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a b s t r a c t

Generalized confidence intervals provide confidence intervals for complicated parametric
functions in many common practical problems. They do not have exact frequentist
coverage in general, but often provide coverage close to the nominal value and have
the correct asymptotic coverage. However, in many applications generalized confidence
intervals do not have satisfactory finite sample performance. We derive expansions
of coverage probabilities of one-sided generalized confidence intervals and use the
expansions to explain the nonuniform performance of the generalized intervals. We then
showhow to use these expansions to obtain improved coverage by suitable calibration. The
benefits of the proposed modification are illustrated via several examples.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Generalized confidence intervals and generalized test statistics have been introduced by Tsui and Weerahandi [1]
and Weerahandi [2–5] as easy tractable means of constructing confidence intervals for, and testing hypothesis about,
complicated parametric functions. There have been several articles demonstrating the merits and drawbacks of generalized
confidence intervals in routinely used applications. The advantages and disadvantages of the generalized intervals over other
resampling methods have been established in numerous articles.
The primary focus of this paper is to provide theoretical explanation of the observed empirical behavior of the generalized

intervals and to suggest ways of improving the finite sample performance of the generalized intervals. We establish that in
general the generalized confidence intervals are not first order accurate, i.e., accurate only up to the n−1/2 term. We provide
a necessary and sufficient condition for the generalized intervals to be first order accurate. We suggest a modification to
make the intervals first order accurate and hence, improve the coverage of the intervals significantly in many applications.
Although we only discuss generalized confidence intervals in this paper, the results can be easily extended to improve the
power properties of generalized tests as well.
Many articles over the last decade have shown that for messy parametric problems with certain pivotal structure, the

generalized intervals perform adequately in the repeated sampling setup as well (even though the generalized intervals are
not motivated from a repeated sampling argument). Hence they are appealing also to practitioners who are comfortable
with the classical approach of frequentist confidence intervals. Generalized procedures have been successfully applied to
several problems of practical importance. The areas of applications include comparison of means, testing and estimation
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of functions of parameters of normal and related distributions (Weerahandi, [2–5], Krishnamoorthy and Mathew [6],
Johnson and Weerahandi [7], Gamage, Mathew and Weerahandi [8]); testing fixed effects and variance components in
repeated measures and mixed effects ANOVA models (Zhou and Mathew [9], Gamage and Weerahandi [10], Chiang [11],
Krishnamoorthy and Mathew [6], Weerahandi [5], Mathew and Webb [12], Arendacka [13]); interlaboratory testing (Iyer,
Wang and Mathew [14]); bioequivalence (McNally, Iyer and Mathew [15]); growth curve modeling (Weerahandi and
Berger [16], Lin and Lee [17]); reliability and system engineering (Roy and Mathew [18], Tian and Cappelleri [19], Mathew,
Kurian and Sebastian [20]); process control (Burdick, Borror and Montgomery [21], Mathew, Kurian and Sebastian [22]);
environmental health (Krishnamoorthy, Mathew and Ramachandran [23]) and many others. The simulation studies in
Johnson and Weerahandi [7], Weerahandi [4,5] Zhou and Mathew [9], Gamage and Weerahandi [10], among others have
demonstrated the success of the generalized procedure in many problems where the classical approach fails to yield
adequate confidence intervals.
There has been some theoretical investigation of the success of generalized intervals in the frequentist sense. Hannig,

Iyer and Patterson [24] have shown that asymptotically the generalized intervals maintain the target coverage level for a
large class of problems. Hannig [25] has also investigated the connection between the generalized procedures and fiducial
inference.
In Section 3 we give our main results. In Section 4, we investigate the magnitude of the first order term in the coverage

probability and illustrate our methodology in the context of several examples. All technical proofs are given in an appendix.
In the next section, we describe the assumptions and the notations.

2. Preliminaries and assumptions

Let x ∈ Rd denote a d-dimensional statistic (and by abuse of notation, also the observed value of the statistic) whose
distribution is indexed by a parameter θ ∈ Θ ⊆ Rq. The parameter space Θ is assumed to be an open subset of Rq. Let
1/2 < α < 1. Our interest is in constructing a 100α% one-sided confidence interval for a one-dimensional parametric
function π(θ) based on the observed value x.
In classical statistics, confidence intervals for the parameter π(θ) would be constructed by inverting the distribution

of a pivotal quantity. However, depending on the nature of the parametric problem, such pivotal quantities may not be
available. Weerahandi [2] suggested constructing the confidence interval by inverting the distribution of a generalized
pivotal quantity.
Our definition of a generalized pivotal quantity is that due to Hannig et al. [24] which is an adaptation of the original

definition of Weerahandi [2]. Let X denote an independent and identical copy (but unobserved) of the observable random
vector x. Then Tθ (x,X) is a Generalized Pivotal Quantity for π(θ) if it satisfies:

(i) The distribution of Tθ (x,X) conditional on x is free from θ .
(ii) Tθ (x, x) = π(θ) for all x ∈ Rd.

Letwn,x(α) be the upper α percentile of the distribution of Tθ (x,X) conditional on x, i.e.,

PX(Tθ (x,X) < wn,x(α)|x) = α.

Then we define the 100α% upper generalized confidence interval for π(θ) as

In,x(α) ≡ (−∞, wn,x(α)). (1)

Similarly, we can define a lower confidence interval. Let a 100α% lower generalized confidence interval be defined as

I′n,x(α) ≡ (w
′

n,x(α),∞) (2)

wherew′n,x(α) is the lower α percentile of the distribution of Tθ (x,X) conditional on x.
Themain objective of this paper is to investigate the frequentist coverage of this interval, i.e., Px(π(θ) ∈ In,x(α)). Wewill

state and prove our results for 100α% upper confidence intervals and state the corresponding results for lower confidence
intervals without proofs.
In order to derive expansions of the coverage probability of confidence intervals, we will assume the following general

model for the random vector x. The model is same as that for the regular case of bootstrap where the quantities involved
all have absolutely continuous Lebesgue density (which is typically the setup for problems where the generalized inference
methodology is useful) and hence Cramer’s condition for validity of Edgeworth expansion is automatically satisfied. The
statistic of interest is a vector of smooth functions of sample moments. Let Y1, Y2, . . . , Yn be independent and identically
distributed random column d-vectors and let x = n−1

∑n
i=1 Yi. In the context of a random sample Z1, Z2, . . . , Zn from the

distribution indexed by the parameter θ , the components of the d-vectors Y could be Yij = gj(Zi); j = 1, . . . , d, where gj(·)
are known functions with nonzero derivative at the expected value of Z , and Yij is the jth component of Yi. We make the
following assumptions about the structure of the parametric problem.

