) du]

lee Nl <

= . Fa) do (u),

Y on- Njp=r

where do,(u) is an element of surface area (sphere measure} of radius r and
center x. By passing to spherical coordinates we can write

Slxy+Ccos @y, ., ,+Csindy---sin (), )

xsin” 20 --sinf, ,d0,---dO, .
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Now, since b, - 0 and R, - 0 a.s. as n - o, it follows that £ —» 0 as., and
by the continuity of f/ at v we deduce that

H'()/E" "> pey fx) a.s.

Observe also that (2.5) and the a.s. convergence of g *(x) to f(x) entail that
k,/mi" — ¢, flx) as. This and the previous statement clearly imply that

k tp--1)p é,y 1 ]
I, = —"> —[eoflx ir s
! (Izé", (H'(f)) [eof1x)] /p a.s

To complete the proof of the theorem it is only necessary to observe that
almost surely (R, /b, )" — 1 as n — oo and

pol
Y [bk,my VYR (K, ) Y = pfleo )] as )
i=0
In practice it 1s appropriate to replace g£,(x) by f(x) in the state-
ment (2.3). This leads to the following result.
COROLLARY. [If fis Lipschitz at x and {k,} satisfies (2.2) as well as
kp +2

,—""—’0 N - 00, 26
n-(log log n)” ar e (26)

k
limsup+ /————[gXx)— flx)]=f(x) as. (2.7)

"o vV 2loglogn

then

Proof. It suffices to note that

|k, /n—cofixyblii= “ [ flu)— f(x}] dul < (const) b2~ I

e — x|l < b,

This entails |g,(x)— f(x)] =0((k,/n)"'") which together with (2.6) and
(2.3) demonstrates the result. ||

Remarks. QObserve that

1. Theorem 1 is true under minimal assumptions on f and {k,}.

2. Conclusion (2.3) of Theorem 1 yields the exact rate of almost sure
convergence for g*(x)— g,(x). The above estimation of g,(x)— f{x) under
the conditions of the corollary ensures the validity of (2.7) and the require-
ment (2.6) determining additional growth on the variation of k, may be
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interpreted as the price one has to pay to replace the centering term g,(x)}
by f{x} in the LIL.

3. The exact rate of a.s. pointwise convergence is \/(log log m)/k,,,
while the exact rate of a.s. uniform convergence (which is available in the
literature only in p =1 dimension) is slower, namely \/(log n)ik, (Mack,
1983).

4. An associated LIL could be derived for the conceptually similar
{but substantially simpler) estimator f¥(x}). Specifically, with m (x)=
Hih /ey h?). we have

Y Y
. ST ol N S VOV )] = (x)ie, as., 2.8
llm.s?p _\/2]0g log n [‘/11(\) '"u(\)] \/«/(\)‘(( as ( )

provided f'is continuous at n, f{x) >0, and

log log n

h,l0, nh, T, and as n— . (2.9)

nh’

To demonstrate (2.8), observe that fX(x) can be expressed as
H, (h)/teyh?) where H, is the empirical distribution function (e.d.f) of
Y,... Y, Then, by using the probability integral transformation
H,h,)=F/ Hh,) where F, denotes the e.d.f. of an iid. uniform (0, |)
sample of size ». and from assumption (2.9) and in view of the fact that
H{l)h! — ¢y f{x) as n— o, we deduce that

lim sup + S [H ()= Hih)]
0o ox - \/2/1’,; log log n

This follows from Kiefer (1972) and is equivalent to (2.8). Furthermore, if
in addition f'is Lipschitz at x and {/,} also satisfies

\/q,ﬂ X) a.s.

-

pe2
nh?’

e as n— o, (2.10)
log log n

then the difference m,(x) — f(x) vanishes of higher order and we obtain
LX) = fix)] = /fix)e,  as,

he o
lim sup + L -
" ek vV 2loglogn

Conditions (2.9) and (2.10) will be venfied in practice if one takes
h,=an * for positive a and 1/(p+2)<b<1/p.

