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Abstract

This paper is concerned with the null distribution of test statistic 7" for testing a linear
hypothesis in a linear model without assuming normal errors. The test statistic includes typical
ANOVA test statistics. It is known that the null distribution of T converges to y> when the
sample size n is large under an adequate condition of the design matrix. We extend this result
by obtaining an asymptotic expansion under general condition. Next, asymptotic expansions
of one- and two-way test statistics are obtained by using this general one. Numerical
accuracies are studied for some approximations of percent points and actual test sizes of 7 for
two-way ANOVA test case based on the limiting distribution and an asymptotic expansion.
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1. Introduction
Consider a linear model
y=XB+e
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In this model, y = (y1,¥2,...,¥,) is an observable vector of random variables,
X = (x1,x2, ..., x,) is an n x k design matrix of known fixed values with full rank k,
where x;’s are k x 1 vectors, B = (B, B, ..., ) is an unknown parameter vector
and & = (e, &, ...,e,,)/ is an unobservable error vector of random variables and
assumed that their components are i.i.d. with mean 0 and finite positive variance 2.
We are interested in testing for null hypothesis as
Ho: Hp =0,

where H is a known % x k matrix with rank /& (<k). Then a well-known test
statistic is
_BH{HX'X)'H}'Hp

T 2

(1.1)
which is a likelihood ratio statistic in a normal error case, where
p=x'x)"'xy, &= ﬁy’{]n —X(X'X) "X}y

Under normality, it is well known that the null distribution of 7' /A is distributed as
Fj, ;. Under nonnormality, it is known that null distribution of T converges ;{,21 as
the sample size n tends to infinity under an adequate condition of X (see [1, p. 141;
8]). In the nonnormal case, however, using this limiting distribution, we have high-
risk generally, because a nominal test size based on the limiting distribution is far
from the actual test size (see simulation results in [5,10] etc.). Therefore, it is
necessary to improve the approximation of its distribution. It is well known to derive
an asymptotic expansion in one of the important methods which makes an improved
approximation. The main purpose of this paper is to obtain an asymptotic expansion
of the null distribution of T up to the order n~' without assuming normal errors.
Using the general result we can obtain asymptotic expansions of usual ANOVA test
statistics.

In order to calculate such asymptotic expansion effectively, we rewrite test statistic
T in (1.1) as

7Qz

T:W, (1.2)

where

2= (21,22, 0, 21) = (X'X)' P (B~ B)Jo (1.3)
and

Q=X'X)"H{HX'X)"HY "HX'Xx)"2.
It goes without saying that Q? = Q and rank(Q) = tr(Q) = 4. Using asymptotic
expansion for the probability density function of z and the joint probability density
function of z and 6%, we can obtain the asymptotic expansion of 7.

The present paper is organized in the following way. In Section 2, we prepare the
Edgeworth expansion for the density function of z and the joint density function of z
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and normalized 62. In Section 3, we derive an expansion of the null distribution of T,
by expanding the characteristic function of 7'. Some applications are given in Section
4. In Section 5, numerical accuracies are studied for an approximation of the
percentage points and actual test sizes of two-way ANOVA test statistics with
balanced replications, based on the limiting distribution and an asymptotic
expansion.

2. Preliminary result

In this section, using the same notation as before and assuming, without loss of
generality, that o> =1, we consider the Edgeworth expansion for the density
function of z and the joint density function of z and transformed 62 as

v=/n(6*—-1).

Let 4, be the smallest eigenvalue of X'X, x; denote the jth cumulant of ¢; and
M, = max{||x;||:i=1,2,...,n}, where || - || is the Euclidean norm. The Edgeworth
expansion of the distribution of z has been given by Qumsiyeh [9] as follows.

Lemma 2.1. Suppose that X and ¢;, i = 1,2, ..., n, satisfy the following assumptions;
Cl. The characteristic function Cy(t) of ¢; is integrable,
C2. ¢; have the fifth absolute moment, and for some integer r

hmsup Z [lx:]] <00, 1<r<5,
C3. liminf, .. >0, M, = O(n), for some c€[0,1/2).
Let Ji4, fap, €tc., be defined by

n

g I %ia (2.1)

=1

§|>—‘

Tar-a;

where
\/’Z(X/X)fl/zxi = (it Zins -+ L) -

Then the probability density function of z can be expanded as

k
d) 1 +7 Z /{abc abc 24 Z }ZabcdHabcd(Z)

a,b,c a,b,c,d

2 k

K

+ 723 E Zabc}?defHabz?def(z) + 0(’173/2)7 (22)
a,b,cdef

where ¢,(z) is the probability density function of Ni(0,1;) given by ¢(z) =
(2n) ** exp(=7'2/2) and functions H,(z), Ha(2), etc. are the Hermite polynomials
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defined by

0
Ha1~--a,»(z) = (‘Wm‘ﬁk(z)a

for example

Habc(z) = ZaZpZc — Z Zaébu
B3l
Habcd(z) = ZgZpZeZd — Z Zuzbécd + Z 5ub5m’7
(6] (3]

Habcdef(z) = ZgZpZcZdZeZf — Z ZaZchZdéef + Z Zazbécdécy’ - Z 5abécd5qf—
[15] [45) (15]

Here Z[I] means the sum of all j possible combinations, for example 2[3] OupOca =
OubOcd + 0acOpd + OuadOpe, Zk _ means Zk Zk and Oy is the Kronecker

ai,...,qa; ay=1 aj=1

delta, i.e., 040 = 1 and 6., = 0 for a#b.

If z is a sum of independent identical random vectors, we get a valid Edgeworth
expansion of z up to order n~! under the existence of fourth absolute moment of ¢;
(see [4, p. 188]). However, the z in (1.2) is a sum of independent random vectors but
not identical ones as

1 < .
= 7ﬁ lzzl: 8,‘\/12(X,X) 1/2x,'.

In this case, we need to assume a stronger moment condition such as the fifth
absolute moment, in order to get the Edgeworth expansion up to order n~'.