(A1) E(‖x‖4) <∞, where ‖ · ‖ denotes the usual Euclidean norm.
(A2) For each θ , the generalized pivot Tθ (x,X) has continuous mixed partial derivatives up to order 4 in a neighborhood of

(µ,µ).
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Assumption (A2) is about the smoothness of the function Tθ (x,X) and it is needed for a valid Edgeworth expansion of the
distribution of Tθ (x,X). Such expansions hold even inmore general setup. Expansions for coverage probability of other type
of nonsmooth generalized pivots is a topic of future investigation. The generalized procedure is typically applied in common
parametric setups where Assumption (A1) usually hold.
We shall also need the following notation to state our results. Let S(x, y) : Rd×Rd −→ R be any real valued function of

two d-dimensional arguments x, y ∈ Rd. For ω, λ ∈ Nd let

Dω,λS(x, y) =
∂
|ω|

(1)

∂
ω1
(1)x1 · · · ∂

ωd
(1)xd

∂
|λ|

(2)

∂
λ1
(2)y1 · · · ∂

λd
(2)yd

S(x, y),

where |ω| =
∑d
i=1 ωi and ∂(i), i = 1, 2, denotes the partial with respect to the coordinates of the ith d-dimensional

component of S(·, ·). Let Dω,0S(x, y) =
∂
|ω|
(1)

∂
ω1
(1) x1···∂

ωd
(1)xd
S(x, y),D0,λS(x, y) =

∂
|λ|
(2)

∂
λ1
(2)y1···∂

λd
(2)yd
S(x, y) and let ei1···ik denote a d-vector

with ones at the i1, . . . , ikth places and rest zeros. Define

a(1)i1...ik(x, y) = D
ei1 ...ik ,0Tθ (x, y)

a(2)j1...jl(x, y) = D
0,ej1 ...jl Tθ (x, y)

a(12)i1...ik,j1...jl
(x, y) = Dei1 ...ik ,ej1 ...jl Tθ (x, y). (3)

Also a(·)... (x,µ), a
(·)
... (µ, y) and a

(·)
... (µ,µ) will be the values of the function a

(·)
... (x, y) evaluated at y = µ, x = µ and

(x, y) = (µ,µ), respectively.When there is no confusionwewill write function values evaluated at (µ,µ) such as a(·)... (µ,µ)
as simply a(·)... .
Let xi denote the ith element of x, βi1...ij,n = E{(x− µ)i1 · · · (x− µ)ij} and let

βi1...ij,n = µi1...ij + O(n
−1).

The leading terms µi1...,ij are computed using delta method (e.g. see the calculation in the examples given in this paper).
Define the standardized (with respect to the PX probability) quantity:

Zn,X(x) = [n/A0(x,µ)]1/2(Tθ (x,X)− Tθ (x,µ)) (4)
where

A0(x,µ) =
d∑
i=1

d∑
j=1

a(2)i (x,µ)a
(2)
j (x,µ)µij. (5)

Let

p1,x(z) = −
{
A0(x,µ)−1/2A1(x,µ)+

1
6
A0(x,µ)−3/2A2(x,µ)[z2 − 1]

}
(6)

be the second degree even polynomial where

A1(x,µ) =
1
2

d∑
i=1

d∑
j=1

a(2)ij (x,µ)µij,

A2(x,µ) = A21(x,µ)+ 3 A22(x,µ),

A21(x,µ) =
d∑
i=1

d∑
j=1

d∑
k=1

A(2)i (x,µ)a
(2)
j (x,µ)a

(2)
k (x,µ)µijk,

A22(x,µ) =
d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

a(2)i (x,µ)a
(2)
j (x,µ)a

(2)
kl (x,µ)µikµjl. (7)

Define

∆ =
1

A3/20

d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

{a(12)i,j a
(2)
k a

(2)
l − a

(2)
i a

(12)
j,k a

(2)
l }µijµkl. (8)

Let φ(·) andΦ(·) denote the standard normal probability density function and the standard normal probability distribution
function, respectively. The 100βth percentile of the standard normal distribution will be denoted by zβ .

3. Improved generalized intervals

This section contains the main results. All proofs are relegated to the Appendix. Consider the quantity

Zn(x) = [n/A0(x,µ)]1/2(Tθ (x, x)− Tθ (x,µ)). (9)
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To derive an expansion for the frequentist coverage of the generalized interval wewill need an expansion of the distribution
of Zn(x). Recall that we have assumed that X has Lebesgue density. The following theorem gives the expansion of the
distribution of Zn(x).

Theorem 1. Let Assumptions (A1)–(A2) hold. Let Zn(x) be the studentized statistic defined in (9). Then the distribution of Zn(x)
has a valid Edgeworth expansion given by (up to one term)

Px(Zn(x) < z) = Φ(z)+ n−1/2q1,µ(z)φ(z)+ O(n−1), (10)

where q1,µ(z) = p1,µ(z)−∆, with p1,µ(·) defined in (6).

Remark 1. If the components of x are asymptotically independent, i.e.,µij = 0 if i 6= j, then the expression for∆ reduces to

∆ = A−3/20

d∑
i=1

d∑
k=1

{aiia2k − aiakaik}µiiµkk. (11)

The following result is needed in the proof of the subsequent theorems and is reminiscent of expansion results in
bootstrap, with added claims on the rates in (13) and (15). These error rates are obtained by keeping track of the relevant
terms in the expansion.

Theorem 2. Let Assumptions (A1)–(A2) hold. Then for each fixed x ∈ Rd we have n1/2(Tθ (x,X)−Tθ (x,µ))
L
−→ N(0, A0(x,µ))

where A0(x,µ) is defined in (5). Let Fn,X,x(·) be the distribution function of Zn,X(x). Then Fn,X,x(·) has a valid Edgeworth expansion
for every x ∈ Rd given by (up to order n−1/2 term)

Fn,X,x(z) = PX(Zn,x(x) < z) = Φ(z)+ n−1/2p1,x(z)φ(z)+ εn(x; z) (12)

where p1,x(·) is defined in (6). For λ > 1/2, there exists a constant C1 such that

Px( sup
−∞<z<∞

|εn(x; z)| > C1n−1/2) = O(n−λ). (13)

Also, for any δ ∈ (0, 1/2), there exist constants ε > 0 and C2 > 0 such that the percentiles of the distribution of Zn,X(x) admit
Cornish–Fisher expansions (up to order n−1/2 term) of the form

F−1n,X,x(β) = zβ − n
−1/2p1,x(zβ)+ Cn(x, β), (14)

uniformly in β for n−ε ≤ β ≤ 1− n−ε and the remainder term satisfies

Px( sup
n−ε<β<1−n−ε

|Cn(x;β)| > C2n−1+δ) = O(n−λ). (15)

The results provide an asymptotic expansion of the coverage probability of the generalized confidence interval.

Theorem 3. Let 1/2 < α < 1 be fixed. Suppose the assumptions of Theorem 1 hold. Then the coverage probability of the 100α%
upper generalized confidence interval In,x(α) defined in (1) is given by

Px[π(θ) ∈ In,x(α)] = α − n−1/2∆φ(zα)+ o(n−1/2), (16)

where∆ is defined in (8).

Analogous results can be obtained for 100α% lower generalized confidence intervals.

Corollary 1. Let 1/2 < α < 1 be fixed. Suppose assumptions of Theorem 1 hold. Let ∆ be as defined in (8). Then the coverage
probability of the 100α% lower generalized confidence interval I′n,x(α) defined in (2) is given by

Px[π(θ) ∈ I′n,x(α)] = α + n
−1/2∆φ(zα)+ o(n−1/2). (17)

Remark 2. Note that as n→∞,wn,x(α) becomes larger thanw′n,x(α). Thus, using Eqs. (16) and (17) we have

Px[π(θ) ∈ [w′n,x(α), wn,x(α)]) = 1− (1− α + n
−1/2∆φ(zα)+ o(n−1/2)+ 1− α − n−1/2∆φ(zα)− o(n−1/2))

= 2α − 1+ o(n−1/2). (18)

Therefore, the two-sided interval is first order accurate.
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One may improve the accuracy further as follows. We only sketch the main steps involved. The details will be similar to
the arguments given in Hall [26], Chapter 3. Eq. (17) is sharpened to

Px[π(θ) ∈ In,x(α)] = α − n−1/2∆φ(zα)+ n−1S(θ, zα)+ o(n−1).