5. The result (2.3) is preserved by the general class of spherically
symmetric kernel-type nn estimators. See Section 3.
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3. KERNEL-TYPE NN ESTIMATORS

In this section we extend our analysis to a larger class of nn estimators,
namely that of the spherically symmetric (ss) kernel type. For multivariate
F (p>1), the shape of the p-kernel used for density estimation becomes a
more important consideration than in the univariate case. As noted by
Terrel and Scott (1992), possibilities include two obvious approaches: the
first one is based on hyper-rectangles and constructs a “coordinate-wise
product™ kernel. The second “allows for the full range of linear scaling, by
making the kernel spherically symmetric.” For estimating a density at a
fixed point, Elkins (1968) found some differences between cubical and
spherical kernels and form Sacks and Ylvisaker (1981) it is known that
when minimizing the maximum mean square error in dimensions p > 1, the
asymptotically optimal kernel is spherically symmetric rather than a coor-
dinatewise product kernel. Guided by these facts we consider ss kernels, i.e.,
K{x)y=Ky}lx]). We now make the following assumptions:

1 s,
/"HT‘IW /2‘\—(5”10, ﬂn—/"—))_q(), (31)
n nd,(log log n)
and
J
L as M, n— oC with 21
o n

Our next result yields an extension of (2.3) for the general class of ss
kernel-type nn estimators.

THEOREM 2. Let g, be defined by (1.4) with K(x)= Ky(|ix||) where K,

has bounded support and is continuous a.e. Assume that f satisfies a Lipschitz
condition in a neighborhood of x and that {k,} satisfies (3.1). Then

: 2 o
tim sup % \/% [2.(x)— £(x)]
= ¢of(x) /f p=""K32) d (32)

where g,(x)=1(1/b2) { s K(1/b,) dH(1).

Proof. For the sake of readability, we begin by summarizing the steps
to prove Theorem 2. First, we show that g,{x) is close to

N t
gn(»\)—b_',:J() KO <b—”> dH”(t)
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by decomposing g,(x)— g,(x) into a sum of three terms. Here §,(x) is a
fixed-width estimator, but with an /, unknown to the statistician. This
again reflects the property of nn estimators of being self-adjusting to the
level of f. Next, error bounds are obtained on the components in the
decomposition by utilizing sharp bounds for the oscillation modulus of
the empirical process and the precise almost sure behavior of the uniform
empirical process in the lower tail (i.e.. near the origin). Finally, we make
use of a result which extends Theorem 2 of Hall (1981} and infer (3.2).
Note that g,(x) takes the form

X

I - t l
—} K(,(—>dH,,(t)=—ﬁ H,(R,z)dKz) (3.3)
w0

&l =7n 1 Kol g

"

where the last equality follows by integration by parts. Similarly, g,(v) may
be expressed as in (3.3) with R, replaced by b,. Now observe that for
w>0,

] . L sor
—J Hwz)dKy(z) = -J 2P YA Klz) dz (3.4)
4]

w? 0

where

s

A(u):j(:r‘wj '-2"/'(_\-[ +ucost, .., x

P
0 Yo

+usind,---sinf), ,)sin” *0,---sin€,_ d0 ---db, .