Let
b =vn(é —1),

where 62

=n"'Y" | &?. We can easily obtain an asymptotic expansion of the joint
characteristic function of (z,#), because (z,) is a sum of independent random

vectors as

1 n
()G

Further, noting that v=8+n""2(k —'z) + n 'k + O,(n~3/?), we can obtain
an asymptotic expansion of the joint characteristic function of (z,v) as in
Lemma 2.2.
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Lemma 2.2. Suppose that X and ¢;,i = 1,2, ... n, satisfy C3 and C4. &; have the eighth
absolute moment, and for some integer r

. 1 & .
lim sup — Z [|lx:i]] <00, 1<r<4.
no>ow N 1

Then characteristic function of (z,v) can be expanded as

C(z L)(tl, Zz) —€Xp{ (t 1+ 2K2lletl + K4l2)}

{’ﬁ Z /{abc t<1

ab,c

X

+ 3K4t2t/1t1 + 3(ks + 4K3) B3\ 11
+ (k6 + 1214 + 2153(5 = 3%,71) + 8)3 )] + O(n ™), (2.3)
where t| = (ZEI)7 tg), ...,t,((l))/ and
=0 ) = VaX' X)X,

Here 1, is an n-dimensional vector, all of whose elements are 1.

From Lemma 2.2, the limiting distribution of (z,v) is normal with mean 0 and
covariance matrix

1 K3
5 k_ / 31 .
K3Y) Ka+2
Let us decompose the limiting probability density of (z,v) into the marginal
probability density of z and conditional probability density of v given z as

g(z,v)(\/lz—nyexr)(lzz) o] a0 e
= k(D) P(v5 13712, 0), (2.4)

where (? = det(X) = x4 + 2 — 137, %1 >0. Based on expression (2.4), we will obtain
inversion of each term in the expanded expression (2.3). Inversion of each term can
be evaluated by using an inversion formula

(2m) =&+ //k/ exp{—ztlz—ltzv}{H (— 1(1 ) }(—ilz)”

X eXp{—E (t t + 2K2t2xlt1 + K412)} dt, dt,

- { /ﬁ (;;)xj} (gy)am(zw(v; 13712, ).

This yields a useful expression for the joint density function of (z,v) and the
conditional density function of v given z, which are given in Lemma 2.3.




H. Yanagihara | Journal of Multivariate Analysis 84 (2003) 222-246 227

Lemma 2.3. Under the same conditions as in Lemma 2.2 and assumption CS, the joint
characteristic function C, 2\ (t1,12) of & and &2 is integrable, it holds that

(i) the joint probability density function of (z,v) can be expanded as

Fla) = g v){l - v)} Lo,

(ii) the conditional probability density function of v given z can be expanded as

k
b (v; 1372, 0) [1 —W_{g(l (z,0) + 13 Z TabeHape (2 )}

ab,c

+0(n™),

where

90)(z,v) —Kaz Tabedlp (3, 0) + 3K4 Z g9 (z,v)
a=1

a,b,c

k
K5 +4K3 Z

+ {K6 — 1254 + 263(5 = 37,71) + 839 (z, )

and

g (z,0) = %: (Bap + {15 70a0) (2 — C ' ic37e)
3
+ (=24 + Ui gaw) (=25 + O aiisw) (=2 + O s ew),
9 (z,0) =207 K3 7a(—2a + U ic37aw)
— w1 = O A (—za+ U i)
9 (z,0) = = 20 k370w + L2 (=1 + W) (=24 + (i gaw),

g W (z,0) =3 CBw —w?),

w={"(v—K37)2).

As for the lead on an asymptotic expansion of the density function of a variable,
see, e.g., [2, p. 131; 7, p. 39].
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3. Asymptotic expansion of 7'
3.1. The characteristic function of T

In this section, we derive an asymptotic expansion of the null distribution of 7" up
to the order n~!. Without loss of generality, we may replace & by &¢/a, which has
E(g) =0 and Var(s) = I, in the expressions of 7" since 7 is invariant under the
transformation from y to y/o. Let the jth cumulant of ¢/¢ be denoted by x;.

Suppose that X and ¢;,i = 1, ..., n satisfy C3 and

C6. The joint characteristic function C, (11, 22) of &; and &7 satisfies the Cramér’s
condition, i.e.,

limsup |Cp. 2 (1, 02)| <1, t=(1,0)".

[l#]] = o0

C7. ¢ have the tenth absolute moment, and for some integer r,
. 1 & p
lim sup — E [lxi]|" < o0, 1<r<s.
n->ow N =1

Note that T is a smooth function of zy, z, ..., zx and v. So, from a general result
(see, e.g., [3]) on asymptotic expansions it can be shown that 7" has a valid expansion
up to the order n~!' under the assumptions C3, C6 and C7. In the following, we will
find an asymptotic expansion of the characteristic function of 7 up to the order n~!,
which may be inverted formally. We can expand T as

1 1
T=To+—T1+~T>+ O,(n "> 3.1
o+\/ﬁ 1+n 2+ Op(n7'7), (3.1)

where
TO = ZIQZ, T] = —UT(), T2 = DZT().

From (3.1), we can write the characteristic function of 7 as

Cr(t) = Co(1) +%Cl(z) +%C2(z) +o(n™"), (3.2)

where

Co(1) = Elexp(itTy)], Ci(t) = ElitT, exp(itTp)],

Co(t) = E[{itT> + L (itTy)*} exp(itTy)).

For an evaluation of each term in (3.2), we will use an asymptotic expansion of the
joint density function of z and v. This requires assumptions C1 and C5 as Lemmas
2.1 and 2.3, which are stronger than the Cramér’s condition. However, it may be
noted that we need not assume the strong assumptions in final result due to the
uniqueness of the characteristic function.
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3.2. Computation of Cy(t)

Using Lemma 2.1, we obtain

Co(r) = /%k €[IT°¢k(Z){1 T 0:(z) +%Q2(z)} dz + 0(n3?),

NG
where
k
Z Habe abc
a,b,c
1 L S
Q2(Z) 1 K4 /{abcdHabcd( ) Xachdej'Habcdqf'(Z)~
24 72
ab,c,d ab,edef
Note that
ilTo _%z/z: _ (r—1/2 ) (I—v—l/2 )

where I' = (1 — 2it) ' Q + I — Q. Considering the transformation z* = {(1 — 2ir)'/?
Q+ I — Qg =T""z, we have

1 1
Cot) = "B |1+ = O (V22%) +1 0x12) ] + O )

where ¢ = (1 —2ir)”' and the expectation is taken with respect to z* whose

distribution is Ny (0, I;). Note that u = I''/?z* is distributed as Ny (0,I"). Therefore,
we can write

Cot) = 912 01(a) + 02| + O (33)

Let the ab element of I' and @ denote by y, and w4, respectively. Using y,, =
Oap + (¢ — D)wgp, we can see that

Eu[Habc(u)] = 0,
Eu[Habcd(u)] = ((P - 1)2 Z WapWed

Eu[Habcdef(u)] = ((P - 1)3 Z Wab W cd Def -
[15]

