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a b s t r a c t

We address the problem of spherical deconvolution in a non-parametric statistical
framework, where both the signal and the operator kernel are subject to measurement
errors. After a preliminary treatment of the kernel, we apply a thresholding procedure to
the signal in a second generationwavelet basis. Under standard assumptions on the kernel,
we study theminimax performances of the resulting algorithm in terms ofLp losses (p ≥ 1)
on Besov spaces on the sphere. We hereby extend the application of second generation
spherical wavelets to the blind spherical deconvolution framework. It is important to stress
that the procedure is adaptive with regard to both the target function sparsity and the
kernel blurring effect. We end with the study of a concrete example, putting into evidence
the improvement of our procedure on the recent blockwise SVD algorithm of Delattre et al.
(2012).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Statistical framework

Consider the following problem:we aimat recovering a signal f defined on the 2-dimensional sphere S2. f is not observed
directly, but through the action of a blurring processmodeled by a linear operatorK , and further contaminated by an additive
Gaussian white noise. This is resumed in the classic white noise model

Yε = Kf + εẆ (1.1)

where Ẇ is awhite noise onL2(S2) andK : L2(S2) → L2(S2) is ameasurable operator.We shall further restrict the shape of
K by assuming that it is a convolution operator onL2(S2), a classic framework [14,19,18] enjoying convenientmathematical
properties (see Section 1.2). Namely, we suppose that there exists h ∈ L2(SO(3)) such that

Kf (ω) =


SO(3)

f (g−1ω)h(g)dg (1.2)

where dg is the Haar measure on SO(3). So to speak, f is averaged on a neighborhood of ω and weighted according to
h(g) for each rotation g−1 applied to ω. Alternatively, in a density estimation framework, one observes a random n-sample
(θ1X1, . . . , θnXn) of Z = θX with density Kf , where θ is a random element in SO(3) (the group of rotations on R3) with
density h, and X has density f ∈ L2(S2). Formally we have ε ∼ n−1/2, and one can show that (1.2) holds as well [14].
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In practice, the blurring operator K is seldom directly observable and rather subject to measurement errors. For example K
can be unknown but approximated via preliminary inference, or it can be the result of an unknown perturbation applied to a
known operator. Following Efromovich and Koltchinskii [9] and Hoffmann and Reiß [15], wemodel the error in the operator
as an additive Gaussian operator white noise. The observed result is a noisy version Kδ , satisfying

Kδ = K + δḂ (1.3)

where Ḃ is a Gaussian operator white noise on L

L2(S2)


the set of linear endomorphisms of L2(S2), independent from Ẇ .

The meaning of models (1.1) and (1.3) is as follows: for u, v, w,∈ L2(S2), observable quantities take the forms

⟨Kf , u⟩ + εα(u), ⟨Kv,w⟩ + δβ(v,w)

where α(u) and β(v,w) are both Gaussian centered variables with respective variances ∥u∥2
2 and ∥v∥2

2∥w∥
2
2. Moreover, if

u′, v′, w′
∈ L2(S2) are other candidate functions, we have

E[α(u)α(u′)] = ⟨u, u′
⟩L2(S2)

E[β(v,w)β(v′, w′)] = ⟨v, v′
⟩L2(S2)⟨w,w

′
⟩L2(S2).

Many scientific fields call upon simple and efficient tools for the resolution of (1.1). Spherical deconvolution is for example
well illustrated by the study of ultra high energy cosmic rays (UHECR), which are high energy radiations hitting the earth
fromapparently randomdirections. They could originate from long-lived relic particles from the Big Bang. Alternatively, they
could be generated by the acceleration of standard particles, such as protons, in extremely violent astrophysical phenomena.
They could also originate from Active Galactic Nuclei (AGN), or from neutron stars surrounded by extremely high magnetic
fields. Discriminating among these different hypotheses involves the precise reconstruction of the probability density
generating their observations. One could ask for example whether the latter is uniformly distributed among the sphere,
or if it is constituted of superimposed localized spikes. In practice however, observations (X1, . . . , Xn) of such radiations
are often subject to various physical perturbations. We model these by a random rotation θ, which is to say we actually
observe (θ1X1, . . . θnXn), n realizations of the random variable Z = θX . The difficulty of the problem is characterized by the
spreading of h, the density of θ , around the neutral element of SO(3): the less localized, the more difficult the estimation of
f . Moreover, the law of θ is not known in general, even if some assumptions can restrict its shape. In this case, preliminary
inference is necessary, and leads to an estimator Kδ of K according to (1.3).

Case of a known operator

We shall consider here the case where δ = 0, and expose the path which finally led to the introduction and use of
needlets. Spherical harmonics constitute themost natural set of functions to expand f ∈ L2(S2). Their frequency localization
furthermore makes them ideally suited to spherical deconvolution, as they realize a blockwise SVD of K (as shown in
Proposition 1.1), a propertywhich guarantees the stability of its inversion. It prompted Healy et al. [14] to solve the spherical
deconvolution problem with their use, hereby reaching optimal L2 rates of convergence on Sobolev spaces (Kim and Koo
[19]). Unfortunately their performances can prove quite poor when the loss is measured by other Lp norms, 1 ≤ p ≤ ∞,
since they lack localization in the spatial domain (see [13]). The recent development of spherical wavelets [27,22] reversed
this compromise, the latter beingwell localized in the spatial domain but very poorly in the frequential one. Thismakes them
useful when a direct estimation of f is involved (see for example Freeden et al. [10] or Freeden et al. [11] for applications to
geophysics and atmospheric sciences), but irrelevant in the setting of spherical deconvolution. The solution to this problem
was finally brought by Narcowich et al. [24], who introduced a new set of functions, called needlets, which preserve the
frequential localization of spherical harmonics and remedy their lack of spatial localization. Thereby, needlets inherit the
stability of spherical harmonics in spherical deconvolution. They were subsequently exploited by Kerkyacharian et al. [18],
who designed a procedure involving needlets attaining near-minimax rates of convergence for Lp losses (1 ≤ p ≤ ∞)
on Besov spaces (which definition is given in Section 2.3). Needlets also found various applications in the case of a direct
estimation of f , whether in astrophysics [21,13] or brain shape modeling [28].

Case of an unknown operator and Galerkin projection

The main methods in the context of blind deconvolution involve SVD and Galerkin schemes (see [3,4,15] for example).
Galerkin projections were for example successfully applied to blind deconvolution on Hilbert spaces [9] or on Besov spaces
on [0, 1]d [15,4]. They are based upon a discretization of (1.1) and (1.3) through the choice of appropriate test functions.
Suppose we want to recover a function f from the observation of g = Kf . Let (Vn)n≥0 and (Wn)n≥0 be two increasing
sequences of finite n-dimensional subspaces in L2(S2), which admit the respective orthogonal bases ϕ = (ϕk)k≤n and
ψ = (ψk)k≤n. The Galerkin approximation fG ∈ Vn of f is the solution of the equation

⟨KfG, v⟩ = ⟨g, v⟩, ∀v ∈ Wn. (1.4)

This equation actually amounts to solving a finite dimensional linear system. Indeed, for γ ∈ Vn, note γ n the vector whose
components are (⟨γ , ϕk⟩)k≤n and K n the matrix with entries (⟨Kϕk, ψk⟩)k,k′≤n. Then fG ∈ Vn and we have

gn
= K nf nG .
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The presence of noise in the signal and the operator raises additional issues. First, the algorithmmust include and articulate
two essential steps, namely the inversion of K and the regularization of the data which we will perform through a
projection/thresholding scheme. Note that both the signal and the operator K can (and will) be subject to regularization
(see [15,6]). The second practical problem concerns the choice of the test functions ϕ,ψ. This choice should answer the
dilemma to find a set which is compatible both with the sparsity of f and with the structure of K (see [15,6]). Spherical
harmonics respond optimally to this problem in the case of spherical deconvolution on Sobolev spaces for a L2 error, since
they realize a blockwise SVD of K , as shown in Proposition 1.1. More importantly here, they allow a fine treatment of Kδ
thanks to the sparse structure of the original operatorK in that basis. This structurewas exploited by Delattre et al. [6] in the
context of blind spherical deconvolution: by an adequate regularization of Kδ and Yε , the authors exhibited optimal rates of
convergence under common assumptions on f and K . This procedure is exposed in detail in Section 3.1.2.