We will apply (3.4) with w=R, and w=5,. Therefore, in view of (3.3)
g.x)— g,(x) can be written as I, + I, + I, where

I i
[l=<EE—F£> Jl] [H(bn~)—Hn(bn:’]({1\()(-)

] ~ L
=~ J {H(R,z)—HJ(R,z)—[H(b,z)— H,ib,z)] dK(z)
0

and
1,:J [A(R,z)— A(b, )] =" 'Ky(z) d-.
]
Throughout the proof, the symbols ¢, C, and M denote positive generic
constants, possibly different at different appearances. To simplify the

presentation we shall note that the stochastic estimates below hold a.s. for
n large enough. In view of the conditions on fand K. if |z] <c,

|A(R,z)— A(b, )| < C IR, —b,| |Z]|
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which implies

|[?i g C |Rn_bnl J‘ ‘ :I) IK()(:) ([:-

0

Set ¢, =k, /n and observe that on account of the proof of Theorem 1,

‘ , log |
|R,,—h,,|:0<1;f,‘ i /{-"—Of”?oﬂ> as. (3.5)

e, log log n>
S as.
n

Hence

=0 <51,‘ e (3.6)

To handle 1,, note that H (1)~ H(t)=F (H(t))— H(t) where F, is the
e.d.f. of a uniform (0, 1) sample. Since b, - in the integrand of I, varies in
the lower tail of the uniform empirical process, the Lemma below provides
a means to estimate I,. This is a well-known result (cf. Einmahl and
Mason, 1988, p. 1635) and is stated here only for the sake of reference.

LEMMA 1. Let O<eg, <1 be such that

ne

n

£,10, ne, and m - o

Then, for all A>1,

. n —
limsup SUP. /W |F,(s)—s| = ﬂ a.s.

Now, clearly
1 1

1| < R b7

sup |H, (u)— H(u)| (3.7)

O<u< Mby,

and if 0 <u< Mb,<cd'”, then 0 < H(u) <cd,. From (2.3),

n

. " n 1 1
llmﬂsilp +e? ’W{F—ﬁ} =coflx)>0 as.,

which implies
1 1 _0 <i \/log log n> as.
(3" (Sll

P r
Rn bn
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This together with (3.7) and an application of Lemma 1 entails

log 1
I,:O(Og O,gn> a.s. (3.8)
no,

It remains to consider I,. From Section 2 it is clear that there exists
¢>0 such that for almost all « there exists n,=n,(w) such that
max{h,. R,} <cd)” holds for all n=n,. Now, with w=H(b,z) and
v=H(R,>), an application of the mean value theorem gives for || < C

lu—v|<MI|R,—b,|67 " (3.9)

{see the expression for H'(£) in Section 2 with ¢ in (2.4) replaced by &/z
and satisfying & < ¢ d)7). Writing

we have in view of (3.9) and (3.5) that

L] <

1
TR

where w,(a)=sup;, , <. \/; |F(t)—t—F,(s)+s| denotes the oscillation
modulus of the uniform empirical process and «,=c¢ \/ (d, loglognjin.
Now Theorem 0.2 of Stute (1982) comes into play. For this, we need to
note that the assumption (3.1) entails

(’Ull< all )

log(1/a,) . and log(1/a,)

”x, — 0.
log log n na,

a, 1o, na, 1o,

Hence, from Stute’s result and the fact that R)?=0(5, ') as n— =,

{log log n)"

oy —
I.=0 < /(,“ lo > 0(———— -------- \/log f> as. (3.10)
YAV A (nd,)"* I

The final step of the proof consists in an application of the following result
which extends Hall’s (1981) Theorem 2.

LEMMA 2. Let K, be a function of bounded variation on [0, o ) satisfying

PKyz) -0 as - — o and j o 1Kf,(:) d- < @«
0
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Let X, .., X, be iid. p-dimensional random vectors with unknown df.F and
density f(x)>0. (Here x is fixed.) Assume that F satisfies a Lipschitz condi-
tion in a neighborhood of x. Let f,(x) be given by (1.1) with K(u) = K({jul])
and assume that

hm . m
— 1 as  m,n— 50 with ——1 (3.11)
h, n
and
(log n)*
—_— as n—o oo
nh’(log log n)
Then

h”
lim sup + [ [fulx) — Ef,(x)]
. 2loglogn

=\/c(,f(x)_[l p=" K3y dz  as. (3.12)
0

The proof of Lemma 2 is based on Theorem 1 of Hall (1981) and is
sketched in the Appendix.