Note that
k k
Z /{ubcd Z WDapWed = 3 Z 7abcdwabw(d
ab,c,d 3] ab,c,d

n
nE xYx,7

J=1
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Z Zahciedf Z Wb W cd Def

ab,c,def [15]
k
= Z iahaZedf(éwadwbew(f + 9wabwcdwef)
ab,c,def

=3n Zn: (2(x)¥x,)* + 3(x) 1) (% Yx;)(x; Yx;) },

i

where

Y= (X'X)""?Qx'x)""2.
Let ,, be the ab element of ¥ which is defined by

Y=XX'X)"'H{HX'X)"'H} ' HX'X)"'X".
Substituting these equations into (3.3) yields

Colt) = 0" |1+ gl — 1 {n (D)}

+ 54150 = 1L, 205y + 30Dy YD1, | + O(n ), (3.4)

where D(y) = diag(yy;, ¥, ..., ¥,,) and ¥ (3) is an n x n matrix whose ab element is
denoted by /2.

3.3. Computation of C(t)

Using Lemma 2.3(i), we can write
Ci(1) :/ exp{itz' Qz} (—it)v7 Qz
_(WkJrl

x ¢ (2) (01372, Cz){l - éﬁg(l)(z, v)} dzdv+ O(n")
= E.E, [(—it) exp{itz'Qz}

x (Lw + k3;‘(’1z)z’9z{1 - 6%9(1)(& U)H +0(n™").

Here the expectation in the last expression is taken with respect to z and v whose
distribution is

ole~N(sghz, ), 2~ Ni(0, ). (3.5)
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Note that the conditional distribution of w given z is N(0, 1). Therefore, we have

Eb\z gabc 3,0 Z OabZe — ZaZbZe,

Ev\z[ng,}))c(za U)] = C71K3 Z (ZaZb - 501))}?07
(3]

Ev‘z[gf)(a U)} =0,
Ey wgP(z,0)] =" (1-22),
Ey:lg$(z,0)] =0, Eylwgd(z,0)] =0,

Ev\z[g(4)(z7 U)] = 0) Ev|z[Wg(4) (z7 U)] =0 (36)
and
E.E, . [(—it) exp{itz' Qz) ({w + K37,2)7 Q2] = 0. (3.7)

These results (3.6) and (3.7) imply

Ci(t) = 12\/_ Elexp{itz Qz}7Qz
k k
% Z 7 abc Z ZaZp — 5ah)}zc + 3K4 Z (1 — Zﬁ)
a,b,c 3] a=1
+K3xlz Z Xabc ( Z 5abzc ZaZhZL) ] + 0(”71)

ab,c

_(1_(P_)~—1 d —1

BTN i dtRl([) +0(mn), (3.8)

where

R\ (1) = E;[exp{it7 Qz}

k

Z (Zazb - 5ab)ic + 3Ky Z (1 — Zi)
(3]

a=1

\<|

P

k
+ K%Z/lz Z Zubc( Z 5ubZ(- — ZquZL,> ] .
(3]

a,b,c
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In order to calculate R;(¢), using the same idea as in the reduction of Cy(¢), we
obtain

k k
Rl([) :(ph/zEu K% Z Zabc Z (uuub - 5a/7)ZC + 3K4 Z (l - ui)
a=1

a,b,c [3]

k
+ K?_%Z/]ll Z Zabc ( Z 5abuc - uuubu(,‘>:| .
3]

ab,c

Here u is distributed as Ny (0, ). Therefore, we have

k k
Eu Z Labe Z (uaub - 5ab)ic = ((P - 1) Z Habe Z Wab e
i ab,c 3] a,b,c 3]
[k
D D S
L a=1 a=1
i k
Eu 1u Z Tabe 50}7“(‘ — UgUpU,
L ab,c 3]
k s k
:—(QD—I) Tabe Z wabyc_((p_l) Z TabeXd Z DapWed
ab,c 3] ab,c,d 3]
Note that
k k
Z Zubc}?d Z WDabWed =3 Z Zabcia’wabw(?d
ab,c,d 3] ab,c,d

=3 (% 2x) (% x;) = 3(1, D) P1,).
ij
Using these results, we obtain
Ri(1) = =" [3is(g — D+ 33 (9 — 1*(1, D ¥1,)}. (3.9)

Because  (d/df)o"*(p — 1) = ip" "2 {(h+2)p —h} and (d/di)"*(p —1)* =
i@ 2 (@ — 1){(h 4 4)p — h}, substituting (3.9) into (3.8) yields

(1) = - ﬁﬁw(w — )fa{(h+2)p — }h
+ 153(p — D{(h+4)p — h}(1,D)¥1L,)] + O(n"). (3.10)

3.4. Computation of C»(t)

Using the random variables z and v as in (3.5), we can write

Cs(t) = E.E, . [exp{its Qz}{it Ty + L (it)* (vTp)*}] + O(n™ /).
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Noting that v = {w + K3}z, we obtain
Ev\z[vz] = C2 + K% (7/15)2
This implies that
Co(1) = Exfexp{ird @ H{C + 13(%12)°}7' Qa{ir + 3 (ir)* 2 Qz}] + O(n™ '),

2
(1 - QD_I)i_l {%Rz(l)} -‘r%(l — ¢—1)2i—2{% Rz(l)} + 0(}1—1/2)7

(3.11)

N =

where
Ry(t) = Efexp{itz Qe H{C + 13 (T12)°}.

Using an argument similar to the one as in the reduction of R(z) we can reduce
Rz(l) to
Ro(1) = 9"l + k3 (Zw)’],

where u~ Ny (0,T'). Note that

k n
_ 1 1
D Talboa = . Z(xi ) = 1,1,
ab ij
Therefore we can calculate
Ry(1) = ¢"Plica + 2+ 13(0 — 1){n ' (1,¥1,)}].