1.2. Harmonic analysis on SO(3) and S2

The present part provides useful mathematical tools in the context of spherical deconvolution. It is a quick overview
of harmonic analysis on the spaces S2 and SO(3) which is mostly inspired by Healy et al. [14], and will end up with the
blockwise SVD property.
Let us define the Euler matrices

u(ϕ) =

cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


, a(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


where ϕ ∈ [0, 2π), θ ∈ [0, π).
Every rotation g in SO(3) is the product of 3 elementary rotations:

ε = u(ϕ)a(θ)u(ψ) (1.5)
where ϕ,ψ ∈ [0, 2π), θ ∈ [0, π) are the Euler angles of g . Let ℓ ∈ N and −ℓ ≤ m, n ≤ ℓ. We also define the rotational
harmonics

Rℓ,m,n(ϕ, θ, ψ) = e−i(mϕ+nψ)Pℓ,m,n(cos(θ)) (1.6)
where Pℓ,m,n are the second type Legendre functions (see [29]).
The functions Rℓ,m,n, ℓ ∈ N, |m|, |n| 6 ℓ are the eigenfunctions of the Laplace–Beltrami operator on SO(3), associated with
the eigenvalues 2ℓ+1. Therefore, the system (

√
2ℓ+ 1Rℓ,m,n)ℓ≥0,|m|,|n|≤ℓ forms a complete orthonormal basis of L2(SO(3)).

Let h ∈ L2(SO(3)). For all ℓ ≥ 0, the projection of h on the space of rotational harmonics with degree ℓ is
ℓ

m,n=−ℓ

ĥℓ,m,nRℓ,m,n

where ĥℓ,m,n is the (ℓ,m, n) Fourier coefficient of h, defined by

ĥℓ,m,n =


SO(3)

h(g)Rℓ,m,n(g)dg (1.7)

and dg is the Haar measure on SO(3). An analogous study is available on S2. Any point ω ∈ S2 is determined by its spherical
coordinates (θ, ϕ):

ω = (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)) (1.8)
where θ ∈ [0, π) and ϕ ∈ [0, 2π). Let ℓ a positive integer andm, n two integers ranking from −ℓ to ℓ. Define the spherical
harmonics on S2 by:

Yℓ,m(θ, ϕ) = (−1)m


2ℓ+ 1
4π

(ℓ− m)!
(ℓ+ m)!

Pℓ,m(cos(θ))eimϕ (1.9)

where Pℓ,m are the Legendre functions (see [29]). The set (Yℓ,m)ℓ≥0,|m|≤ℓ constitutes an orthonormal basis of L2(S2). Note Hℓ

the space of spherical harmonics with degree ℓ and Pℓ the orthogonal projector ontoHℓ. Then for every function γ ∈ L2(S2),

Pℓγ =

ℓ
m=−ℓ

γ̂ℓ,mYℓ,m

where γ̂ℓ,m is the (ℓ,m) Fourier coefficient of f , defined by

γ̂ℓ,m =


S2
γ (ω)Yℓ,m(ω)dω.

The term ‘blockwise SVD’ finds its roots in the following proposition, which links the Fourier coefficients of h ∗ γ to those
of h and γ . A proof is present in [14].
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Proposition 1.1 (Blockwise SVD Property). Let h ∈ L2(SO(3)) and γ ∈ L2(S2). The Fourier coefficients of h ∗ γ are

(h ∗ γ )ℓ,m =

ℓ
n=−ℓ

ĥℓ,m,nγ̂ℓ,n =

ℓ
n=−ℓ

⟨h ∗ Yℓ,n, Yℓ,m⟩⟨γ , Yℓ,n⟩.

Consequences on the Galerkin projection

Proposition 1.1 has interesting implications in terms of the Galerkin projection of (1.1) and (1.3) on spherical harmonics.
Indeed, note Kℓ ∈ M2ℓ+1(C) the matrix

Kℓ =

⟨KYℓ,n, Yℓ,m⟩


|m|,|n|≤ℓ

and, for γ ∈ L2(S2), note γℓ ∈ C2ℓ+1 the vector

⟨γ , Yℓ,m⟩


|m|≤ℓ

. Proposition 1.1 then translates into
Kf

ℓ
= Kℓfℓ.

Let us hence turn back to the Galerkin scheme (1.4). Take Wn = Vn to be the subspace of L2(S2) spanned by all spherical
harmonics with degree less than n. Proposition 1.1 implies the following:
1. fG =


ℓ≤n Pℓf

2. The Galerkin matrix K n is a sparse blockmatrix, with blocks Kℓ, ℓ ≤ n, along its diagonal. This justifies the denomination
of blockwise SVD.

In the sequel, if γ ∈ L2(S2), we will refer indifferently to Pℓγ or γℓ. Similarly, if K is a convolution operator on L2(S2), we
will refer indifferently to PℓKPℓ or Kℓ. Due to Parseval’s formula, we also have the relations

∥Pℓ γ ∥L2(S2) = ∥γℓ∥ℓ2(C2ℓ+1)

∥PℓKPℓ∥L2(S2)→L2(S2) = ∥Kℓ∥op

where we have noted ∥.∥op the spectral norm of a matrix. Turning back to the original problem and reminding Proposi-
tion 1.1, we can reformulate the equivalent problem, obtained by projecting (1.1) and (1.3) onto every space Hℓ:

∀ℓ ≥ 0, Yε,ℓ = Kℓfℓ + εẆℓ (1.10)

∀ℓ ≥ 0, Kδ,ℓ = Kℓ + δḂℓ (1.11)

where Ẇℓ is a centered Gaussian vector with covariance I2ℓ+1, and Ḃℓ is a (2ℓ+ 1)× (2ℓ+ 1)matrix whose entries are i.i.d.
N (0, 1) variables.

An alternative point of view

The blockwise SVD property allows to avoid considering the inner products ⟨KδYℓ,m, Yℓ′n⟩ when ℓ ≠ ℓ′ and provides
hereby Kδ with a sparse structure consisting in (2ℓ + 1) × (2ℓ + 1) matrices on its diagonal. This is a consequence of the
convolutive structure ofK . Actually, an alternativeway to get to (1.11) is to consider that the kernelh ofK is directly polluted
by an additive Gaussian white noise on L2(SO(3)). Namely wewould observe hδ = h+δḃwhere ḃ is a Gaussianwhite noise
on L2(SO(3)). Observations conducted on Kδ would hence become

⟨KδYℓ,m, Yℓ′,n⟩ = ⟨hδ ∗ Yℓ,m, Yℓ′,n⟩
and would be null if ℓ ≠ ℓ′ as a consequence of Proposition 1.1.

2. Needlets

2.1. Construction of needlets

Needlets were introduced by Narcowich et al. [24], and used in the framework of density estimation on the sphere by
Baldi et al. [1] and Kerkyacharian et al. [18]. As their construction relies on a rearrangement of spherical harmonics, they
inherit the useful stability properties of the latter in spherical deconvolution. In addition, whereas the support of a spherical
harmonic spreads all over the sphere, each needlet is localized around its center, and decays almost exponentially away from
it. This concentration ismore andmore pronounced as the level of resolution increases, making needlets a handymulti-scale
tool on the sphere. Also, they characterize in a way similar to Euclidean wavelets belonging to Besov spaces on the sphere,
which will be introduced in Section 2.3.

Needlet framework

The needlet theory relies on the orthogonal decomposition of the space L2(S2):

L2(S2) =

⊥
ℓ≥0

Hℓ
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where each Hℓ represents the space of spherical harmonics with degree ℓ. Along with this decomposition naturally come
the orthogonal projectors Pℓ on Hℓ and their associated kernels

Lℓ(x, y) = Lℓ

⟨x, y⟩R2ℓ+1


=


|m|≤ℓ

Yℓ,m(x)Yℓ,m(y).