Applying Lemma 2 with f,(x)=g,(x) and h,=5,, it remains to show
that ¢, (1, + 1, +1;)=0(l) as. as n— oc, where c¢,=./nb’ /(loglogn).
From (3.6), ¢, 1, -0 as. reduces to &} — 0. Also, on account of (3.8),
¢, I, =0 as. is equivalent to (loglogn)/md,— 0. Finally, from (3.10)
¢, 1,—0 as. amounts to (log (n/3,))*/nd, (loglogn)—0 which follows
from (3.1).

The proof is complete.

Remarks. We observe that

6. The condition (3.1) is relatively mild and needed for technical
reasons. It is however stronger than (2.2) which entails the LIL for the
naive nn estimator gX¥(x). Informally, the third condition in (3.1) prevents
k, from being too large. All the requirements (reguarlity and growth)
contained in (3.1) would be satisfied in practice if we take &, ~an ~° for
positive a and b with > 1.

7. It is important to recognize that the order of magnitude

O(./(log log n)/k,) of the almost sure convergence to zero for g,(x)— g(x)
is maintained under the milder conditions (2.2). The proof of this situation

is given in the Appendix.

683:53°1-13
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8. In the context of other types of nonparametric curve estimation,
our method may be adapted to yield appropriate laws of the iterated
logarithm. To illustrate this aspect, we shall focus here on the LIL for the
nn kernel estimator of a density function in the case of censored data.
{A similar conclusion could be obtained for the nn kernel estimator of a
hazard rate function.)

Consider a random censorship model with a sequence X, .., X, of i.id.
random variables with density f on the real line. In survival analysis the X’s
are often lifetimes or known monotone transformations of them and, due
to causes of failure, the X’s are at risk of being censored from the right:
that is, along with the sequences X,....X,, there exist 1.id. random

variables Y, .., Y, (independent of the X-sequence) such that only
Z,=min(X,, Y;) and Yi=lix e 1 <i<n,

are observed (here y, indicates whether X, has been observed or not). The
objective 1s to estimate the true density f from the sample (Z,, ), 1 <i<n.
For this, consider the well-known Kaplan—Meier (1958) estimator
| — I {u) of | — Fluy=P{X, >u} and the nn kernel density estimator

€,(X) =ij 1<<'3 ------ : ‘) A ), (3.13)
i

where p,=p, .(x) i1s the distance from x to its kth nearest neighbor
among Z,, .., Z, and k =k, is as before. In the following it will be assumed
that Y, has a density g =G’, that 0 < F{x) G(x) < 1, and that both f and
g are continuous at x. Since censored data traditionally occur in lifetime
analysis, we also assume that the X’s and Y’s are nonnegative. The actually
observed Z’s have a d.f. H* satisfying 1 — H*(x)=(1 — F(x)){1 — G(x)) for
x20. In the case of fixed bandwidth kernel estimators of f based on /[,
laws of iterated logarithm were obtained by Diehl and Stute (1988) and Lo
et al. (1989). However, it was signaled that “a nearest neighbor approach
may be preferable to the fixed bandwidth approach from an extensive
simulation experiment” as reported by Lo, et al. (1989, Section 5, p. 468,
Comment b). The problem of establishing a LIL for g, (x) given by (3.13)
has remained open (see also Mielniczuk, 1986, who deals with nn
estimators in the context of a censoring mechanism). The next result
provides a solution to this problem.

THEOREM 3. If

(a) K is continuously differentiable probability kernel with finite
support
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(b) [fis bounded and satisfies a Lipschitz condition in a neighborhood
of x, and

(¢) k,To, k,/n~3,10, (logn)*/nd (loglogn)—0 and ,,/5,— 1
as m,n— oo with m/n — 1,

k
li + " [
IT.sllp" 2 log logn[g"(‘) g.(x)]

) —2 T ko) a-
= /1x) \/1 o) K (3.14)

where b, = b,(x) is defined by H*(x+b,)—~H*(x—b,)=k,/n and g,(x)=
(1/b,) §* ., K((x = y)/b,) dF(y).

then

APPENDIX

A.l. Proof of Lemma 2.