It is easy to evaluate that

@ Ra(t) = " fh(is +2) + K301+ 2)p — WY~ (1,91,

5—; Ry(t) = P> " [h(h +2) (ks + 2)
+ 13 {(h+2)(h+ 4o — h(h +2)Hn ' (1,¥1,)}]. (3.12)
Finally, substituting (3.12) into (3.11) yields
Co(1) =5 0" (@ = DI{(h+2)p — (h—2)} (x4 +2)
+ 13 {(h+2)(h+ 4)@* = 2h(h+ 2)¢ + h(h — 2)}{n" ' (1,¥1,)}]
+0(m™'/?). (3.13)

3.5. Final result

Using (3.4), (3.10) and (3.13), we can obtain an expansion of the characteristic
function of 7' given by

1< :
H="*|1+-3"b !
Cr(t)=¢ +an0 i +o(n )|,
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where
by = — K%{az — has + h(l’l — 2)a4} + Kqa; + %h(/’l — 2),

b = K§{3a2 — (3h + 4)(13 + h(31’l + 2)04} — 2K4a; — %hz,
by = — k3{3ar — (3h + 8)az + (h + 2)(3h + 4)as} + xaay + L h(h +2),

by =w3{ay — (h+4)as + (h+2)(h + 4)as} (3.14)

and
ar =4 {ntr(D}) — h(h +2)),

n
a =ﬁ{l;(2Y’(3) + 3DtplPDq/)1n},

1

1
az = —_—

I,Dvp'luln, ag =
8n

51 171,.

By inverting Cr(¢), we have the following Theorem 3.1.

Theorem 3.1. Under assumptions C3, C6 and C7, the null distribution of T can be
expanded as

3
P(T<x) = Gy(x) +rlz Z b;Gpiaj(x) +o(n '), (3.15)
Jj=0

where Gy is the distribution function of a central chi-squared distribution with f degrees
of freedom and the coefficients b; are given by (3.14).

It may be noted that the final result depends on the cumulants up to the fourth
order. Therefore, it is conjectured that assumption C7 may be weakened to
E(e})< 0. This fact has been proved for the r-statistic by Hall [6].

Before concluding this section, we state the next corollary which is different form
of Theorem 3.1.

Corollary 3.2. Under the same assumptions as in Theorem 3.1, the asymptotic
expansion (3.15) can be written as

X X x°
P(T<x) =Gy(x) — i—hgh(x){lh + by + b3 + (bzhj_b‘;) G +g;(h 4 4)}
o), (3.16)

where gj,(x) is the density function of a central chi-squared distribution with h degrees
of freedom and the coefficients b; are given by (3.14).
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4. Some applications
4.1. One-way ANOV A test statistic

In this section, we obtain asymptotic expansions of the null distribution of
ANOVA test statistics by applying Theorem 3.1.

Firstly, we consider one-way ANOVA test statistic. Let y; be the jth sample
observation (j =1, ...,n;) from the ith population (i =1, ...,¢) with mean g and
common variance o2, where p,;’s and ¢? are unknown. Consider testing for the null
hypothesis

HO:,Ul = .. :'uq.

—1 n

Let n=n+ny+ - +ny, yi=n;
monly used test statistics is

i 5 — 1 q n;
i1 Yy and y=n i1 Djey yi- A com-

where S7 = 20 (i — )7, S2=(m—1)"' 0, (vy — :)°, and §2 = (m — 1)S}
+- 4 (ng — I)Sé. In order to apply Theorem 3.1, we need to rewrite (4.1) like (1.2).
Let

1, 0 0
o 1, .. O

X = . " . (n X ¢ matrix), (4.2)
o o .. 1,

Y= (ylla cey Vng s Y21y eoes Vomgy «--5 Yyl '“;yqnq),v ﬂ = (:ulnub -~~7:uq)l and
Q= (Iq — pp/), (43)

where

i
o I my [N Mg
p_(pl7p27~--7pq) _< ;7 77-“7 ;)

It is easily seen that rank(Q) = g — 1. Then we can write the test statistic and the null
hypothesis as

T 79z

= Ho:PDE=0,

where P is (¢ — 1) x ¢ matrix with rank(P) =¢— 1, PP’ =1,y and PP =1,— pp'.
and D is diag(/n1,\/n2, ..., \/fg). Using (4.1) and (4.3), we can evaluate the
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coefficients in an asymptotic expansion of (4.1). Noting that

s U |
—-1/2
KX Px T (R ]
0 ] I
q

we can derive easily that
Y =xX'X)"ox' X)X

1/2 /
wnny 1,,,1,,1 w]qnl L1,

12, 1/2 ’ -
Wq1ny 1,1, - Wggh, 1,141”1

Therefore, we have

- o 2 [
“l_g{Zpa —(qg-1)(q+ 1)}—§<;pa —¢—2q+2],
o 1
24 Zpulpal (203 + 30aaapip) = 24 <5 Z pa” =3¢ _6q+4>

as =15 Z 07 PpOaa®ar = Z PaPp®ap = 0. (4.4)

Next, we consider assumptions C3 and C7. It is easily shown that
n 'S0 |lx||" =1 and n/n;<n/A,, C3 and C7 are replaced by

C8. y; have the 10th absolute moment and n/n; = O(1) (i =1,2, ...,q9).

Using these results yield the following Theorem 4.1.

Theorem 4.1. Let the oth cumulant of (y; — 1)/ o be denoted by k. Under assumptions
C6 and C8, the null distribution of one-way ANOV A test statistic can be expanded as

1 3
P(T<x) = Gy (x) + > biGyora(x) +o(n ),
=0
where !
bo :%1 (g—1)(q—3)— ang + aKy,

b = —%(q— 1) +3Cl2K3 2a;K4,
by =Y(q* — 1) = 3a:K3 + a1ks, b3y = arxcs.

Here the coefficients a; and ay are given by (4.4).

The coefficients b; in Theorem 4.1 are coincide with the ones in [5].
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4.2. Two-way ANOVA test statistic with balanced replications

Secondly, we consider two-way ANOVA test statistics. Our model is
Vi = fA1; 4+ 0+ vy e (ISisp, 1<j<g, 1<k<m),

where ¢ ~i.i.d. with mean 0 and finite positive variance a2. Here we make the
usual constraints on 1, 0; and vy, defined by 37, 5, =0, 37, 0,=0
and 377, vy =37, v; =0 We want to test for three different hypo-
theses; (1) All the v; =0, (2) All the 5; =0, (3) All the 0; = 0. Let n = pgm, y; =

— - —1 m - -1 m -
IZ? 1 D T = (mq) ™ Y20 ST ik, 7= (mp) ™ 320 SO0, vk and j =

n‘1 >4 ST, vik- The usual test statistic for hypothesis (1) is
. n—pq) mY L S (B -+ 45)
m = 2 : :
PO Z;‘:l >kt Wi = Fy)
The usual test statistic for hypothesis (2) is
- o2
_(n—pgmg 3, i —7.) (4.6)

m - \2°
Dot 2o 2k Wik — i)

Besides the test statistic for hypothesis (3) is similar to (4.6).
As in Section 4.1, we rewrite (4.5) and (4.6) like (1.2). Let

1, 0 ... 0

o 1, .. 0 .
X = . o . (n x pq matrix),

o o0 .. 1,

/
y = (ym, ey Yiims Y1215 <o o5 Y12ms -+ 5 Vpgl s ~-7ypqm) 5 and
1 1

1
Quy =1Ipy — 5Ip®1q1/q 751[,1;@],1 lpqléq,

1 1
Q) :;Ilp®1ql; lpqlqu
It is easily seen that rank(Q(;)) = (p — 1)(¢ — 1) and rank(Q,)) = (p — 1). Then, the
test statistics (4.5) and (4.6) are rewritten as
'Q 'Q
LTINS T 3 (2)7,.