Since Lℓ is the kernel of an orthogonal projector, it satisfies the property
S2

Lℓ(x, y)Lk(y, z)dy = δℓ,kLℓ(x, z), for all x, z ∈ S2. (2.1)

Paley–Littlewood decomposition

The role of the Paley–Littlewood theory is to generalize some convenient properties, tied to the L2 framework, to Lp

spaces. This task is performed via a binary filtering of the projectors Pℓ.
Let a ∈ C∞(R) be a symmetric function, compactly supported in [−1, 1] and decreasing on R+, such that for all x ∈ R,
0 ≤ a(x) ≤ 1 and for all |x| ≤ 1/2, |a(x)| = 1. Define for all x ∈ R, b2(x) = a(x/2)−a(x). b2 is a positive function, supported
in [−2; −1/2]


[1/2; 2], satisfying by construction


j≥0 b

2(x2−j) = 1 for all |x| ≥ 1. Define also the following projection
kernels on R2

Λj(x, y) =


ℓ≥0

b2

ℓ

2j


Lℓ(x, y) (2.2)

Mj(x, y) =


ℓ≥0

b

ℓ

2j


Lℓ(x, y), (2.3)

as well as the associated operators on L2(S2),

Bj : γ →


S2
Λj(x, y)γ (y)dy, AJ : γ →

J
j=−1

Bjγ

with the convention B−1γ = P0γ . Note that the sum in (2.2) and (2.3) is finite since b(ℓ2−j) = 0 if ℓ ∉ Lj, where we have
noted Lj the set of integers ranging from 2j−1 to 2j+1

− 1. It is straightforward to show that, for all f ∈ L2(S2),

∥AJγ − γ ∥2 → 0 as J → ∞. (2.4)

One of the main results in Narcowich et al. [24] states that AJ also mimics the best polynomial approximation of γ with
respect to ∥.∥p for all p ≥ 1, as expressed in the following theorem:

Theorem 2.1. For all p ∈ [1,∞[, if f ∈ Lp(S2), then

∥AJγ − γ ∥p → 0 as J → ∞,

with uniform convergence if f ∈ C0(S2).

Space discretization

The second ingredient in the construction of needlets is the polynomial structure of the spaces Hℓ. Indeed, for all
γ ∈ Hℓ, γ

′
∈ Hk, we have γ γ ′

∈ Hℓ+k. Let us note Pℓ =


k≤ℓ Hk. A corresponding quadrature formula on every space Pℓ

is available as well:

Proposition 2.2 (Quadrature Formula). For all ℓ ≥ 0, there exists a finite set Zℓ of cubature points, associated to the cubature
weights (λη)η∈Zℓ such that, for all γ ∈ Pℓ,

S2
γ =


η∈Zℓ

ληγ (η).

Since b(ℓ2−j) ≠ 0 only if 2j−1
≤ ℓ < 2j+1 the function z → Mj(x, z) belongs to P2j+1−1, and z → Mj(x, z)Mj(z, y) is

an element of P2j+2−2. For more convenience, we will note Zj = Z2j+2−2 the corresponding set of cubature points. It can
be shown that the cubature points η ∈ Zj and weights (λη)η∈Zj can be chosen so that the two following conditions are
fulfilled:

c−122j
≤ card(Zj) ≤ c22j and C−12−2j

≤ λη ≤ C2−2j (2.5)
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Fig. 1. A Spherical representation of two needlets (level j = 2, 3 from left to right) centered around the point (0, 0, 1). The darkened zones correspond to
the regions where the needlet is high. The concentration of the needlet around its center is more pronounced as the level j increases.

for some constants c, C > 0. For all j ≥ 0, Bj now satisfies:

Bj(γ ) =


S2


η∈Zj

ληMj(x, η)Mj(η, y)dz

γ (y)dy

=


η∈Zj


ληMj(x, η)


S2


ληMj(η, y)γ (y)dy. (2.6)

The functions ψj,η =

ληMj(., η) appearing in (2.6) are called needlets. By extension we also define ψ−1,η = ψ0 =

(4π)−11
{S2}

the normalized constant on S2. An immediate consequence of (2.4) is the following: for all γ ∈ L2(S2),

∥γ ∥
2
2 = ⟨γ ,ψ0⟩

2
+


j≥0


η∈Zj

⟨γ ,ψj,η⟩
2. (2.7)

The next section shows that this property somehow generalizes to other Lp norms, 1 ≤ p ≤ ∞.

2.2. Properties of needlets

By construction, needlets are compactly supported in the frequential domain. A crucial result proved by Narcowich
et al. [24] shows that they are furthermore nearly exponentially localized in space:

Theorem 2.3. Let j ≥ 0, η ∈ Zj. For all M > 0, there exists CM > 0 such that

∀x ∈ S2, |ψj,η(x)| ≤
CM2j

(1 + 2jd(x, η))M
(2.8)

where d(x, y) = arccos(⟨x, y⟩) is the geodesic distance on the sphere. To illustrate this point, we represented two needlets
of level j = 2, 3 in Fig. 1. This property is central, since it allows to relate the Lp norm of the projection


η∈Zj

⟨γ ,ψj,η⟩ψj,η

to the discrete ℓp norm of the finite sequence (|⟨γ ,ψj,η⟩|∥ψj,η∥p)η∈Zj . Indeed, the two following propositions hold [17]:

Proposition 2.4. For all 1 ≤ p ≤ ∞ (with the convention 1/∞ = 0), there exist cp, Cp > 0 such that

cp2
2j( 12 −

1
p ) ≤ ∥ψj,η∥p ≤ Cp2

2j( 12 −
1
p ). (2.9)

Proposition 2.5. For all p ≥ 1, there exists a constant Cp such that for all γ ∈ Lp(S2),

∥Bj(γ )∥p ≤ Cp


η∈Zj

|⟨γ ,ψj,η⟩|
p
∥ψj,η∥

p
p

1/p

. (2.10)

Moreover, if p = ∞, there exists C∞ > 0 such that

∥Bj(γ )∥∞ ≤ C∞2j sup
η∈Zj

|⟨γ ,ψj,η⟩|. (2.11)
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2.3. Besov spaces

Besov spaces on the sphere naturally generalize the usual approximation properties of regular functions while being
simply characterized with the help of needlets. A complete description, and the proofs of the results claimed in this part can
be found in Narcowich et al. [23] or Kerkyacharian and Picard [17]. Let γ : S2

→ R be a measurable function and let Ek,π (γ )
(1 ≤ π ≤ ∞) be the distance of γ to Pk with respect to ∥.∥π , that is

Ek,π (γ ) = inf
P∈Pk

∥γ − P∥π .

Theorem 2.6. Let 0 < s < ∞, 1 ≤ p ≤ ∞ and 0 < r ≤ ∞. Let γ ∈ Lπ (S2). The following statements are equivalent and
define the Besov space Bs

π,r on S2:
k≥0

krsEk,π (γ )r
1
k

1/r

< ∞ (2.12)


j≥0

2jrsE2j,π (γ )
r
1/r

< ∞ (2.13)

∃ ξj ∈ ℓr(N), ∥Bjγ ∥π = ξj2−js (2.14)

∃ ξj ∈ ℓr(N),

η∈Zj

|⟨γ ,ψj,η⟩|
π
∥ψj,η∥

π
π

1/π

= ξj2−js. (2.15)

Bs
π,q is a Banach space, endowed with the norm

∥γ ∥Bsπ,r =


2j


s+2


1
2 −

1
π


η∈Zj

|⟨γ ,ψj,η⟩|
π

1/π
j≥0


ℓr (N)

.

Besov embeddings
In order to conduct a procedure of estimation on Besov spaces, it is important to understand how they relate to each

other as the values of the parameters s, π, r change. This is resumed in the following proposition:

Proposition 2.7 (Besov Embeddings). Let s > 0, 1 ≤ p, π, r ≤ ∞. We have
• Bs

π,r ⊂ Bs
p,r if π ≥ p.

• Bs
π,r ⊂ B

s−2( 1π −
1
p )

p,r if π < p and s − 2(1/π − 1/p) > 0.
• Bs

π,r ⊂ C0(S2) if s > 2/π , where C0(S2) is the set of continuous functions on S2.