Similarly, Eq. (16) is sharpened. Using the standardmethods of modifying confidence intervals based on estimates for∆ and
S(θ, zα) [see for example Hall [26], Chapter 3] one may define modified confidence intervals Jn,x(α) and J′n,x(α) such that

Px[π(θ) ∈ Jn,x(α)] = α − n−1S2(θ, zα)+ o(n−1),

Px[π(θ) ∈ J′n,x(α)] = α + n
−1S2(θ, zα)+ o(n−1),

This leads to a two-sided interval [J ′, J] of accuracy o(n−1). The o(n−1) can be shown to be O(n−3/2) under mild additional
conditions, but the algebra is tedious and the gains are negligible in moderate samples.

Generally∆ is unknown. But a suitable estimate of∆may be used to define modified intervals with improved accuracy.
Let ∆̂ be an estimator of∆. Let α0 > 0 be given and α̂n be a solution to

α − n−1/2∆̂φ(zα) = α0. (19)

Theorem 4. Let ∆̂ be a
√
n-consistent estimator of ∆. Let α̂n be a solution to Eq. (19) and let α̃n = max{n−ε,min(α̂n, 1−n−ε)}

where ε is defined in Theorem 2. Let the assumptions of Theorem 3 hold. Then

Px[π(θ) ∈ In,x(α̃n)] = α0 + o(n−1/2).

Remark 3. Note that α̂n = α0 + Op(n−1/2). Hence, for all practical problems with moderate sample size α̃n = α̂n and thus
the exact value of ε is irrelevant in applications.

4. The role of∆

In this section we explore the role of ∆ and its relation to coverage and the nature of the pivots. We show that in some
cases∆ is free of parameters and may even equal zero. In others, it may be estimated and be used to improve the coverage.
The gains can be significant even in small samples.
Let A = ((a(12)ij )), Σ = ((µij)) and a = (a

(2)
1 , . . . , a

(2)
d )
′. For notational simplicity we will omit the superscripts (1), (2)

and (12) in the notation of the derivatives of the pivot. Let B = 0.5Σ1/2(A+A′)Σ1/2 be the symmetric version ofΣ1/2AΣ1/2
and let b = (a′Σa)−1/2Σ1/2a. Then

∆ = A−1/20

[
tr(B)− b′Bb

]
. (20)

Note that A0 = (a′Σa) and ‖b‖ = 1. The quantities B and b are parametric functions and we can write them as B(θ) and
b(θ), respectively. Eq. (20) is essentially a way of rewriting the numerator of∆ in the matrix form. However, the expression
is compact and insightful. We may now state the necessary and sufficient condition for the generalized intervals to be first
order accurate as

Proposition 1. A necessary and sufficient condition for ∆ = 0 is

tr{B(θ)} = b(θ)′B(θ)b(θ), for the true value θ. (21)

Note that the above criterion depends on the unknown true parameter θ . In practice, to get an idea whether the
generalized intervals are going to be accurate in a specific problem, one may consider devising a suitable test for testing
tr{B(θ)} − b(θ)′B(θ)b(θ) equal to zero.

4.1. ∆ = 0 and exact frequentist coverage

When do generalized confidence intervals have exact frequentist coverage? A sufficient condition is the following.

Proposition 2. Let Tθ (x,X) be a generalized pivot for the parametric function π(θ). Then the generalized confidence interval
constructed for π(θ) based on Tθ (x,X) has exact frequentist coverage and the corresponding ∆ is equal to zero if the following
hold.
(i) There exists a function ψ(x, y, z) : Rd × R× R→ R such that for every x ∈ Rd, ψ(x, y, z) < 0 iff y < z.
(ii) There exists a function τθ (x) : Rd → R such that τθ (x) has continuous distribution and Tθ (x,X) − Tθ (x, x) =
ψ(x, τθ (x), τθ (X)).
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Proof. That the generalized confidence interval based on Tθ (x,X) has exact coverage in this case follows easily from the
fact that PX(Tθ (x,X) < π(θ)) = PX(Tθ (x,X) < Tθ (x, x)) = PX(ψ(x, τθ (x), τθ (X)) < 0) = PX(τθ (x) < τθ (X)) is uniformly
distributed on [0, 1] under Px probability. For exact coverage the first order term is necessarily zero. However, it is insightful
to show how the structural assumptions about Tθ (x,X) lead to∆ = 0. Let bi denote the derivative ∂τθ (x)∂xi

evaluated at x = µ.

Then the derivatives of the pivot are given by a(2)i = −ψ
(2)
1 bi; a

(2)
i,j = −ψ

(12)
i,1 bj − ψ

(2)
11 bibj. Hence the numerator of∆ is∑

i,j,k,l

[ai,jakal − aiaj,kal]µijµkl =
∑
i,j,k,l

[
(ψ

(12)
j,1 bk + ψ

(2)
11 bjbk)bi − (ψ

(12)
i,1 bj + ψ

(2)
11 bibj)bk

]
blµijµkl

=

∑
i,j,k,l

(ψ
(12)
j,1 bi − ψ

(12)
i,1 bj)bkblµijµkl = 0. �

The proposition supplements Remark 7 in Hannig et al. [24]. For the t-statistic the functionψ(x, y, z) = x2(y− z)where
x = (x1, x2) and τθ (x) is the t-statistic, (x1 − µ)/x2. Thus, for the t-statistic case the conventional pivot naturally leads to a
generalized pivot. In general, if gx(π(θ)) is a conventional pivot for π(θ)which is invertible, then Tθ (x,X) = gx(g−1X (π(θ)))
is a generalized pivot for π(θ).

4.2. ∆ = 0, but no exact coverage

Of course,∆ = 0 does not guarantee exact frequentist coverage. However,∆ = 0 leads to very good performance of the
generalized intervals. We illustrate this using the following example.

Example 1 (Behrens–Fisher Problem). This is a well-analyzed problem in statistics where the objective is to construct a
confidence interval for the difference of means of two normal populations and the variances of the populations are not
known. No exact frequentist confidence intervals are available.

Let Zij ∼ N(τi, σ 2i ) for i = 1, 2 for the test group and the reference group, respectively, and j = 1, . . . , n. The parameter
vector is θ = (τ1, τ2, σ

2
1 , σ

2
2 ) and the parameter of interest is π1(θ) = τ1 − τ2. The statistics used in the construction of

the interval are X = (X1, X2, X3, X4)′ := (Z̄1, Z̄2, S21 , S
2
2)
′ where Z̄i = n−1

∑n
j=1 Zij and S

2
i = (n − 1)−1

∑n
j=1(Zij − Z̄i)

2.

Let x be the observed value of X. The asymptotic distributional result in this case is
√
n(X − µ)

L
−→ N4(0,Σ), where

µ = (µ1, µ2, µ3, µ4)
′
= θ andΣ =

(
(µij)

)
= Diag(µ3, µ4, 2µ23, 2µ

2
4). The obvious generalized pivot is

Tθ (x,X) = (x1 − x2)−
[
(X1 − µ1)

√
x3

√
X3

−
(X2 − µ2)

√
x4

√
X4

]
. (22)

The derivatives of the generalized pivot (algebraic details are omitted) are given by (a(2)1 , a
(2)
2 , a

(2)
3 , a

(2)
4 ) = (−1, 1, 0, 0) and

(
(a(12)i,j )

)
=



0 0 0 0
0 0 0 0

−
1
2µ3

0 0 0

0
1
2µ4

0 0

 . (23)

Substituting the values of the derivatives and the asymptotic variances we find that ∆ = 0. A generalized interval yields
good results (Tsui and Weerahandi [1]). The interval does not have exact frequentist coverage. However, from the above
calculations, the intervals are first order accurate. This explains the near exact performance of the generalized intervals for
this example.