FOR 2~ "=

T, =
M G G

Noting that

m _ 1 @ _ 1
Vg = X Q0%s Vo = X, Q0)xp,
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Table 1
Percentage points of T
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Upper 5% points

Upper 1% points

Model p q m tu u 1 (u) 1 (u) t(u) u te(u) i (u)
(1) 2 3 5 6.746 5.991 6.589 6.595 10.85 9.210 10.62 10.65
K3 = 0.0 2 3 10 6.525 5.991 6.290 6.295 10.72 9.210 9.917 9.936
K4 = 0.0 2 3 15 6.030 5.991 6.190 6.194 9.353 9.210 9.681 9.695
3 3 5 10.68 9.488 10.28 10.29 16.02 13.28 14.94 15.00
3 3 10 9.788 9.488 9.883 9.888 14.44 13.28 14.11 14.13
33 15 9.780 9.488 9.751 9.762  13.90 13.28 13.83 13.87
5 3 5 16.58 15.51 16.49 16.48 21.67 20.09 21.98 21.95
5 3 10 16.02 15.51 16.00 16.01 20.73 20.09 21.03 21.05
5 3 15 1587 15.51 15.84 15.84 20.43 20.09 20.72 20.72
(ii) 2 3 5 6.648 5.991 6.539 6.438 10.79 9.210 10.42 10.01
K3 = 0.0 2 3 10 6.352 5.991 6.265 6.254 9.899 9.210 9.817 9.772
K4 = 1.5 2 3 15 6.220 5.991 6.174 6.192 9.677 9.210 9.615 9.689
3 3 5 1043 9.488 10.22 10.31 15.14 13.28 14.77 15.04
33 10 9.837 9.4880 9.852 9.886  14.10 13.28 14.02 14.12
33 15 9.786 9.488 9.731 9.731  13.69 13.28 13.78 13.78
5 3 5 16.70 15.51 16.44 16.43 22.31 20.09 21.84 21.85
5 3 10 16.17 15.51 15.97 15.97 21.38 20.09 20.97 20.96
5 3 15 1590 15.51 15.82 15.83 20.53 20.09 20.67 20.70
(iii) 2 3 5 6.675 5.991 6.291 6.593  10.92 9.210 9424 10.64
K3 = 0.0 2 3 10 6.115 5.991 6.141 6.226 9.314 9.210 9.317 9.661
K4 = 6.0 2 3 15 6.271 5.991 6.091 6.172 9.851 9.210 9.281 9.610
3 3 5 10.34 9.488 9.910 10.28 15.33 13.28 13.87 14.96
33 10 9.912 9.488 9.699 9.850 14.19 13.28 13.58 14.02
3 3 15 9.661 9.488 9.629 9.735 14.11 13.28 13.48 13.79
5 3 5 16.64 15.51 16.15 16.49 22.10 20.09 21.17 21.98
5 3 10 1e.16 15.51 15.83 15.92 21.50 20.09 20.63 20.85
5 3 15 1584 15.51 15.72 15.72 20.85 20.09 20.45 20.45
(iv) 2 3 5 6.918 5.991 6.639 6.648 1143 9.210 10.82 10.86
K3 = 0.0 2 3 10 6.326 5.991 6.315 6.321 10.36 9.210 10.02 10.04
Ky =—1.2 2 3 15 6.209 5.991 6.207 6.207 9.445 9.210 9.748 9.748
3 3 5 10.61 9.488 10.34 10.33 16.35 13.28 15.12 15.11
33 10 9.968 9.488 9.913 9913 14.65 13.28 14.20 14.20
3 3 15 9.831 9.488 9.772 9.773  13.92 13.28 13.89 13.90
5 3 5 16.87 15.51 16.55 16.56 23.37 20.09 22.11 22.13
5 3 10 1e6.10 15.51 16.03 16.03 21.07 20.09 21.10 21.11
5 3 15 1579 15.51 15.86 15.86 21.08 20.09 20.76 20.77
) 2 3 5 6.472 5.991 6.390 6.554  10.70 9.210 9.824 10.48
K3 =+/8/3 2 3 10 6.462 5.991 6.191 6.252  10.16 9.210 9.517 9.762
K4 = 4.0 2 3 15 6.127 5.991 6.124 6.164 9.433 9.210 9.415 9.573
3 3 5 10.38 9.488 10.02 9.893  15.05 13.28 14.24 14.03
33 10 9.965 9.488 9.755 9.825  14.28 13.28 13.76 13.98
3 3 15 9.936 9.488 9.666 9.734 13.86 13.28 13.60 13.80
5 3 5 16.87 15.51 16.26 16.35 23.21 20.09 21.48 21.81
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Table 1 (continued)

Upper 5% points Upper 1% points
Model p g m tu) u te(u) i (u) t(u) u te(u) i (u)
5 10 1593 15.51 15.88 15.93 21.15 20.09 20.79 20.93
5 3 15 1597 15.51 15.76 15.80 21.07 20.09 20.55 20.66
(vi) 2 3 5 6.578 5.991 6.540 6.625 11.18 9.210 10.42 10.77
K3 = 1.0 2 3 10 6.164 5.991 6.265 6.297 9.967 9.210 9.817 9.942
kg =1.5 2 3 15 6.102 5.991 6.174 6.184 9.448 9.210 9.615 9.655
3 3 5 10.50 9.488 10.21 9.905 15.59 13.28 14.78 14.02
3 3 10 9.820  9.488 9.847 9.867 14.12 13.28 14.03 14.08
3 3 15 9.810  9.488 9.727 9.743  13.94 13.28 13.78 13.82
5 3 5 16.65 15.51 16.43 16.47 21.99 20.09 21.89 21.96
5 3 10 1596 15.51 15.97 16.00 21.38 20.09 20.99 21.04
5 3 15 1584 15.51 15.82 15.81 20.84 20.09 20.69 20.67

we can obtain easily that

m _@—=1Dlg-1) )y (p—1)
yo ~e= ezl -y =)
mpq mpq
)R ) o) )
DU =D 04 =0, Vo = ) a4 =0
o,fp a,b o,f a,b

From these equations, the coefficients g;’s can be calculated easily.