3. Estimation procedure

We turn to the presentation of our procedure of Blind Deconvolution using Needlets, which we will denote by BND, and
derive rates of convergence when the loss is measured in Lp norm, 1 ≤ p ≤ ∞, on Besov spaces. It is natural to suggest
needlets as the test functions to be used in theGalerkin projection (1.4), since they efficiently represent any function f ∈ Bs

π,r .
Unfortunately, the ensuing Galerkin matrix

⟨Kψj,η,ψh,α⟩

j≥0,η∈Zj,h≥0,α∈Zh

has many non-zero entries, due to the fact that the inner product ⟨Kψj,η,ψh,α⟩ is not necessarily null when |j− h| ≤ 1. This
is a direct consequence of Proposition 1.1 and the definition of needlets. The functions Yℓ,m constitute a more interesting
choice since the inner product ⟨Yε,ψj,η⟩ can be expressed in terms of the matrices Kℓ. Indeed, Parseval’s formula entails

⟨Yε,ψj,η⟩ =


ℓ∈Lj

⟨Kℓfℓ + εẆℓ,ψj,η,ℓ⟩.

Before entering into the core of our procedure, we need to precise the blurring effect of K . This will be realized through the
introduction of a constant ν which controls the increase of the norms ∥K−1

ℓ ∥op.

Assumption 3.1 (Degree of Ill-posedness). There exists ν ≥ 0, Q1,Q2 ≥ 0 such that, for all ℓ ∈ N,

Q1

ℓν ∨ 1


≤ ∥K−1

ℓ ∥op ≤ Q2

ℓν ∨ 1). (3.1)

We note Kν(Q1,Q2) the set of operators satisfying this assumption, and call ν the degree of ill-posedness (DIP) of K .
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Assumption 3.1 actually states that even if K is continuous from L2(S2) to L2(S2), its inverse is not bounded and hence
not computable in a satisfying way. However the weaker continuity of K−1

: Wν/2
→ W−ν/2 holds, where we have noted

W s
= Bs

2,2 the Sobolev space with parameter s > 0 on S2.
Let us now give an intuition of the main procedure in this paper. The decomposition of the inner product ⟨Kf ,ψj,η⟩ onto
every space Hℓ, ℓ ≥ 0 via Parseval’s formula, coupled with Proposition 1.1 gives

⟨f ,ψj,η⟩ =


ℓ∈Lj

⟨K−1
ℓ (Kf )ℓ,ψj,η,ℓ⟩.

Hence, a first natural estimator of ⟨f ,ψj,η⟩ isβj,η =


ℓ∈Lj

⟨K−1
δ,ℓ Yε,ℓ,ψj,η,ℓ⟩. (3.2)

Remark that the elements ψj,η,ℓ, ℓ ∈ Lj are easily computable thanks to the identity

⟨ψj,η, Yℓ,m⟩ = b

ℓ

2j


Yℓ,m(η) for all ℓ ∈ Lj, |m| ≤ ℓ.

However, the presence of noises contaminating both the signal Kf and the operator K requires an additional treatment.
Schematically, a regularized version of Kδ is plugged into (3.2), and the resulting estimator is subsequently thresholded in
order to control the variance induced by the two types of noises.

3.1. Main procedure

Suppose that Assumption 3.1 holds, and define J the maximal resolution level such that

2J
= λ⌊


ε


| log ε|
−1

∧

δ


| log δ|
−2

⌋ (3.3)

for a positive parameter λ. Set the operator thresholding level Oℓ(δ) to

Oℓ(δ) = κ
√
2ℓ+ 1δ


| log δ| (3.4)

where κ > 0. For j ∈ N, let

ℓj = min{ℓ ∈ Lj, ∥K−1
δ,ℓ ∥op ≤ Oℓ(δ)−1

}

(with the convention min∅ = +∞), and, for positive constants τsig , τop, define the signal thresholding level

Sj(δ, ε) =


∥K−1

δ,ℓj
∥op


τsigε


| log ε| ∨ τop2−j/2δ


| log δ|


if ℓj < ∞

+∞ if ℓj = +∞.
(3.5)

Define now the estimatorβj,η similarly toβj,η but where K−1
δ is replaced by its thresholded version

βj,η =

2j+1
ℓ=2j−1

⟨K−1
δ,ℓ 1

∥K−1
δ,ℓ

∥≤Oℓ(δ)−1
Yε,ℓ,ψj,η,ℓ⟩.

The final estimatorf of f isf =


j≤J


η∈Zj

βj,η1{|βj,η |>Sj(δ,ε)}
ψj,η.

For the sake of brevity, we shall denote this procedure as BND (for Blind Deconvolution using Needlets). Before establishing
the convergence rates of this algorithm in a minimax framework, let us give some enlightenments about the shape of the
thresholding levels. Usual thresholds [15,18] involve an upper bound on the variance of the coefficientsβj,η , and thereby the
knowledge of the constant ν. The term ∥K−1

δ,ℓj
∥op in (3.5) is meant to replace the more often used upper bound 2jν . Indeed,

Lemmas 4.1 and 4.2 show that with high probability these two quantities coincide up to a multiplicative constant. This trick
endows the procedure with adaptivity with regard to the parameters s, π, r and Q1,Q2, ν, and subsequently means that no
a priori knowledge on f nor K is required in order to set it up.
Lemma 4.2 however heavily relies on the non negativity of Q1. As a matter of fact, the rates of convergence derived below
fall apart when the latter is null. In that case, a preliminary knowledge of ν is essential, as well as the subsequent following
adaptations: the signal level Sj(δ, ε) is changed to

Sj(δ, ε) = 2jν

τsigε


| log ε| ∨ τop2−j/2δ


| log δ|


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and the new maximal level of resolutionJ satisfies
2J = λ⌊


ε


| log ε|
 −1
ν+1 ∧


δ


| log δ|
 −1
ν+1/2 ⌋.

The tuning down of the maximal level is not essential, yet it permits to avoid unnecessary calculations. As a matter of
fact, computations of the needlet coefficients are quite heavy, due to the absence of a simplifying algorithm (such as the
pyramidal algorithm for wavelets, see [20]). Thus, the computation of a single needlet coefficient ⟨γ ,ψj,η,ℓ⟩, which number
grows exponentially as the resolution level increases, requires the determination of 2.2j

− 1 inner products ⟨γℓ,ψj,η,ℓ⟩.
Let us now turn to the convergence rates of the procedure in a minimax framework, when the loss is measured in Lp

norm (1 ≤ p ≤ ∞) and f belongs to a Besov body.

Theorem 3.2. Let π ≥ 1, s > 2/π , r ≥ 1 and M > 0. Let ν ≥ 0, let Q1 ≥ Q2 > 0. Then for sufficiently large κ, τsig , τop, for all
p ∈ [1,+∞[,

sup
f∈Bsπ,r (M),K∈Kν (Q1,Q2)

E∥f − f ∥p
p . Rp(δ, 2, 1) ∨ Rp(ε, 2, 2)

where . means inequality up to a multiplicative constant depending only on p, s, π, r,M, ν,Q1,Q2, λ, κ, τsig and τop. The
convergence rates Rp(x, d, d′) are defined, for all x > 0, 1 ≤ p < ∞ and d, d′

∈ N by

Rx,p(d, d′) = (| log x|)p−1(x


| log x|)pµ(d,d
′)

where we noted

µ(d, d′) =


s

s + ν +
d′

2

if s > (ν + d′/2)(p/π − 1)

or s = (ν + d′/2)(p/π − 1) and r ≤ π
s − d/π + d/p

s − d/π + ν + d′/2
if

d
π
< s < (ν + d′/2)(p/π − 1).

Theorem 3.3. Under the same hypotheses as in Theorem 3.2,

sup
f∈Bsπ,r (M),K∈Kν (Q1,Q2)

E∥f − f ∥∞ . R∞(δ, 2, 1) ∨ R∞(ε, 2, 2) (3.6)

where

R∞(x, d, d′) =


| log x|(x


| log x|)µ
′(d,d′)

and

µ′(d, d′) =
s − d/π

s − d/π + ν + d′/2
.

The speeds of convergence exhibit an explicit interplay between the noise levels δ and ε, including the possible case where
δ ≫ ε. The convergence rates obtained when δ = 0 and ε = 0 are very similar, except that the problem ε = 0 reveals rates
corresponding to a problem in dimension 1. This indicates that the denoising of Kδ results in the same rates as the denoising
of Yε , but with a dimension parameter given by the size of the blocks appearing in the blockwise SVD (that is to say the
integer d′ such that dimHℓ ∼ ℓd

′

).
If δ = 0, the rates coincide with the results of Kerkyacharian et al. [18] (actually, the algorithms themselves are nearly
identical), which can be proved to be optimal in a minimax sense (up to a logarithmic factor, see Willer [30] for a sketch of
proof). The optimality when δ ≫ ε is not yet established, and we will not address it in the present paper. The two regions
s ≥ (ν + d/2)(p/π − 1) and s < (ν + d/2)(p/π − 1) are classic in non-parametric estimation in inverse problems, and
respectively referred to as the regular case and the sparse case.
Although we chose to work in a white noise model for the convenience of calculations, the algorithm and ensuing results
should be easily adaptable to the density estimation framework mentioned in Section 1.1, in which one observes direct
realizations (θ1X1, . . . , θnXn) of θX and a noisy version Kδ of K .