4.3. Magnitude of∆

Generalized confidence intervals often perform quite well in small samples even when they are not first order correct
(that is ∆ 6= 0). What then could be the reason for their good performance? Actually in many common problems
(e.g. Examples 2 and 3 in this article), the magnitude of the first order term, |n−1/2∆φ(zα)|, is bounded by a small quantity
and thus the coverage error is insignificant even for moderate sample sizes. From (20) we see that ∆ is contained in the
interval A−1/20

[∑d−1
i=1 λi(B),

∑d
i=2 λi(B)

]
where λ1(B) < · · · < λd(B) are the eigenvalues of B. Thus, a very conservative

upper bound for |∆|would be
|∆| < d(d− 1)M1M2 (24)

whereM1 = max
i,j
(µiiµjj/A0)1/2 andM2 = max

i,j
0.5[aij+ aji]. In practice, the termmay be much smaller than the bound, and

hence the first order term may be negligible.
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We illustrate this by two examples. In order to do the necessary derivations for the examples, we need the following
facts which are obvious consequences of the Edgeworth expansions for smooth functions of sample means.
In many applications, the function of interest, A(x̄), where x̄ = (x̄1, . . . , x̄d) is the mean of a d-variate random vector,

can be alternatively written as a function, Ã(ȳ) where ȳ = (ȳ1, . . . , ȳr) and each ȳi is of the form ȳi = n−1i
∑ni
j=1 yi,j and

ni = cin[1+O(n−1)] for some positive integers ci. The y variablesmay be latent and not directly observable. Inmany of these
problems, it may be easier to derive the coefficients of the polynomials in the Edgeworth expansion for P(n1/2Ã(ȳ) < w)
than those in the Edgeworth expansion of P(n1/2A(x̄) < w) because of the simpler moment structure of the yi,j compared
to those of xi,j. For example, the ȳi could be independent for different i.
However, the different component of ȳ may be means of possibly unequal number of observations and the number of

observations may be potentially of different order. This does not pose a problem while deriving an Edgeworth expansion
for n1/2Ã(ȳ) as long as one is interested in an expansion up to the order n−1/2. This is evident from the fact that the
cumulant expressions of ȳ agree up to order n−1 with those of ȳ(n) where ȳ(n) = (ȳ1,(n), . . . , ȳr,(n)), ȳi,(n) = (cin)−1

∑cin
j=1 yi,j.

Further, the fact that the order of the means, cin, are different for different i can be taken care of by differentially pooling
the observations for the different means, ȳi,(n) and adjusting the moment expressions for the means while deriving the
coefficients of the polynomials in the expansion.
For example, let zi,j = c−1i

∑ci
k=1 yi,(j−1)ci+k and let z̄i = n

−1∑n
j=1 zi,j. Define z̄ = (z̄1, . . . , z̄r). Then the components of

the mean vector z̄ are means of equal number of observations and the function Ã(ȳ(n)) can be written as Ã(z̄). Furthermore,
µ
y
i = E(yi,j) = E(zi,j) = µ

z
i . Alsoµ

z
ij = E[(zi,k−µ

z
i )(zj,l−µ

z
j )] = δijµ

y
ij where δij = (ci)

−1 if i = j and 1 if i 6= j. Higher order
moments should be adjusted in a similar way.
For illustration consider the following example of a studentized statistic for the two sample mean problem in a normal

model. Let u1, . . . , un be iid N(µ1, σ 2) and v1, . . . , vn be iid N(µ2, σ 2) and the samples are mutually independent. Then
the studentized statistic for testing µ1 = µ2 is A(x̄1, x̄2, x̄3, x̄4) =

(x̄1−x̄2)−(µ1−µ2)
[n{(x̄3+x̄4)−(x̄21+x̄

2
2)}/(2n−2)]

1/2 where x̄1 = n
−1∑n

i=1 ui,

x̄2 = n−1
∑n
i=1 vi, x̄3 = n

−1∑n
i=1 u

2
i , x̄4 = n

−1∑n
i=1 v

2
i . However note that x̄1 − x̄2 = ȳ1 where ȳ1 = n

−1
1
∑n
j=1 y1,j and y1,j

are iid N(µ1 −µ2, 2σ 2). Also, n{(x̄3 + x̄4)− (x̄21 + x̄
2
2)}/(2n− 2) is the mean of n2 = 2(n− 1) iid random variables each of

which is distributed as σ 2 times a χ2 random variable with one degree of freedom. Thus, in this example c1 = 1 and c2 = 2
with ni = 2n(1 + O(n−1)). In order to reduce means to averages of equal (or almost equal) number of random variable
we can use z̄1 = ȳ1 and z̄2 which is a mean of (n − 1) iid random variables each of which are distributed as σ 2/2 times a
χ2 random variable with two degrees of freedom. The function can be now written as Ã(z̄1, z̄2) =

z̄1−(µ1−µ2)√
z̄2

. The biggest
advantage is that now the variables z̄1 and z̄2 are independent and the coefficients of the polynomial p1,µ in the Edgeworth
expansion reduce to simpler expressions.

Example 2 (One Way Random Model). Consider the one-way random effect model Yij = β0 + βi + εij, i = 1, . . . , k; j =
1, . . . , n, where βi ∼ N(0, σ 2β ), εij ∼ N(0, σ

2
ε ) and {βi} and {εij} are mutually independent. Note that the asymptotics in this

problem are with respect to the number of groups, k. Define the between groups mean square (S2B ) and within group mean
square (S2W ) as

S2B =
n
k∑
i=1
(Ȳi· − Ȳ··)2

k− 1
, S2W =

k∑
i=1

n∑
j=1
(Ȳij − Ȳi·)2

k(n− 1)
,

where Ȳi· = n−1
∑n
j=1 Yij and Ȳ·· = k

−1∑k
i=1 Ȳi·. Let µ1 = (σ 2ε + nσ

2
β ) and µ2 = σ 2ε . Suppose the parameter of interest

is the variance component π(θ) = σ 2β = n
−1(µ1 − µ2). There are no lower confidence interval for π(θ) that has exact

frequentist coverage but there are many approximate intervals available in the literature (e.g. see Weerahandi [5] page 90).
Note that (k−1)S2B ∼ µ1χ

2
k−1 and k(n−1)S

2
W ∼ µ2χ

2
k(n−1). Based on these distributions, Weerahandi ([4] pp 152) proposed

a generalized pivot

Tθ (x,X) = n−1
[
µ1x1
X1
−
µ2x2
X2

]
, (25)

where x = (x1, x2) = (s2B, s
2
W ) andX = (X1, X2) = (S

2
B , S

2
W ) are the observed values and a random copy of themean squares,

respectively. Hannig, et al. [24] have shown that the generalized confidence interval based on (25) has exact asymptotic
coverage. However, the actual coverage could be different from the nominal level in small samples and depends typically
on the quantity 0 < λ = µ2/µ1 < 1. From the discussion in Section 4.3, we can derive the Edgeworth expansion in terms
of (x1, x2, X1, X2) as long as we recognize that x1 and X1 are means of (k − 1) = k[1 + O(k−1)] iid random variables and
(x2, X2) are means of k iid random variables each of which are means of (n−1) iid random variables distributed as σ 2ε times
χ2 random variables with one degree of freedom. We have

√
k
(
X1 − µ1
X2 − µ2

)
∼ N2

((
0
0

)
,

(
µ11 µ12

µ21 µ22

))
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where µ11 = 2µ21;µ22 = 2µ
2
2/(n − 1) and µ12 = µ21 = 0. By computing and plugging in the derivatives, the expression

for∆ reduces to

∆ =
n−3[µ−12 − µ

−1
1 ]µ11µ22

n−3(µ11 + µ22)3/2
=

√
2λ(1− λ)

(n− 1)(1+ λ2/(n− 1))3/2
.