Next we consider assumptions C3 and C7. It is easily shown that n=! 377, ||x;]|" =
1 and n/2, = n/m, C3 and C7 are replaced by

C9. g have the 10th absolute moment and n/m = O(1).

Using these results yield the following Theorems 4.2 and 4.3.

Theorem 4.2. Let the ath cumulant of e /o be denoted by k.. Under assumptions C6
and C9, the null distribution of T,y can be expanded as

1 _
P(T(1)<x) = Giponygn)(x) + > biGptyg1ye2(x) +o(n),
=

where

KZ
by = —1—;(1?—1)(17—2)(61—1)(61—2)

-1+ - Deg—p—a-1)

b =50~ 1)~ 2(g— (g —2)

g1 -3 117,
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Table 2

Percentage points of Ty
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Upper 5% points

Upper 1% points

Model p g m tu) u tg(u) e (u) t(u) u te(u) g (u)
(1) 2 3 5 4.336 3.841 4.151 4.148 7.943 6.635 7.479 7.457
K3 = 0.0 2 3 10 3.976 3.841 3.996 3.994 6.859 6.635 7.057 7.038
K4 = 0.0 2 3 15 3.984 3.841 3.944 3.943 7.159 6.635 6.916 6.904
3 3 5 6.391 5.991 6.390 6.381  10.17 9.210  10.15 10.12
33 10 6.119 5.991 6.190 6.187 9.340 9.210 9.681 9.668
3 3 15 6.129 5.991 6.124 6.118  10.07 9.210 9.524 9.500
5 3 5 9.738 9.488 9.962 9.967 14.05 13.28 14.28 14.30
S 3 10 9.656 9.488 9.725 9.721 13.74 13.28 13.78 13.77
5 3 15 9.761 9.488 9.646 9.647 13.53 13.28 13.61 13.62
(ii) 2 3 5 4.138 3.841 4.178 4.246 7.727 6.635 7.680 8.110
k3 = 0.0 2 3 10 4.119 3.841 4.009 4.018 7.183 6.635 7.158 7.207
K4 = 1.5 2 3 15 3919 3.841 3.953 3.943 6.690 6.635 6.983 6.909
3 3 5 6.486 5.991 6.423 6.371  10.41 9.210 10.29 10.08
33 10 6.259 5.991 6.207 6.188 9.493 9.210 9.748 9.673
3 3 15 6.165 5.991 6.134 6.135 9.692 9.210 9.569 9.567
5 3 5 10.03 9.488 9.989 9.989 14.15 13.28 14.36 14.37
5 3 10 9.843 9.488 9.739 9.739  14.04 13.28 13.82 13.82
5 3 15 9.760 9.488 9.655 9.649 14.22 13.28 13.64 13.62
(iii) 2 3 5 4.213 3.841 4312 4.151 7.048 6.635 8.685 7.467
k3 = 0.0 2 3 10 4.088 3.841 4.077 4.031 7.211 6.635 7.660 7.315
Ks = 6.0 2 3 15 3.980 3.841 3.998 3.954 6.766 6.635 7.318 6.987
3 3 5 6.408 5.991 6.589 6.387  10.02 9.210  10.95 10.14
3 3 10 6.208 5.991 6.290 6.208 9.647 9.210  10.08 9.752
3 3 15 6.083 5.991 6.190 6.133 9.465 9.210 9.791 9.559
5 3 5 10.03 9.488 10.13 9.962 14.64 13.28 14.76 14.28
5 3 10 9.741 9.488 9.808 9.762  13.66 13.28 14.02 13.89
S 3 15 9.626 9.488 9.701 9.703  13.97 13.28 13.77 13.78
(iv) 2 3 5 4.156 3.841 4.124 4.119 7.837 6.635 7.278 7.242
K3 = 0.0 2 3 10 4.034 3.841 3.982 3.979 6.984 6.635 6.957 6.932
Ky = —1.2 2 3 15 4.108 3.841 3.935 3.935 7.239 6.635 6.849 6.849
3 3 5 6.5212 5991 6.357 6.359  10.72 9.210  10.02 10.03
3 3 10 6.264 5.991 6.174 6.174 9.806 9.210 9.615 9.614
33 15 6.197 5.991 6.113 6.112 9.476 9.210 9.480 9.477
5 3 S 10.03 9.488 9.934 9.931 14.80 13.28 14.20 14.19
5 3 10 9.967 9.488 9.711 9.709  14.17 13.28 13.74 13.73
S 3 15 9.972 9.488 9.637 9.635 13.77 13.28 13.59 13.58
) 2 3 5 4.156 3.841 4.267 4.182 7.324 6.635 8.295 7.639
K3 =+/8/3 2 3 10 3.866 3.841 4.054 4.023 6.901 6.635 7.465 7.221
K4 = 4.0 2 3 15 3.874 3.841 3.983 3.963 6.803 6.635 7.188 7.031
3 3 5 6.461 5.991 6.522 6.571 10.34 9.210  10.69 10.88
3 3 10 6.229 5.991 6.257 6.217 9.364 9.210 9.948 9.789
33 15 6.129 5.991 6.168 6.131 9.620 9.210 9.702 9.553
5 3 5 9.898 9.488  10.07 10.01 14.62 13.28 14.61 14.46
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Table 2 (continued)

Upper 5% points Upper 1% points
Model p q m t(u) u te(u) i (u) t(u) u tg(u) e (u)
5 10 9.761 9.488 9.777 9.751 1391 13.28 13.94 13.88
5 3 15 9.734 9.488 9.681 9.660  13.92 13.28 13.72 13.66
(vi) 2 3 5 4.220 3.841 4.186 4.132 7.573 6.635 7.692 7.334
k3 =1.0 2 3 10 4.040 3.841 4.014 3.994 7.271 6.635 7.164 7.033
kg =1.5 2 3 15 3.932 3.841 3.956 3.950 6.767 6.635 6.987 6.946
3 3 5 6.382 5.991 6.423 6.570  10.49 9.210 10.29 10.88
3 3 10 6.246 5.991 6.207 6.197 9.996 9.210 9.748 9.707
3 3 15 6.131 5.991 6.135 6.127 9.652 9.210 9.569 9.536
5 3 5 10.01 9.488 9.984 9.967 13.87 13.28 14.37 14.30
5 3 10 9.827 9.488 9.736 9.724  14.11 13.28 13.82 13.79
5 3 15 9.556 9.488 9.653 9.657 13.61 13.28 13.64 13.65