3.1.1. Adaptation to other dimensions and comparison with existing works
A close inspection of the proofs of Theorems 3.2 and 3.3 shows that the presence of a blockwise SVD decomposition,

combined with properties of the ensuing needlet frame similar to those in Section 2, ensures the applicability of the scheme
with adapted convergence rates.
This includes in particular the corresponding 1-dimensional problem, equivalent to deconvolution in a periodic setting [8].
HereMeyer’s periodizedwavelets can endorse the role of needlets in the present setting, since they are compactly supported
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in the frequential domain as well. In the Fourier basis on [0, 1], K is directly diagonalized, which corresponds to a blockwise
SVDwith dimensionality d′

= 0. The adapted algorithm henceforth reaches the rates Rp(δ, 1, 0)∨Rp(ε, 1, 1), 1 ≤ p ≤ ∞.
It outperforms the one developed in Hoffmann and Reiß [15] which corresponds formally to R2(δ, 1, 1) ∨ R2(ε, 1, 1). The
reason to it is that a Galerkin projection on wavelets is agnostic to the blockwise structure of K . Moreover, our procedure
widens the possible range of considered Lp losses.
In image processing, a signal f ∈ L2([0, 1]2) is observed through its convolution with a function k ∈ L2([0, 1]2) called the
Point Spread Function of the measuring device, which requires to be estimated in first instance (see [25,2]). A careful adap-
tation of themain results in this paper allows to treat this problem as well (for the definition of needlets on [0, 1]2, see [16]).
Another relevant example concerns the operators defined on Sd, d ≥ 1 via

K f (ξ) =


Sd
ϕ(⟨ξ, ω⟩)f (ω)dω

where ϕ is a bounded integrable function on [−1, 1]. In this case, as shown by the Funk–Hecke theorem (see [12]), spherical
harmonics realize a SVD of K . On the other hand, the construction of needlets generalizes naturally to Sd (see [24]), and the
rates derived hence change to Rp(δ, d, 0) ∨ Rp(ε, d, d), 1 ≤ p ≤ ∞.

3.1.2. Comparison with the blockwise SVD algorithm of Delattre et al. [6]
In this section we present the blockwise SVD algorithm BBD (for Blind Blockwise Deconvolution) depicted in Delattre

et al. [6], and compare it to BND. BBD also relies on the blockwise SVD property in Proposition 1.1, but tackles the
thresholding of the signal and the operator differently. Namely, define the maximal resolution level

L ∼ ⌊

ε


| log ε|
−1

∧

δ


| log δ|
−2

⌋

and the signal thresholding level Eℓ(ε) = τ
√
2ℓ+ 1ε

√
| log ε|, τ > 0. The estimatorf provided by the BBD algorithm is

f =


ℓ≤L

K−1
δ,ℓ 1

∥K−1
δ,ℓ

∥op<Oℓ(δ)−1
Yε,ℓ1{∥Yε,ℓ∥>Eℓ(ε)}

. (3.7)

It is quickly seen that BBD is still adaptive with respect to f and K . This estimator is however fundamentally different from
ours: first, the signal regularization is directly performed on the observed signal Yε rather than on K−1

δ Yε . Secondly, this
regularization step is anterior to the inversion of Kδ , whereas in BND the signal is first inverted and then thresholded. These
differences imply differences as well in the setting in which BBD will perform well. Namely, Delattre et al. [6] require that
the two following inequalities hold:

∥Kℓ∥op ≤ R1ℓ
−ν and ∥K−1

ℓ ∥op ≤ R2ℓ
ν (3.8)

for R1, R2 > 0. Let us note G(R1, R2) the set of operators satisfying (3.8). (3.8) unilaterally entails Assumption 3.1 which
means that BND applies in the context of BBD but the reverse is false. As a matter of fact, (3.8) restricts the scope of
application of BBD to quasi diagonal operators. The setting of BND is much more generic. Finally, due to the shape of the
threshold performed on each Yε,ℓ, BBD performs well only when the loss in measured in quadratic risk, and when f belongs
to a Sobolev space (which corresponds to f ∈ Bs

2,2).
The counterpart to such restrictive assumptions is the remarkably fast rates of convergence it attains in the case ε = 0.
Indeed, it can be proved that, for s,M > 0, R1, R2 > 0 and ν ≥ 0,

sup
f∈Ws(M)

K∈G(R1,R2)

E∥f − f ∥2 .

δ


| log δ|
1∧ 2s

2ν+1 ∨

ε


| log ε|
 2s

2s+2ν+1 . (3.9)

This clearly outperforms BND in the case π = r = 2, and p = 2.

3.2. Practical study

Wepresent the practical numerical performances of BND and compare it to the Blind Blockwise Deconvolution algorithm
(BBD) of Delattre et al. [6]. The sets of cubature points in the simulations that follow have been taken from the web site of
R. Womersley http://web.maths.unsw.edu.au/~rsw. We proceed with the following choices of parameters:
Data: the target density f is given by

f (ω) = exp(−2 ∗ ∥ω − ω1∥ℓ1(R3))/c

with ω1 = (0, 1, 0) and c = 0.6729. Concerning the operator K , we choose it among the class of Rosenthal laws on SO(3).
These distributions find their origins in random walks on groups (see [26]). K is said to follow a Rosenthal distribution of
parameters α ∈]0;π ] and ν > 0 on SO(3) if, for ℓ ≥ 0, |m| ≤ ℓ, we have

Kℓ,m,n =

 sin((ℓ+ 1/2)α)
(2ℓ+ 1) sin(α/2)

ν
1

{m=n}.

A Rosenthal law hence provides a concrete example of operator with DIP ν ≥ 0. We will take α = π and ν = 1.

http://web.maths.unsw.edu.au/~rsw
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Table 1
Choice of κ .Nrop is the average number, computed on the basis ofN = 10 realizations,
of levels ℓ ≤ 10 such that ∥K−1

δ,ℓ ∥op ≤ Oℓ(δ)−1 . We have δ = 10−3 .

κ 0.3 0.4 0.5 0.6 0.7 0.8

Nrop 10 9 9 8 2 0

Table 2
Choice of τ . For (δsig , εsig ) = (εop, δop) = (10−4, 10−3) and each value of
τ , we computed 10 times the described procedure and reported the average
number of remaining needlet coefficients at level j.

τsig τop

0.5 0.6 0.7 0.8 0.9 0.1 0.2

j = 0 3 0 3 0 0 0 0
j = 1 10 6 0 0 0 0 0
j = 2 20 9 2 1 0 4 0
j = 3 94 22 8 4 0 127 0

Table 3
Average normalized L2 and L∞ loss of BBD and BND.