We establish (3.12) by making use of Theorem 1 of Hall (1981). For this,
we set K,(y)=K,(y/h) in Hall's notation with A=h,. To simplify the
arguments, we shall assume that K, has bounded support, although we
stress that this condition is not necessary for the result to hold.

Let o; = Var K,( Y,). It is clear that

o2 = Lih) - ﬂ H(hz) dKO(;)}-

4]
where
Lihy=—2 j H(hz) Ko=) dKy(2).
0
Set 1, (z)=H(hz)/h"=" — ¢, f(x) and note that (Y)e >0, (3) n,=ny(e) such

that for all n=n, and |z| <c, | ,(z)) <& Thus, since K (-) has finite
support, writing

Lihy=c,flx)h” J i pzt 'K y(z) d= + 2h7 fx () zFPKy(z) dKo(2)
0 0

and using E{K,(Y,)} = — ¢ H(hz) dK,(z) ~ (const) h” as h— 0, it follows
that

a;~L(h)~cyf(x)h? J p="'Kz) dz as h—0. (4.1)

0
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In view of Hall's Theorem | and (4.1) we have to demonstrate that if
h, k — 0 such that i/k — 1, then

1

ﬁcov{K,,( YO.K (Y —a (42)
where ¢ = ¢, f(x)} { pz* "' Ki(z) d=. But the above infinitesimal estimation
shows that an account of (4.1), {(4.2) is entailed by

oo ¥ 3
D(/I.I\')ZZI:JO {K() <E>*K(, (/\)J ([H{].]—*O (43)

Looking at D(h, k) we see that it equals

'M {K()(:)—K(, (Zh”_:” YA(zh) d=
v0 k

where 4(-) was defined in the proof of Theorem 2. Thus, since K, is con-
tinuous a.e.. K, (zh/k) - K,(z) a.e. and it follows that (4.3) holds. Lemma 2
is thus verified.

A.2. Proof of Remark 7.

We shall assume that K, i1s continuously differentiable, has bounded
support, and that f is Lipschitz at x. Furthermore, suppose that {k,}
satisfies (2.2). In view of the remark following (3.2), all the integrals below
may be considered as. over [0, ce!”] (for n large enough) with ¢, =k, /n
as before. We note that

3{4"] [

|gn('\.)7gu('\.”<[ Sup AH(’)]J ' dHn(I) (44)
ll{l’{u.'”ly 0
where
1 t 1 !
BV AR OV}
Now

1 [ 1
RN ARV A

=A4,(t)+ B,(1).
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Looking at A,(r), we see that uniformly in 0<7<ce!” it is not greater
than (const) |1/R? —1/b7| and in view of the estimate preceding (3.8) it

follows that
log 1
sup A, (t)=0 nojloglogn a.s. (4.5)
[UE RS u;,'l " ku k n

To treat B,(¢), from the assumption on K, we have

|t| |b’l - RHl

B, (1) <(const) b”*'R,,

n

and using (3.5) we see that uniformly in 0 <7< c¢!”; with probability one,

B(1)<O:L") O <—> 0 (SEOERE) oy 1) 0, )

“n k” n n

n floglog n>
=0|— | —=———|. 4.6
V%, (40)

On the other hand, we have a.s.

o’ vk, loglogn

J " dH (1) < H(ce!”) + (const) p
0

and since (n/k,) H(ce!”) - ¢y ¢’f(x) as n » oo and /k, loglogn <k, for n
sufficiently large, the previous estimate entails

j n
0

Combining (4.4)—(4.7) demonstrates

log1
|gn(-\‘)—§”(-\‘)l=0< /igk_0ﬂ> as. (4.8)