K2
=21~ 2)g- 1))
)= D+ g g —p g+ 3),

K2
=5 =1 =2)(g-1)(g-2)

Theorem 4.3. Let the ath cumulant of ;. /o be denoted by k. Under assumptions C6
and C9, the null distribution of T(y) can be expanded as

1< -
P(T(Q) <X) = Gp,l(x) + % go bij,lJrzj(x) + 0(” 1),

where
— o = = g~ D)+ g e =24 D = D= 3),
b= (=1 = a = D} =S a2+ ) =3 (- 1),
b= i {1~ (g~ D} g~ 2+ 1)+ - D+ ),
b= (=1~ (g 1)

As stated above, using Theorem 3.1 we can obtain an asymptotic expansion easily
when X and Q are given in an explicit form.
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Table 3
Actual test sizes of T

Nominal 5% test Nominal 1% test

Model )4 q m o o o3 o o )
(i) 2 3 5 6.7 52 52 1.9 1.1 1.1
K3 = 0.0 2 3 10 6.1 5.5 5.4 1.7 1.3 1.3
K4 = 0.0 2 3 15 5.1 4.7 4.6 1.1 0.8 0.8
3 3 5 73 5.6 5.6 2.3 1.4 1.4
3 3 10 5.7 4.8 4.8 1.4 1.1 1.1
3 3 15 5.5 5.1 5.1 1.3 1.0 1.0
5 3 5 6.8 5.1 5.1 1.7 1.0 1.0
5 3 10 5.9 5.0 5.0 1.2 0.9 0.9
5 3 15 5.5 5.1 5.1 1.1 0.9 0.9
(i) 2 3 5 6.7 53 5.5 2.0 1.2 1.4
K3 = 0.0 2 3 10 5.9 5.3 5.3 1.3 1.0 1.1
Ky = 1.5 2 3 15 5.6 5.1 5.1 1.3 1.0 1.0
3 3 5 6.7 5.4 5.2 1.9 1.2 1.0
3 3 10 5.9 5.0 4.9 1.4 1.0 1.0
3 3 15 5.7 5.2 5.2 1.2 1.0 1.0
5 3 5 6.9 53 53 2.0 1.1 1.1
5 3 10 6.0 5.3 5.3 1.5 1.2 1.2
5 3 15 5.5 5.1 5.1 1.2 1.0 1.0
(iii) 2 3 5 6.8 59 52 1.9 1.8 1.1
K3 = 0.0 2 3 10 5.3 4.9 4.7 1.1 1.0 0.8
Kq4 = 6.0 2 3 15 5.6 5.4 5.2 1.3 1.3 1.1
3 3 5 6.6 5.6 5.1 1.8 1.6 1.1
3 3 10 6.0 5.6 52 1.4 1.3 1.1
3 3 15 5.4 5.0 4.8 1.3 1.2 1.1
5 3 5 7.0 5.7 5.2 1.7 1.3 1.0
5 3 10 6.0 5.5 5.3 1.4 1.2 1.1
5 3 15 5.7 5.2 53 1.3 1.1 1.1
(iv) 2 3 5 7.3 5.7 5.6 2.2 1.2 1.2
K3 = 0.0 2 3 10 5.9 5.0 5.0 1.6 1.1 1.1
Ky =—12 2 3 15 5.6 5.0 5.0 1.1 0.8 0.8
3 3 5 7.1 5.4 5.5 2.3 1.4 1.5
3 3 10 5.8 5.1 5.1 1.6 1.1 1.1
3 3 15 5.6 5.1 5.1 1.3 1.0 1.0
5 3 5 7.3 5.5 5.5 2.3 1.4 1.4
5 3 10 6.0 5.1 5.1 1.3 1.0 1.0
5 3 15 5.4 49 4.9 1.4 1.2 1.1
v) 2 3 5 6.2 5.2 4.9 1.7 1.4 1.0
K3 = /8/3 2 3 10 6.1 5.5 5.4 1.4 1.3 1.1
Ky = 4.0 2 3 15 5.4 5.0 4.9 1.1 1.0 0.9
3 3 5 7.0 5.8 6.1 1.8 1.4 1.4
3 3 10 6.1 5.4 5.3 1.6 1.3 1.2
3 3 15 5.9 5.4 53 1.3 1.2 1.1
5 3 5 7.2 6.0 5.8 2.1 1.4 1.3
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Table 3 (continued)

Nominal 5% test Nominal 1% test
Model )4 q m o o o3 o o0 )
5 3 10 5.6 5.1 5.0 1.3 1.1 1.1
5 3 15 5.6 5.3 5.2 1.3 1.1 1.1
(vi) 2 3 5 6.6 5.1 4.9 1.9 1.3 1.1
k3 = 1.0 2 3 10 54 4.8 4.8 1.5 1.1 1.0
Ky = 1.5 2 3 15 5.3 4.9 4.9 1.2 0.9 0.9
3 3 5 6.9 5.5 5.9 1.9 1.2 1.5
3 3 10 5.8 4.9 4.9 1.4 1.0 1.0
3 3 15 5.6 5.1 5.1 1.2 1.1 1.0
5 3 5 6.7 5.4 5.3 1.7 1.0 1.0
5 3 10 5.8 5.0 4.9 1.4 1.1 1.1
5 3 15 5.4 5.0 5.0 1.3 1.0 1.1

5. Numerical accuracies

Numerical accuracies are studied for approximations of the percentage points and
actual test sizes of two-way ANOVA test statistics T(;) and Ty) in Section 4.2. The
approximations considered are based on the limiting distributions and asymptotic
expansions. In order to examine the influence of k3 and k4 on accuracies, we
considered the following five nonnormal models and the normal model with p =
2,3,5 and ¢ = 3;

(i) normal distribution,
(i) X + YZ, where X, Y, Z are independent normal distribution N (0, 1),
(iii) Student’s ¢-distribution with 5 degrees of freedom,
(iv) symmetric uniform distribution U(-5,5),
(V) y* distribution with 3 degrees of freedom,
(vi) #? distribution with 8 degrees of freedom.