δ ε E∥f − f ∥2 E∥f − f ∥∞

BBD BND BBD BND

3.10−3 10−3 0.2210 0.1695 0.3867 0.3464
10−4 0.1013 0.1603 0.2146 0.3374

10−3 10−3 0.2195 0.1242 0.3870 0.2204
10−4 0.0839 0.0594 0.1931 0.1569

10−4 10−3 0.2194 0.1267 0.3863 0.2257
10−4 0.0825 0.0584 0.1924 0.1571

Tuning parameters: we set λ = 1 in (3.3). The concrete choice of adequate thresholding constants κ and τ is a complex
issue. Our practical choices will be based on the following remark, inspired from Donoho and Johnstone [7]: in the case
of direct estimation on real line, the universal threshold which is both efficient and simple to implement, takes the form
2
√

| log ε|. A consistent interpretation is to consider that this threshold should kill any pure noise signal. We will adapt this
reasoning to the case of interest.
Choice of κ: we use as a benchmark the case where Kℓ is the null matrix ofM2ℓ+1(R) for ℓ ≥ 1 (this corresponds to the case
where the law of θ is uniform over SO(3)). Given δ large enough, the smallest value κδ such that

∥K−1
δ,ℓ ∥op > Oℓ(δ)−1 for all ℓ ≤ 10

is retained. The results are reported in Table 1 and give κ = 0.8.
Choice of τsig and τop: It is clear that the role of τsig (resp. τop) is to control the influence of the signal (resp. the operator)
error. In order to compute τsig (resp. τop), we therefore work with noise levels εsig > δsig > 0 (resp. δop > εop > 0) large
enough. We make use of the uniform density u on S2, satisfying uℓ = 0 for ℓ ≥ 1 as a benchmark. Henceforth ⟨u,ψj,η⟩ = 0
for j ≥ 0, η ∈ Zj, whichmeans that the observations ⟨Yεsig ,ψj,η⟩, j ≥ 0 are pure noises. Taking advantage of this remark, we
simulate Kδsig and, integrating the precedently computed value of κ , apply the procedure for increasing values of τsig (resp.
τop) until all the computed coefficients ⟨u,ψj,η⟩ are killed for j ≤ 3. The results are reported in Table 2 and give τsig = 0.9,
τop = 0.2.

We compare the performances of BBD (with parameters κ = 0.8 and τ = 1 taken from [6]) and BND for δ ∈ {3.10−3,
10−3, 10−4

}, ε ∈ {10−3, 10−4
}. The (normalized) mean squared error and the supremum norm error are computed with

a Monte Carlo method based on N = 200 simulations. Each loss is approximated by its discrete equivalent calculated on a
uniform grid of 4096 points on S2 at each step. Results are reported in Table 3. They clearly illustrate the rates of convergence
derived in Theorems 3.2 and 3.3 in that the loss in always higher when the signal noise level ε is predominant. Besides, it
also confirms the relationship between the rates in Theorems 3.2, 3.3 and (3.9). Indeed, since K also verifies (3.8), the rates
(3.9) are available and Table 3 exposes the outperforming of BND over BBD in every situation except when the operator
noise is highly predominant (corresponding to (δ, ε) = (3.10−3, 10−4)).
For particular realizations of Yε and Kδ , we plot in Fig. 2: the original shape of the density, and the results of the different
algorithms in the form of spherical views seen ‘from above’. The figures emphasize the better adaptivity of BND to the ‘spiky’
shape of the target density.
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(a) Target density. (b) BBD, ε = 10−3 . (c) BND, ε = 10−3 .

(d) BBD, ε = 10−4 . (e) BND, ε = 10−4 .

Fig. 2. Spherical view from above of the results of the two algorithms with noise level δ = 10−3 .

4. Proof of Theorems 3.2 and 3.3

Preliminary lemmas

The establishment of the convergence rates in Theorems 3.2 and 3.3 requires the control of the tails of the variables
|βj,η − βj,η|. This will be the subject of Lemma 4.3. Two results upstream of this lemma involve the control of the tails of
the variables ∥Ḃℓ∥op (Lemma 4.1), as well as a control of ∥K−1

δ,ℓ ∥op on a particular set (Lemma 4.2). We will not perform the
proofs of the two latter results, but will provide references where they are conducted.

Lemma 4.1 (Davidson and Szarek [5], Theorem 2.4). There exist two constants β0, c0 ≥ 0 independent from ℓ ∈ N such that

∀t ≥ β0, P((2ℓ+ 1)−1/2
∥Ḃℓ∥op > t) ≤ exp(−c0t(2ℓ+ 1)2).

A simple corollary is the following upper bound on the moments of ∥Ḃℓ∥op

E[∥Ḃℓ∥p
op] . ℓp/2.

Lemma 4.2 (Delattre et al. [6], Proof of Theorem 3.1). We introduce further the events Aℓ = {∥(Kδ,ℓ)−1
∥op ≤ Oℓ(δ)−1

} and
Bℓ = {∥δḂℓ∥op ≤ aℓ} with aℓ = ρOℓ(δ) for some 0 < ρ < 1

2 . On Aℓ ∩ Bℓ, we have

∥K−1
δ,ℓ ∥op ≤

ρ

1 − ρ
∥K−1

ℓ ∥op

and ∥K−1
ℓ ∥op ≤ (1 − ρ)−1

∥K−1
δ,ℓ ∥op.
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Lemma 4.3. Let Sj(δ, ε) = τ2jν

ε
√

| log ε| ∨ 2−j/2δ
√

| log δ|

with τ = τsiq ∨ τop. In the setting of Theorem 3.2, for all j ≤ J,

η ∈ Zj, for all p ≥ 1

P(|βj,η − βj,η| > Sj(δ, ε)) . εκ
2
∨ δκ

2
(4.1)

E[|βj,η − βj,η|
p
] . (ε2jν)p ∨ (δ2j(ν−1/2))p ∨ |βj,η|

p1
{j≥j0} (4.2)

E[sup
η∈Zj

|βj,η − βj,η|
p
] . (j + 1)p


(ε2jν)p ∨ (δ2j(ν−1/2))p


∨ |βj,η|

p1
{j≥j0} (4.3)

where 2j0 &

δ
√

| log δ|
− 2

2ν+1 .

Proof (Proof of Lemma 4.3). All inequalities can be derived from the study of P(|βj,η − βj,η| > t) in each case. Resorting to
the identity

K−1
δ,ℓ (Kℓfℓ + εẆℓ)− fℓ = −δK−1

δ,ℓ Ḃℓfℓ + K−1
δ,ℓ εẆℓ (4.4)

which holds for every ℓ ∈ N, and using Parseval’s formula, we decomposeβj,η − βj,η = I + II + II where

I =


ℓ∈Lj

⟨−δK−1
δ,ℓ 1Aℓ

Ḃℓfℓ,ψj,η,ℓ⟩

II =


ℓ∈Lj

⟨K−1
δ,ℓ 1Aℓ

εẆℓ,ψj,η,ℓ⟩

III = −


ℓ∈Lj

⟨fℓ,ψj,η,ℓ⟩1Ac
ℓ
.

We now have to study the deviation bounds of I, II, III . Term I can be decomposed as I = IV + V where

IV = −


ℓ∈Lj

⟨δK−1
δ,ℓ Ḃℓfℓ,ψj,η,ℓ⟩1Aℓ

1Bℓ

V = −


ℓ∈Lj

⟨δK−1
δ,ℓ Ḃℓfℓ,ψj,η,ℓ⟩1Aℓ

1Bc
ℓ
.

In order to treat Term IV , we introduce the operator

Qj =


ℓ∈Lj

K−1
δ,ℓ 1Aℓ

1Bℓ
Ḃℓ

defined for j ≤ J . Since K and Ḃ are both stable with regard to every space Hℓ, and since ⟨ψj,η,ψh,α⟩ = 0 if |j − h| > 1, we
have

IV = −⟨δQjf ,ψj,η⟩ = −

j+1
h=j−1


α∈Zh

⟨δQjψh,α,ψj,η⟩⟨f ,ψh,α⟩.

Henceforth

|IV | ≤


j+1

h=j−1


α∈Zh

|⟨δQjψh,α,ψj,η⟩|
π ′

 1
π ′


j+1
h=j−1


α∈Zh

|⟨f ,ψh,α⟩|
π

 1
π

1
{π≤2}

+


j+1

h=j−1


α∈Zh

|⟨δQjψh,α,ψj,η⟩|
π

 1
π


j+1
h=j−1


α∈Zh

|⟨f ,ψh,α⟩|
π ′

 1
π ′

1
{π>2}

whereweusedHölder’s inequalitywithπ−1
+(π ′)−1

= 1.Now, ifπ ≤ 2, thenπ ′
≥ 2 and (2.7) togetherwith Proposition 2.4

entail  j+1
h=j−1


α∈Zh

|⟨δQjψh,α,ψj,η⟩|
π ′

 1
π ′

≤

 j+1
h=j−1


α∈Zh

|⟨δQjψh,α,ψj,η⟩|
2
 1

2

≤ ∥δTQjψj,η∥

. δ2j(ν+1/2).
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Moreover, since f ∈ Bs
π,r , we have j+1

h=j−1


α∈Zh

|⟨f ,ψh,α⟩|
π

 1
π

. 2−j(s− 2
π +1).