For any pair (k, n) the first order term in the coverage error is bounded above by
√
2φ(zα)/[4(n − 1)

√
k] which is much

smaller than the conservative bound given in (24). The term is decreasing in α. However, even for α as small as 0.8
(which corresponds to a 80% confidence interval) the first order term is bounded above by [10(n − 1)

√
k]−1. As long as

(n− 1)
√
k > 10 we have [10(n− 1)

√
k]−1 < 0.1. Thus, even for small sample sizes (e.g. (n, k) = (6, 4)) the coverage error

is expected to be around 1%.

Example 3 (Average Bioequivalence). One of the criteria approved by the U.S. Food and Drug Administration (FDA) is that of
average bioequivalence. In average bioequivalence, the parameter of interest is π(θ) = µT/µR where µT and µR are the
mean responses of the test drug and the reference drug, respectively. As per FDA guidelines, the logarithm of the responses
are analyzed and they are generally believed to be normally distributed. Generalized inference for some of the problems
related to bioequivalence has been discussed in McNally et al. [15].
This specific statistical model is Zij = log Yij ∼ N(τi, σ 2i ) where i = 1, 2 for the test group and the reference group,

respectively, and j = 1, . . . , n. The parameter of interest isπ1(θ) = exp{τ1−τ2+ 12 (σ
2
1−σ

2
2 )}, the ratio of the two lognormal

means. Since the intervals are equivariant under monotone transformation, we will take π(θ) = [τ1− τ2+ 1
2 (σ

2
1 − σ

2
2 )] as

the parameter of interest. The statistics involved are described in the Behrens–Fisher example. The asymptotic mean vector
for the statistics is (µ1, µ2, µ3, µ4) = (τ1, τ2, σ 21 , σ

2
2 ). The obvious generalized pivot is

Tθ (x,X) = (x1 − x2)−
[
(X1 − µ1)

√
x3

√
X3

−
(X2 − µ2)

√
x4

√
X4

]
+
1
2

(
µ3x3
X3
−
µ4x4
X4

)
.

After some algebra we have,

∆ =

[
1
2 (µ3 − µ4)(µ3µ4 − µ3 − µ4)

{µ3 + µ4 +
1
2 (µ

2
3 + µ

2
4)}
3/2

]
. (26)

Therefore,∆ can be both negative and positive. From Proposition 3 in Appendix, we have |∆| < 0.5. The magnitude of the
first order term at α = 0.9 is bounded by 1/

√
n. Therefore for sample sizes n ≥ 10, the contribution of the first order term

is no more than 1% toward the coverage error of the generalized intervals.

4.4. ∆ 6= 0

In this section, we discuss two scenarios. If∆ is known, then one can modify the interval in a straightforward way. If∆
is unknown, it needs to be first estimated and then the modification carried out. We give examples of both situations.
Case I:∆ 6= 0 but known.
In this case, if the intendednominal level isα0 then fromTheorem4anypercentileαn of the generalizedpivot distribution,

Fn,X,x(·), that satisfies the equation

α − n−1/2∆φ(zα) = α0, (27)
will yield upper confidence intervals with coverage probabilities that are first order accurate. Here is an example.

Example 4. Consider a system consisting of components connected in series and each component has an exponentially
distributed survival time and an exponentially distributed repair time. Klion [27] and Jobe [28] have proposed a performance
measure called mean corrective maintenance time per average unit operating time (MTUT) for such systems. The measure
is defined as follows. Suppose there are d components connected in series and the mean failure time and the mean repair
time for the ith component are λi and νi, respectively. Then the MTUT is defined as

M =
d∑
i=1

(λi/νi).

Practitioners are interested in estimatingM and obtaining upper confidence bounds for it. ThemeasureM is closely related to
the summarymeasure, called Availability, for system reliability andmaintainability; see Knezevic [29]. Ananda [30] applied
generalized procedure for computing confidence interval for availability and the results reported in [30] show that the
generalized procedure works very well and the generalized confidence intervals for availability have near exact coverage
probability for the parameter values investigated in that paper. We found that the frequentist coverage of generalized
intervals for availability to be not as good for other parameter values. For instance, if there are many components (d > 4)
and if the ratio of the mean repair time to the mean survival time is high (>0.3) for each component, then the difference
of the nominal coverage and the intended coverage for the generalized confidence interval for availability could be as high
as 6%. In this section, however, we only give results for the measure M . There are no exact confidence bounds available
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Table 1
Performance of the corrected generalized intervals for Example 4.

α0 n = 5 n = 10
MLE Uncorrected Corrected MLE Uncorrected Corrected

0.800 0.782 0.887 0.788 0.800 0.876 0.801
0.850 0.822 0.921 0.836 0.833 0.913 0.857
0.900 0.866 0.954 0.892 0.877 0.944 0.903
0.950 0.915 0.984 0.942 0.919 0.972 0.946

in the literature for M . Jobe and David [31] proposed Buehler confidence bounds for M . Generalized confidence intervals
provide an easy solution. However, the generalized bounds are typically very conservative. We will now investigate the
performance of the modified generalized bounds by evaluating ∆ and making the modification for a first order correction.
Suppose the number of failure and repair time observations available for the ith component is ni. We work out the details
for the case when the number of observations for failure time is equal to the number of observations for repair time for each
observation; however the derivation can be easily extended to the general case when there are possibly unequal number of
observations for failure time and repair time for each component. We also assume that there are positive integers c1, . . . , cd
whose greatest common factor is one and ni = nci for some positive integer n. For deriving the large sample correction we
will assume n→∞. Following the arguments in Section 4.2.1, the general formula for Edgeworth expansion holds up to the
n−1/2 termprovided the samples from the ith components are blocked into n blocks of ci observations and the block averages
are used as the modified observations. Thus the failure time observations associated with the ith component have mean λi
and varianceλ2i /ci and the corresponding repair times havemean νi and variance ν

2
i /ci. Let xλ,1, . . . , xλ,d be the samplemean

of the failure times of the d components and xν,1, . . . , xν,d be those for the repair times. Let Xλ,1, . . . , Xλ,d and Xν,1, . . . , Xν,d
be the corresponding copies. Here the dimension of the statistic is D = 2d and the statistic is x = (xλ,1, xν,1, . . . , xλ,d, xν,d).
Then the generalized pivot is defined as Tθ (x,X) =

∑d
i=1

Xλ,i xνi
Xν,i xλ,i

.Nextwe identify the quantities needed for the computation

of∆. Since the samples are independent, we haveµij = 0 if i 6= j, andµii = λ2k/ck if i = 2k− 1 andµii = ν
2
k /ck if i = 2k for

k = 1, 2, . . . , d. Also, a(2)i = −λ
−1
i if i is odd and a

(2)
i = ν

−1
i if i is even. Moreover,

a(12)i,j =


−λ−2i , if i = j; i is odd,
−ν−2i , if i = j; i is even,
λ−1i ν

−1
i , if j = i+ 1; i is odd or j = i− 1; i is even,

0, otherwise.