The first four models are symmetric, and have k3 =0. For (iii) Student’s ¢-
distribution we choose the one with 5 degrees of freedom, since x4 is biggest of all.
For (iv) uniform distribution we use U(—5, 5) with width 10, but our results are not
much effected by width. In (v) and (vi) we choose »* distributions with difference of
degrees of freedom which are nonsymmetric. We consider the normal model as the
model with k3 =0, k4 = 0.

The true percentage points #(u) of T were obtained by simulation experiments
which were iterated 10,000 times. There was not a large difference among values of
t(u) which was constructed by other samples. The approximate percentage points
were computed by using u, tg(u) and 7g(u). The g (u) is defined as follow. Let
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Table 4
Actual test sizes of T(y)

Nominal 5% test Nominal 1% test

Model )4 q m o o o3 o o )
(i) 2 3 5 6.5 5.6 5.6 1.8 1.3 1.3
K3 = 0.0 2 3 10 5.4 4.9 4.9 1.1 0.9 0.9
K4 = 0.0 2 3 15 5.4 52 52 1.2 1.1 1.1
3 3 5 6.0 5.0 5.0 1.5 1.0 1.0
3 3 10 5.3 4.8 4.8 1.1 0.8 0.9
3 3 15 5.4 5.0 5.0 1.5 1.3 1.3
5 3 5 5.7 4.6 4.6 1.3 0.9 0.9
5 3 10 5.3 4.9 4.9 1.2 1.0 1.0
5 3 15 5.5 5.3 5.3 1.1 0.9 0.9
(i) 2 3 5 5.9 4.9 4.7 1.6 1.0 0.8
K3 = 0.0 2 3 10 5.8 5.3 5.3 1.3 1.0 1.0
Ky = 1.5 2 3 15 5.2 4.9 4.9 1.0 0.8 0.9
3 3 5 6.2 5.1 5.2 1.7 1.0 1.1
3 3 10 5.8 5.2 5.2 1.1 0.9 0.9
3 3 15 5.4 5.1 5.1 1.3 1.1 1.1
5 3 5 6.3 5.1 5.1 1.5 0.9 0.9
5 3 10 5.9 5.2 5.2 1.3 1.1 1.1
5 3 15 5.6 5.3 53 1.4 1.2 1.2
(iii) 2 3 5 6.1 4.7 52 1.3 0.5 0.9
K3 = 0.0 2 3 10 5.7 5.0 5.2 1.4 0.8 0.9
Kq4 = 6.0 2 3 15 5.5 4.9 5.1 1.1 0.8 0.9
3 3 5 6.2 4.6 5.1 1.4 0.6 0.9
3 3 10 5.6 4.8 5.0 1.3 0.8 1.0
3 3 15 5.2 4.7 4.8 1.2 0.9 0.9
5 3 5 6.2 4.8 5.2 1.6 0.9 1.1
5 3 10 5.5 4.9 5.0 1.2 0.9 0.9
5 3 15 5.3 4.9 4.9 1.3 1.1 1.0
(iv) 2 3 5 6.0 5.1 5.1 1.6 1.2 1.2
K3 = 0.0 2 3 10 5.7 5.2 5.2 1.2 1.0 1.0
Ky = —1.2 2 3 15 5.8 5.5 5.5 1.3 1.2 1.2
3 3 5 6.3 5.2 52 1.8 1.4 1.3
3 3 10 5.7 5.2 5.3 1.3 1.1 1.1
3 3 15 5.6 5.2 5.2 1.2 1.0 1.0
5 3 5 6.0 5.2 5.2 1.5 1.2 1.2
5 3 10 5.9 5.5 5.5 1.4 1.1 1.2
5 3 15 6.0 5.7 5.7 1.2 1.1 1.1
v) 2 3 5 5.9 4.5 4.9 1.3 0.6 0.8
K3 = /8/3 2 3 10 5.1 4.5 4.6 1.1 0.8 0.8
Ky = 4.0 2 3 15 5.1 4.8 4.8 1.1 0.8 0.9
3 3 5 6.1 4.9 4.8 1.5 0.9 0.8
3 3 10 5.7 4.9 5.0 1.1 0.8 0.9
3 3 15 5.4 4.9 5.0 1.2 1.0 1.0
5 3 5 5.8 4.7 4.9 1.5 1.0 1.1
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Table 4 (continued)

Nominal 5% test Nominal 1% test
Model )4 q m o o o3 o o0 )
5 3 10 5.7 5.0 5.0 1.2 1.0 1.0
5 3 15 5.6 5.1 5.2 1.3 1.1 1.1
(vi) 2 3 5 6.0 5.0 5.2 1.5 1.0 1.1
k3 = 1.0 2 3 10 5.6 5.1 5.1 1.4 1.1 1.2
Ky = 1.5 2 3 15 5.3 4.9 4.9 1.1 0.9 0.9
3 3 5 5.8 4.9 4.6 1.6 1.1 0.9
3 3 10 5.6 5.1 5.1 1.4 1.1 1.2
3 3 15 5.4 5.0 5.0 1.2 1.1 1.1
5 3 5 6.1 5.1 5.1 1.4 0.9 0.9
5 3 10 5.8 5.3 5.3 1.4 1.1 1.1
5 3 15 5.1 4.8 4.8 1.1 1.0 1.0

where y,% is a chi-squared variate with 4 degrees of freedom. Then, from (3.16), we
can expand (u) as

(bz + b3)u b3u2

2u _
ht2 (h+2)(h+4)}+”(” )

t(u) :u+—{b1 + by + b3+

nh
=tp(u) +o(n™").

Besides 7k (u) is defined from g () by replacing unknown parameters k3 and k4 by 7
and 7 which are estimators for k3 and k4, respectively. In a practical situation, we will
need to use 7g(u) instead of 7g(u), since we do not know population parameters.
Tables 1 and 2 give the true percentage points #(u) and approximate percentage
points based on u, rg(u) and 7g(u) for T(y) and T),), respectively.

Actual test sizes are denoted by

w =P(T>u), o =P(T>te()), oz=P(T>iu)). (5.1)

The actual test sizes o, ap and o3 for 7(;) and T(y) are given in Tables 3 and 4,
respectively, for nominal test sizes 5% and 1%.

From these tables we can see that the approximation 7g(u) or fg(u) gives a
considerable improvement in a comparison with the limiting approximation.
Besides, there seems to be little influence on accuracies by differences k3 and k4.
We have tried to study for other several models, and have obtained similar results.
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