If π > 2, a similar argument added with the Besov embedding Bs
π,r ⊂ Bs−2(1/π−1/π ′)

π ′,r leads to the same bound. Finally,

P(|IV | > t) ≤ P

∥δTQj∥op2−j(s− 2

π +1) & t


≤ P(2−j/2
∥Pℓj ḂPℓj∥op & tδ−12j(ν−1/2−(s−2/π)))

≤ exp


−

c0t222j

222j(ν− 1
2 )


1

t&β02
j(ν− 1

2 )
 (4.5)

wherewenotedPℓj the orthogonal projector ontoℓ∈Lj
Hℓ andused Lemmas4.1 and4.2 togetherwith the fact that s > 2/π .

Turning to Term V , a direct application of Lemma 4.1 entails

P(∥δḂℓ∥op > aℓ) ≤ δc0ρ
2(2ℓ+1)2κ2 . (4.6)

So we have

P(|V | > t) ≤ P


ℓ∈Lj

δ∥K−1
δ,ℓ Ḃℓ∥op∥fℓ∥∥ψj,η,ℓ∥1Aℓ

1Bc
ℓ
> t


≤


ℓ∈Lj

P(∥K−1
δ,ℓ Ḃℓ∥op1Aℓ

1Bc
ℓ
> t)

.

ℓ∈Lj

P(∥K−1
δ,ℓ Ḃℓ∥op1Aℓ

> t)1/2P(∥δḂℓ∥op > aℓ)1/2

.

ℓ∈Lj

P((2ℓ+ 1)−1/2
∥Ḃℓ∥op > tκ log1/2 δ)1/2δc0ρ

2(2ℓ+1)2κ2/2

. δc0ρ
222jκ2/2


ℓ∈Lj

exp(−c0(2ℓ+ 1)2t2κ2 log δ/2)

. δc0ρ
222jκ2/2 exp(−c022jt2κ2 log δ/2).

Turning to Term II , we decompose in a similar fashion II = VI + VII where

VI =


ℓ∈Lj

⟨εK−1
δ,ℓ Ẇℓ,ψj,η,ℓ⟩1Aℓ

1Bℓ

VII =


ℓ∈Lj

⟨εK−1
δ,ℓ Ẇℓ,ψj,η,ℓ⟩1Aℓ

1Bc
ℓ
.

Conditioning on (Ḃℓ)ℓ∈Lj and applying Lemma 4.2, we derive for all t > 0,

P(|VI| > t) = P


ℓ∈Lj

⟨εK−1
δ,ℓ Ẇℓ,ψj,η,ℓ⟩1Aℓ

1Bℓ

 > t


≤ exp


−
t2

2ε222jν


. (4.7)

As for Term VII , employing the Cauchy–Schwarz inequality, (4.6), and conditioning on (Ḃℓ)ℓ∈Lj , we write

P(|VII| > t) = P


ℓ∈Lj

⟨εK−1
δ,ℓ Ẇℓ,ψj,η,ℓ⟩1Aℓ

1Bc
ℓ

 > t


≤


ℓ∈Lj

P(|⟨εK−1
δ,ℓ Ẇℓ,ψj,η,ℓ⟩1Aℓ

1Bc
ℓ
| > t)
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≤


ℓ∈Lj

P(|⟨εK−1
δ,ℓ 1Aℓ

Ẇℓ,ψj,η,ℓ⟩| > t)1/2P(δ∥Ḃℓ∥op > aℓ)1/2

. exp


−
t2δ2| log δ|2j

4ε2


δc0ρ

222jκ2/2.

It remains to treat Term III . We claim that

Ac
ℓ ⊂


∥δḂℓ∥ ≥ Oℓ(δ)


∥K−1

ℓ ∥op ≥ Oℓ(δ)−1/2


(4.8)

(for a proof, we refer to Delattre et al. [6]). Hence, III ≤ VIII + IX where

VIII =


ℓ∈Lj

⟨fℓ,ψj,η,ℓ⟩

1{∥δḂℓ∥≥Oℓ(δ)}

IX =


ℓ∈Lj

⟨fℓ,ψj,η,ℓ⟩

1∥K−1
ℓ

∥op≥Oℓ(δ)−1/2
.

As 
∥K−1

ℓ ∥op > Oℓ(δ)−1/2


⊂

ℓ > c(δ


| log δ|

− 1
ν+1/2


(4.9)

for a constant c depending only on κ and Q2, we derive that, noting j0 = ⌊c(δ
√

| log δ|
− 1

ν+1/2 ⌋ + 1, we have

P(|IX | > t) ≤ 1
{t<|βj,η |}

1
{j≥j0}. (4.10)

Indeed, for all j < j0, for all ℓ ∈ Lj, we have ∥K−1
ℓ ∥op > Oℓ(δ)−1/2. Now, a quick application of Lemma 4.1 entails

P

∥δḂℓ∥ ≥ Oℓ(δ)


≤ δc0κ

2(2ℓ+1)2 .

Hence,

P(|VIII| > t) ≤ P


ℓ∈Lj

⟨fℓ,ψj,η,ℓ⟩1{∥δḂℓ∥≥Oℓ(δ)}

 > t


.

ℓ∈Lj

P

1
{∥δḂℓ∥≥Oℓ(δ)}

> t


.

ℓ∈Lj

E[1
{∥δḂℓ∥≥Oℓ(δ)}

1
{t≤1}]

.

ℓ∈Lj

P

∥δḂℓ∥ ≥ Oℓ(δ)

1/21
{t≤1}

. δc0κ
222j/21

{t≤1}.

This ends the study of the tail of |βj,η−βj,η|. If κ and τsig , τop are large enough, the leading terms are given by (4.5), (4.7) and
(4.10). (4.1) now results directly from the previous deviation inequalities. (4.2) is an application of the well known formula

E[|X |
p
] =


u>0

pup−1P(|X | > u)du ≤ p

u>0

up−11 ∧ P(|X | > u)

du

if X is a real random variable. As for inequality (4.3), we have

E[sup
η∈Zj

|βj,η − βj,η|
p
] ≤


u>0

pup−11 ∧ P(sup
η∈Zj

|βj,η − βj,η| > u)

du

≤ p

u>0

up−11 ∧ 22jP(|βj,η − βj,η| > u)

du.

Moreover, considering only the terms (4.5), (4.7) and (4.10) as mentioned above, we have

22jP(|βj,η − βj,η| > u) . e−
u2

2ε222jν
+2j log 2

+ e−
u2

2δ22j(2ν−1) +2j log 2
+ 22j1

{u.δ2j(2ν−1)}
+ 22j1

{u≤|βj,η |}
1

{j≥j0}

which entails (4.3). �
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4.1. Proof of Theorem 3.2

Proof. We shall only investigate the case where p > π , since for p ≤ π , we have Bs
π,r ⊂ Bs

p,r . The Lp loss of the procedure
can be decomposed as follows:

E∥f − f ∥p
p . E


j≤J


η∈Zj

⟨f − f ,ψj,η⟩ψj,η

p
p
+


j>J


η∈Zj

βj,ηψj,η

p
p
.

Since f ∈ Bs
π,r , we have

j>J


η∈Zj

βj,ηψj,η

p
p

. 2−Jp

s−2(1/π−1/p)


.

Now it is proved in Kerkyacharian et al. [18] that for all ν, d′
≥ 0, we have

s − 2(1/π − 1/p)
ν + d′/2

≥ µ(2, d′). (4.11)

Since 2/d′
≥ (ν+ d′/2)−1, the choice of the maximal level J ensures that this term is properly bounded by the desired rates

of convergence. Bounding E∥


j≤J


η∈Zj
⟨f − f ,ψj,η⟩ψj,η∥

p
p is more involved. First we apply Hölder’s inequality and (2.10)

and decompose it as

E


j≤J


η∈Zj

⟨f − f ,ψj,η⟩ψj,η

p
p

. B + S

where

B = Jp−1

j≤J


η∈Zj

E

|βj,η − βj,η|

p1
{|βj,η |>Sj(δ,ε)}


∥ψj,η∥

p
p

S = Jp−1

j≤J


η∈Zj

E

|βj,η|

p1
{|βj,η |≤Sj(δ,ε)}


∥ψj,η∥

p
p.