(28)

The asymptotic variance of the pivot is

A0 =
d∑
i=1

[a(2)2i−1a
(2)
2i−1µ2i−1,2i−1 + a

(2)
2i a

(2)
2i µ2i,2i] =

d∑
i=1

2
ci
.

Similarly, the numerator of∆ can be shown to be−
∑∑

i6=j
4
cicj
. Therefore,∆ = −[

∑∑
i6=j

4
cicj
]/[
∑d
i=1

2
ci
]
−3/2 which does

not depend on the unknown parameters but is nonzero and is a function of the sample size. Let us consider a specific case
when d = 2 and let n1 = n and n2 = 2n. For this example, c1 = 1 and c2 = 2. Then,∆ = − 4

3
√
3
. Thus, for a systemwith two

components if the number of observations for one component is nearly double that of the other component, the generalized
confidence interval should be constructed using theα percentile of the generalized pivot distributionwhereα is a solution to

α +
4

3
√
3n
φ(zα) = α0.

Table 1 gives the results of a simulation experiment with d = 2, n1 = 5, 10, n2 = 2n1 and the parameters [λ1, ν1, λ2, ν2] =
[2, 0.1, 5, 0.05]. The simulation are based on 1000 samples and the percentiles of the generalized pivot distribution are com-
puted based on 10,000 replications. For comparison, the coverage probability constructed based on the asymptotic normality
of the MLE is also given under the column label ‘MLE’. The corrected generalized intervals have better coverage probability
than both, the intervals based on MLE and the uncorrected generalized intervals.

Case II:∆ unknown
Typically the value of∆ is a function of the parameters and hence unknown. Correction of generalized intervals based on

an estimate of∆ is useful particularly for examples where∆ is large and an efficient estimator of∆ is available. Given that
∆ is estimated from the sample, for small samples the estimation error may outweigh the possible gain from correcting the
first order term in the coverage error. However, there are a number of examples where one would benefit from modifying
the usual generalized intervals to make them first order correct.

Example 5. In economics and health research we find examples of data arising that are skewed and generally modeled as
normally distributed quantity after log transformation. Even though the median is the more natural measure to analyze for
skewed data, often practitioners are interested in the mean for such data as well. If multiple groups are involved then ratios
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Table 2
Modified generalized intervals vs the usual generalized intervals in Example 5.

α0 n = 25 n = 50
Uncorrected Corrected Uncorrected Corrected

0.800 0.901 0.867 0.856 0.820
0.850 0.928 0.894 0.888 0.862
0.900 0.963 0.955 0.928 0.908
0.950 0.998 0.989 0.962 0.951

of lognormal means can be used for relative comparisons. However, in certain situations, the difference of the lognormal
means may be the quantity of interest. Krishnamoorthy and Mathew [6] have proposed a generalized pivotal approach for
the difference of two lognormal means. The generalized intervals perform adequately for the parameter values reported.
However, if the population variances are large compared to the means then the generalized intervals are very conservative.

Let Y1,1, . . . , Y1,n be a random sample from lognormal distribution with parameters τ1 and σ 21 and let Y2,1, . . . , Y2,n be a
random sample from lognormal distribution with parameters τ2 and σ 22 . We will assume the samples are independent and
that variances are known to be equal, i.e., σ 21 = σ

2
2 = σ

2. The parameter of interest is the difference of the two lognormal
means, θ = θ1 − θ2 = exp{τ1 + 0.5σ 2} − exp{τ2 + 0.5σ 2}. Let Xi = n−1

∑n
j=1 log(Yi,j), i = 1, 2, and X3 is the combined

sample variance defined by X3 = (2n − 2)−1
∑2
i=1
∑n
j=1(log(Yi,j) − Xi)

2. The asymptotic mean vector for the statistic is
(µ1, µ2, µ3) = (τ1, τ2, σ

2). Then the generalized pivot for θ is

Tθ (x,X) = exp{x1 − (X1 − µ1)
√
x3/X3 + 0.5σ 2x3/X3} − exp{x2 − (X2 − µ2)

√
x3/X3 + 0.5σ 2x3/X3}.

After some algebra we have,

∆ = σθ [θ1θ2(0.5σ 2 − 1)− 0.25θ2]/[θ2(1+ 0.25σ 2)+ 2θ1θ2]3/2.

For parameter configuration with σ 2 large compared to θ , ∆ is potentially large. We investigated the performance of the
generalized intervals and modified generalized intervals in a limited simulation study with parameters (µ1, µ2, σ 2) =
(0, 1, 9) and the results are given in Table 2.
The reduction in coverage error is not as significant as in the example where ∆ is known. Even for sample size n = 25,

the error in estimation of ∆ is large enough to mitigate any gain from correcting the first order term in the expansion of
coverage probability. For larger sample sizes, such as n = 50, the estimation error in ∆ is small and the correction does
produce generalized intervals which are less conservative. Improved estimation of∆may improve the situation somewhat.

5. Conclusion

In this paper we have proposed a methodology for improving the finite sample coverage properties of generalized
confidence intervals. Themethodologyworks well when the finite sample properties of the traditional generalized intervals
are poor. We have derived our results under the assumptions of smoothness for the generalized pivots. Analogous results
for nondifferentiable parametric functions is a topic of future research. The modification suggested in this paper depends
on evaluation of the derivatives of the generalized pivot at the estimated moment of the random quantities involved in the
pivot. For applications where the pivot is based on matrix valued functions of the random quantities, the evaluation of the
derivative can be challenging. However, since we are interested in the derivative value only at a certain point, numerical
differentiation methods can be employed.
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Appendix. Proofs

Proof of Theorem 1. Let Ã(x) = H(x)G(x)whereH(x) = [Tθ (x, x)−Tθ (x,µ)] andG(x) = A
−1/2
0 (x,µ). Note that Ã(µ) = 0.

We will denote the functions corresponding to A0, A1, A2, A21 and A22 for Ã(x) as Ã0, Ã1, Ã2, Ã21 and Ã22. Then

∂H(x)
∂xi

= a(1)i (x, x)+ a
(2)
i (x, x)− a

(1)
i (x,µ)

= −a(1)i (x,µ) [because Tθ (x, x) = π(θ)],



1394 A. Roy, A. Bose / Journal of Multivariate Analysis 100 (2009) 1384–1397

∂G(x)
∂xi

=
−1

2A3/20 (x,µ)

∑
k,l

[a(12)i,k (x,µ)a
(2)
l (x,µ)+ a

(12)
i,l (x,µ)a

(2)
k (x,µ)]µkl

=
−1

A3/20 (x,µ)

∑
k,l

[a(12)i,k (x,µ)a
(2)
l (x,µ)]µkl,

∂2H(x)
∂xj∂xi

= a(1)ij (x, x)+ a
(12)
i,j (x, x)+ a

(12)
j,i (x, x)+ a

(2)
ij (x, x)− a

(1)
ij (x,µ)

= −a(11)ij (x,µ) [because Tθ (x, x) = π(θ)].