We conclude the proof Remark 7 with an analysis of the error in the
approximation g,(x) = £,{x). Upon integration by parts we can express

dH,(t)=0 <I¥> a.s. (4.7)

n

Ip

G0 =g =" THIO—H (D] dK (1)
0

where K,(t)=(1/b7) K(1/b,), whence

1&.(x) = gl <[ sup [H,(1)=H(|]V,(K,)

(GRS u:,,"’
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where J, =0, c£}7] and V,(¢) denotes the total variation of a function ¢
on the interval J. From Lemma 1, if {k,} satisfies (2.2} it follows that

_H) =0 <\/k,, log log n)

sup |H,(¢)

teJy, n

Also, if IT denotes the set of all partitions n: 0=1,<1, < --- <1, =ce}”

. m ' t
o)) S e () )
n nell j=¢ n n

o —t.
<(const) sup Y —'%")

mell j—_p n
= (const )k, /mn)'""/b,

Thus from the above estimate and since 1/567 = O(n/k,}. we can assert

that
log log »
[g.(x)— g (x)|=0 <\/ ngog£> a.s. (4.9)

The conclusion stated in Remark 7 now follows from (4.8) and (4.9).

Remark A2 Suppose that K is a positive real-valued function on R”
that integrates to 1. Then if {k,} satisfies (2.6), we can estimate the deter-
ministic bias g,(x) — f{x) as follows since | K(x)dy =1 is equivalent to

ol
’ (‘()ptp; ]Kn([) dt = 1,

it

we have

Ry

m(‘l,‘ t
|H (1) —copfix)t7™ Il K, (17) .

_ I
g =Sl |

Next, since fi1s Lipschitz at x it follows that

|H'(t) —copfix)t? | = const) ¢,

Jﬂ [flu)— fix)] dotu)| < (

e —x[ =1

Therefore,

|Z,(x)— f(x)] < (const) ’ K, (i’*) dr=0(b,) (4.10)

b”
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The “big oh” on the right-hand side of (4.10) is O((k, /n)"") and under the
requirement (2.6) this is in turn O(./(loglog n)/k,). Thus

Togl
|gux) — f(x)] = O <\/@)

A.3. Proof of Theorem 3.
Let

1 = x—y
*( 5 = — ;
&n (l ) bn JA* s K < bn ) dr”( o’ !

Since the proof is similar to that of Theorem 2, it will only be sketched.
Let W,,(:)zﬁ [F.(z)—F(z)] be the empirical process pertaining to
I (). Then g, {x)— g¥(x)=1+II+ 1II where

1 /1 1\~
I=—— (———)J [W,(x—b,y)— W.x)] dK(»)
\/’g Pn bn -
1 =
H=—— " [W,(x=p,3)= W,x—b,»)]dK(y)

Jnp,

M= " [ puy) = fx b, K(3) .

— L

The following result is from Schifer (1986).

LemMMA 3. If p,— 0 such that np,/log n — oc, then

sup |W,(v)— W (u)] = O{/p, log n) as.

{Fley — Fl)| € pa

Denote by @,(-) the global oscillation modulus corresponding to W,.
Using Lemma 3 we have

L_Haeby=0 (‘/“Og iCos e )
p" b" k”

1
I <—

Jn

As for 11, since |F(x—p,y)—Fx—b,y)l <(const)|p,—b,| for all
[y]<C, on account of Lemma3 and the fact that |[p,—b,|=
O(./k, log log n/n) as., we find

l 1 1/4 ] 1,2
II=0<( 08 08 n,zx‘m( og 1) ) a.s.
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Finally,

11| < (const) |p, —b,| =0 <\/ " 955...98_’3)
n

These facts together with Corollary 1 of Diehl and Stute (1988) imply
the validity of (3.14)
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