Therefore
∂H(x)
∂xi

∣∣∣∣
x=µ

= a(2)i ,
∂G(x)
∂xi

∣∣∣∣
x=µ

= A−3/20

∑
k,l

a(12)i,k a
(2)
l µkl,

∂2Ã(x)
∂xj∂xi

∣∣∣∣∣
x=µ

= A−1/20

{
∂2H(x)
∂xj∂xi

∣∣∣∣
x=µ

}
+

{
∂H(x)
∂xj

∂G(x)
∂xi
+
∂H(x)
∂xi

∂G(x)
∂xj

}
x=µ

= A−1/20 (a(2)ij + a
(12)
i,j + a

(12)
j,i )− A

−3/2
0

∑
k,l

[a(2)j a
(12)
i,k a

(2)
l + a

(2)
i a

(12)
j,l a

(2)
k ]µkl

= A−1/20 a(2)ij + A
−3/2
0

∑
k,l

[(a(12)i,j + a
(12)
j,i )a

(2)
k a

(2)
l − a

(2)
j a

(12)
i,k a

(2)
l − a

(2)
i a

(12)
j,l a

(2)
k ]µkl.

Thus,

Ã0 = A−10
∑
ij

a(2)i a
(2)
j µij = A

−1
0 A0 = 1, (A.1)

Ã1 = A
−1/2
0 A1 + 2−1A

−3/2
0

∑
i,j,k,l

[
(a(12)i,j + a

(12)
j,i )a

(2)
k a

(2)
l − a

(2)
j a

(12)
i,k a

(2)
l − a

(2)
i a

(12)
j,l a

(2)
k

]
µijµkl

= A−1/20 A1 + A
−3/2
0

∑
i,j,k,l

[
a(12)i,j a

(2)
k a

(2)
l − a

(2)
i a

(12)
j,l a

(2)
k

]
µijµkl

= A−1/20 A1 +∆. (A.2)

Also

Ã21 = A
−3/2
0

∑
ijk

a(2)i a
(2)
j a

(2)
k µijk = A

−3/2
0 A21,

Ã22 = A−3/20 A22 + A
−5/2
0

∑
ijkl

[
a(2)i a

(2)
j (a

(12)
k,l + a

(12)
l,k )a

(2)
m a

(2)
n − a

(2)
i a

(2)
j (a

(12)
k,m a

(2)
l a

(2)
n + a

(2)
k a

(12)
l,n a

(2)
m )
]
µikµjlµmn

:= A−3/20 A22 +∆2. (A.3)

The second part in the last equality in (A.3) is

∆2 = A
−5/2
0

∑
ijklmn

a(2)i a
(2)
j

[
(a(12)k,l + axylk)a

(2)
m a

(2)
n − a

(12)
k,m a

(2)
l a

(2)
n − a

(2)
k a

(12)
l,n a

(2)
m

]
µikµjlµmn

= A−5/20

∑
ijklmn

[a(2)i a
(2)
j a

(12)
k,l a

(2)
m a

(2)
n − a

(2)
i a

(2)
j a

(12)
k,m a

(2)
l a

(2)
n ]µikµjlµmn = 0.

Hence the result. �

Proof of Theorem 2. The results of Theorem 2 are similar to those for the distribution of analogous bootstrap pivotal
quantities. We only give a sketch of the proof.
The claim about Edgeworth expansion (10) follows directly along the lines of Theorem 5.1 of Hall ([26]; pp. 239). Also

see Bhattacharya and Ranga Rao [32]. The bootstrap probability measure (conditional on the sample) in Theorem 5.1 has to
be replaced by the measure associated with the pseudorandomization due to X in the generalized pivot Tθ (x,X). We do not
work out all the tedious details of the Edgeworth expansion of the pivot distribution under the PX measure conditional
on the sample x. We merely point out that the bulk of the arguments rests on the behavior of the cumulants for the
bootstrap probability measure conditional on the sample. The behavior of the cumulants under the pseudorandomization
of the generalized pivot in our setup is almost identical to those for the bootstrap measure.
To prove the claim about the generalized pivot Cornish–Fisher expansion (14), we use the generalized pivot Edgeworth

expansion (12) and follow the proof of Theorem 5.2 of Hall ([26]; pp. 241). The main idea is to establish that the coefficients
of the polynomial p1,x(zα) are bounded by a fixed constant C3 with probability approaching one at the rate 1 − O(n−λ).



A. Roy, A. Bose / Journal of Multivariate Analysis 100 (2009) 1384–1397 1395

However, by assumption (A2), the coefficients of the polynomial A1(x,µ)/A0(x,µ)1/2 and A2(x,µ)/A0(x,µ)3/2 are smooth
functions of xwith bounded derivatives and hence the claim follows. �

Proof of Theorem 3.

Px[π(θ) ∈ In,x(α)] = Px[PX{Tθ (x,X) < Tθ (x, x)} < α]

= Px[PX{Zn,X(x) < Zn(x)} < α] = Px(Zn(x) < F−1n,x,x(α))

= Px(Zn(x)− Cn(x, α) < zα − n−1/2p1,x(zα)). (A.4)

Let

gn(x, α) = zα − n−1/2p1,x(zα). (A.5)

and let Dn(x, α) = gn(x, α)− gn(µ, α) = n−1/2(p1,x(zα)− p1,µ(zα)). Therefore the required probability is

Px[π(θ) ∈ In,x(α)] = Px(Zn(x)− Cn(x, α) < gn(x, α))
= Px(Zn(x) < gn(µ, α)+ Cn(x, α)+ Dn(x, α)).

We will show that for some εn = o(n−1/2),

Px[π(θ) ∈ In,x(α)] = Px(Zn(x) < g̃n(µ, α))+ o(n−1/2),

where g̃n(µ, α) = gn(µ, α)+ 2Cnεn. It is enough to prove that

Px{|Cn(x, α)| > C3εn} = o(n−1/2), (A.6)

and

Px{|Dn(x, α)| > C3εn} = o(n−1/2), (A.7)

for some constant C3 > 0. Choose εn = n−β where β > 1/2 but close to 1/2. The relation (A.6) follows from (15). Now,

Px{|gn(x, α)− gn(µ, α)| > C3εn} = Px{|p1,x(zα)− p1,µ(zα)| > C3n1/2εn}.

By assumption (A2), p1, as a function of x is twice differentiable in a neighborhood of µ and has bounded derivatives.
Therefore, there exists a constant C4 > 0, such that |p1,x(zα) − p1,µ(zα)| ≤ C4‖x − µ‖ for all x in a δn neighborhood of
µwhere δn = o(n1/2εn). By Assumption (A1), we have

Px{‖x− µ‖ ≥ δn} ≤ C4[δnn1/2]−3. (A.8)

Therefore,

Px{|Dn(x, α)| > C3εn} = O(n−3ε−3n ). (A.9)

It is easy to see that one can choose δn and β such that the O(n−3ε−3n ) term in (A.9) is indeed o(n
−1/2). Thus,

Px[π(θ) ∈ In,x(α)] = Px(Zn(x) < g̃n(µ, α))+ o(n−1/2). (A.10)

Using the one term Edgeworth expansion (10) for the studentized statistic Zn(x), and Taylor expansion of Φ(g̃n(µ, α)) up
to order n−1/2 term and noting that the leading term in gn(µ, α) is zα we have

Px[π(θ) ∈ In,x(α)] = Φ(g̃n(µ, α))+ n−1/2q1,µ(g̃n(µ, α))φ(g̃n(µ, α))+ o(n−1/2)

= α − n−1/2[p1,µ(zα)− q1,µ(zα)]φ(zα)+ o(n−1/2)

= α − n−1/2∆φ(zα)+ o(n−1/2). (A.11)

This completes the proof of Theorem 3. �

The error term in (A.11) can be actually shown to be O(n−1) in many examples. For example, if the quantities are such
that we can apply Delta Method as in Hall ([26], pp. 76), then the error term can be shown to be O(n−1).
Before we prove Theorem 4 we establish the following lemma.

Lemma 1. Let the assumptions of Theorem 3 hold and let ∆̂ be a
√
n-consistent estimator of ∆ which satisfies

Px{|∆̂−∆| > C5nδ−1/2} = o(n−1/2), (A.12)

for some 0 < δ < 1/2 and some constant C5 < 0. Let rn(x, α) = gn(x, α̂n)− gn(x, αn) where gn(x, α) is defined in (A.5). Then
there exists a constant C6 > 0 such that Px{|rn(x, α)| > C6n−1+δ} = o(n−1/2).



1396 A. Roy, A. Bose / Journal of Multivariate Analysis 100 (2009) 1384–1397

Proof. The case when ∆ = 0 can be easily dealt with as in that case αn = α0 and α̂n − α0 is n−1/2φ(zα̂n) and φ is a
bounded quantity. Thus, we will consider only the case when ∆ 6= 0. From definition α̂n − n−1/2∆̂φ(zα̂n) = α0 and
αn − n−1/2∆φ(zαn) = α0. Subtracting the second equation from the first and rearranging the term and expanding φ(zα̂n)
around αn we have

(α̂n − αn) =
−n−1/2(∆̂−∆)φ(zα̂n)
1+ n−1/2∆zα∗n

, (A.13)

where α∗n is between αn and α̂n. By the mean value theorem, zα̂n − zαn =
(α̂n−αn)
φ(zα∗∗n

)
, where α∗∗n is between α̂n and αn. Hence

from (A.13) we have

rn(x, α) = n−1[
√
n(∆̂−∆)]vn(x, α),

where

vn(x, α) =
φ(zα̂n)[1− n

−1/2 A2(x,µ)
A3/20 (x,µ)

(zα̂n + zαn)]

φ(zα∗∗n )[1+ n
−1/2∆zα∗n ]

. (A.14)

Because α∗n ∈ [n
−ε, 1 − n−ε] we have n−1/2∆zα∗n < C7

√
log n/n for some constant C7 < 0. Hence for large enough n,

[1+ n−1/2∆zα∗n ]
−1 is less than 2. Also, note that

φ(zα̂n )
φ(zα∗∗n

)
≤ max{1,

φ(zα̂n )
φ(zαn )

I(|αn − 1/2| > |α̂n − 1/2|)}. Now from definition,
φ(zα̂n )
φ(zα∗∗n

)
=

∆

∆̂

α̂n−α0
αn−α0

. Therefore, if |αn − α0| > η for some constant η > 0 then
φ(zα̂n )
φ(zα∗∗n

)
≤

C8
∆̂
=

C8
∆̂−∆+∆

for some constant

C8 > 0. For |αn − α0| ≤ η we have
φ(zα̂n )
φ(zα∗∗n

)
≤ emax{z

2
α0+η

+z2α0−η}. Therefore by assumption (A.12) we have

Px

{
φ(zα̂n)
φ(zα∗∗n )

≥ C10

}
= o(n−1/2), (A.15)

for some constant C10 > 0. Again, since α̂n and αn are in [n−ε, 1− n−ε] we have n−1/2(zα̂n + zαn) < C11
√
log n/n for some

constant C11 > 0. By themoment assumptions on x and the smoothness assumption on the derivatives ai(x,µ) and aij(x,µ),
for some constant C12 < 0, we have Px{|

A2(x,µ)
A0(x,µ)3/2

| > C12} = o(n−1/2). Thus, for large enough n,

Px

{
1− n−1/2(zα̂n + zαn)

A2(x,µ)
A0(x,µ)3/2

> 1/2
}
= o(n−1/2). (A.16)

Therefore, from (A.16), (A.15) and the fact that for large n, [1+ n−1/2∆zα∗n ]
−1 is less than 2, we have

Px{|vnx, α| > C10} = o(n−1/2). (A.17)

Then by assumption (A.12) we have the result. �

Proof of Theorem 4. By (A.4), we have

Px[π(θ) ∈ In,x(α̃n)] = Px(Zn(x)− Cn(x, α̃n) < gn(x, α̃n)).

By definition α̃n ∈ [n−ε, 1 − n−ε]. Thus, as in proof of Theorem 3, we can bring the remainder term, Cn(x, α̃n), outside the
probability as a o(n−1/2) term. Therefore,

Px[π(θ) ∈ In,x(α̃n)] = Px(Zn(x) < gn(x, α̃n))+ o(n−1/2)

= Px(Zn(x) < gn(x, αn)+ r̃n(x, α))+ o(n−1/2) (A.18)

where r̃n(x, α) = gn(x, α̃n)− gn(x, αn) = (zα̃n − zαn)[1− n−1/2
A2(x,µ)
A3/20 (x,µ)

(zα̃n + zαn)]. Similarly define

rn(x, α) = gn(x, α̂n)− gn(x, αn).

We can replace r̃n(x, α)with rn(x, α) in (A.18) as Px(α̃n 6= α̂n) is o(n−1/2). By Lemma 1, we have Px{|rn(x, α)| > C6n−1+δ} =
o(n−1/2). Then, by arguments similar to those in the proof of Theorem 3, we have

Px[π(θ) ∈ In,x(α̃n)] = Px(Zn(x) < gn(µ, αn))+ o(n−1/2)
= αn − n−1/2∆φ(zαn)+ o(n

−1/2)

= α0 + o(n−1/2). �
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Finally we prove the Proposition which was used in Example 3.

Proposition 3. Let x, y > 0 be positive real numbers. Then

f (x, y) = {x+ y+ 0.5(x2 + y2)}3 − (x− y)2(x+ y− xy)2 > 0.

Proof. We prove the result using a combination of sum of squares optimization methods (Parrilo and Sturmfels [33]) and
first principles. Rearranging the terms we have f (x, y) = (1/8)[P3(x, y)+ P4(x, y)+ P5(x, y)+ P6(x, y)], where Pr(x, y)
is an rth degree polynomial in (x, y) and the polynomials are given by

P3(x, y) = 8(x+ y)3,
P4(x, y) = 12(x+ y)2(x2 + y2)− 8(x− y)2(x+ y)2,
P5(x, y) = 6(x+ y)(x2 + y2)2 + 16xy(x− y)2(x+ y),
P6(x, y) = (x2 + y2)3 − 8(x− y)2x2y2.

The polynomial P4(x, y) is positive because 3(x2 + y2) − 2(x − y)2 > 0. The polynomial P5(x, y) can be written as
(x + y)[6(x2 − y2)2 + 8xy(x2 + y2 − xy)] and hence positive. Since f (x, y) is symmetric about x = y, we can assume
0 < y < x without loss of generality. Let r = (y/x)2. Then P6(x, y) > 0 is equivalent to showing 1 − 5r + 11r2 + r3 > 0
for r ∈ (0, 1). A simple one variable analysis establishes the claim. �
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