The first step is to replace Sj(δ, ε) in B and S by a quantity explicitly depending on 2jν , namely Sj(δ, ε). Remark to this end
that on the event {ℓj = +∞}, we have |βj,η| ≤ Sj(δ, ε) almost surely. We subsequently write

B = Jp−1

j≤J


η∈Zj

E

|βj,η − βj,η|

p1
{|βj,η |>Sj(δ,ε)}

1
{ℓj<+∞}

1Bℓj


∥ψj,η∥

p
p

+ Jp−1

j≤J


η∈Zj

E

|βj,η − βj,η|

p1
{ℓj<+∞}

1Bc
ℓj


∥ψj,η∥

p
p

. Jp−1

j≤J


η∈Zj

E

|βj,η − βj,η|

p1
{|βj,η |>Sj(δ,ε)}


∥ψj,η∥

p
p

+ Jp−1

j≤J


η∈Zj

E

|βj,η − βj,η|

2p
p/2

δc0ρ
2(22j+1)2κ2/2

∥ψj,η∥
p
p (4.12)

where we successively applied Lemma 4.2, (4.6) and the Cauchy–Schwarz inequality. It is clear that (4.12) is negligible for
κ large enough. In a similar way,

S = Jp−1

j≤J


η∈Zj

E

|βj,η|

p1
{|βj,η |≤Sj(δ,ε)}

1
{ℓj<+∞}

1Bℓj


∥ψj,η∥

p
p

+ Jp−1

j≤J


η∈Zj

|βj,η|
pP(ℓj = +∞)∥ψj,η∥

p
p

+ Jp−1

j≤J


η∈Zj

|βj,η|
pP(Bc

ℓj
)∥ψj,η∥

p
p

. Jp−1

j≤J


η∈Zj

E

|βj,η|

p1
{|βj,η |≤Sj(δ,ε)}


∥ψj,η∥

p
p (4.13)
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+ Jp−1

j≤J


η∈Zj

|βj,η|
pP(ℓj = +∞)∥ψj,η∥

p
p (4.14)

+ Jp−1

j≤J


η∈Zj

|βj,η|
pδc0ρ

2(22j+1)2κ2/2
∥ψj,η∥

p
p (4.15)

(4.15) is small enough for κ large enough. Moreover, thanks to (4.8),
ℓj = +∞} ⊂ Ac

2j ⊂

∥δḂ2j∥ ≥ O2j(δ)


∥(K2j)

−1
∥op ≥ O2j(δ)

−1/2

.

Thus, thanks to (4.9) and (4.6), the term (4.14) is negligible as well. We subsequently deduce that

E


j≤J


η∈Zj

⟨f − f ,ψj,η⟩ψj,η

p
p

. Jp−1Bb + Bs + Sb + Ss


with

Bb =


j≤J,η∈Zj

E

|βj,η − βj,η|

p1
{|βj,η |>Sj(δ,ε)}

1
{|βj,η |>Sj(δ,ε)/2}


∥ψj,η∥

p
p

Bs =


j≤J,η∈Zj

E

|βj,η − βj,η|

p1
{|βj,η |>Sj(δ,ε)}

1
{|βj,η |≤Sj(δ,ε)/2}


∥ψj,η∥

p
p

Sb =


j≤J,η∈Zj

|βj,η|
pE

1
{|βj,η |≤Sj(δ,ε)}

1
{|βj,η |>2Sj(δ,ε)}


∥ψj,η∥

p
p

Ss =


j≤J,η∈Zj

|βj,η|
pE

1
{|βj,η |≤Sj(δ,ε)}

1
{|βj,η |≤2Sj(δ,ε)}


∥ψj,η∥

p
p.

We can now treat the terms Bs, Bb, Sb and Ss. Applying (2.10), (4.1) and the Cauchy–Schwarz inequality:

Bs ≤ Jp−1

j≤J


η∈Zj

E

|βj,η − βj,η|

p1
{|βj,η−βj,η |>Sj(δ,ε)/2}


∥ψj,η∥

p
p

≤ Jp−1

j≤J


η∈Zj

E[|βj,η − βj,η|
2p

]
1/2P(|βj,η − βj,η| > Sj(δ, ε)/2)1/2∥ψj,η∥

p
p

. Jp−1

j≤J


η∈Zj


(ε2jν)p ∨ (δ2j(ν−1/2))p ∨ |βj,η|

p1
{j≥j0}


2jpετ2 ∨ δτ

2
.

Moreover,

Sb ≤ Jp−1

j≤J


η∈Zj

|βj,η|
pP(|βj,η − βj,η| > Sj(δ, ε))∥ψj,η∥

p
p

. Jp−1ετ2 ∨ δτ
2

since f ∈ Bs−2(1/π−1/p)
p,r . Hence in both cases the rate of convergence is smaller than what is claimed for sufficiently large τ .

Turning to Bb and Ss, we write, for all z, z ′
≥ 0,

Bb . Jp−1

j≤J


η∈Zj

E[|βj,η − βj,η|
p
]1

{|βj,η |>Sj(δ,ε)/2}
∥ψj,η∥

p

.

j≤J


η∈Zj


(ε2jν)p ∨ (δ2j(ν−1/2))p ∨ |βj,η|

p1
{j≥j0}


1
{|βj,η |>Sj(δ,ε)/2}

∥ψj,η∥
p

. Jp−1ε| log ε|
p−z 

j≤J

2j[ν(p−z)+p−2]

η∈Zj

|βj,η|
z

+ Jp−1δ| log δ|
p−z′ 

j≤J

2j[(ν−1/2)(p−z′)+p−2]

η∈Zj

|βj,η|
z′

+ Jp−12−j0p

s−2( 1π −

1
p )


and

Ss . Jp−1

j≤J


η∈Zj

|βj,η|
z1

{|βj,η |≤2τ2jνε
√

| log ε|}
∥ψj,η∥

p
p + Jp−1


j≤J


η∈Zj

|βj,η|
z1

{|βj,η |≤2τ2j(ν−1/2)δ
√

| log δ|}
∥ψj,η∥

p
p
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. Jp−1ε| log ε|
p−z 

j≤J

2j[ν(p−z)+p−2]

η∈Zj

|βj,η|
z
∥ψj,η∥

p
p

+ Jp−1δ| log δ|
p−z′ 

j≤J

2j[(ν−1/2)(p−z′)+p−2]

η∈Zj

|βj,η|
z′
∥ψj,η∥

p
p.

The term

2−j0p

s−2(1/π−1/p)


∼ (δ


| log δ|)p

s−2(1/π−1/p)
ν+1/2

is readily bounded thanks to (4.11), which leaves us in both cases with the term R(ε, ν, z) + R(δ, ν − 1/2, z ′) to control,
where

R(x, y, z) = Jp−1x| log x|
p−z 

j≤J

2j[y(p−z)+p−2]

η∈Zj

|βj,η|
z
∥ψj,η∥

p
p.

We only give a brief overview of the treatment of R(x, y, z), a detailed one is present in Kerkyacharian et al. [18]. First, we
split it as follows

R(x, y, z) = Jp−1


x


| log x|
p−z1


j≤J0

2j[y(p−z1)+p−2]

η∈Zj

|βj,η|
z1∥ψj,η∥

p
p

+

x


| log x|
p−z2


j>J0

2j[y(p−z2)+p−2]

η∈Zj

|βj,η|
z2∥ψj,η∥

p
p



where z1, z2, J0 are to be determined. Consider first the case where s ≥ (y + 1)(p/π − 1). Note q = p(y + 1)(s + y + 1)−1.
Taking z2 = π , z1 =q < q and 2J0

p
q (y+1)

∼ (x
√

| log x|)−1 entails

R(x, y, J0) . (log x)p−1(x


| log x|)p−q

which is the desired bound. Nowconsider the casewhere s < (y+1)(p/π−1) and note q = p(y+1−2/p)(y+1+s−2/π)−1.
Take z1 = π , z2 =q > q and 2J0

p
q (y+1−2/p)

∼ (x
√

| log x|)−1. We obtain

R(x, y, J0) . (log ε)p−1(x


| log x|)p−q

which ends the proof. �

4.2. Proof of Theorem 3.3

Proof. Write similarly

∥f − f ∥∞ ≤ E


j≤J


η∈Zj

βj,η − βj,η

ψj,η


∞

+


j>J


η∈Zj

βj,ηψj,η


∞

.

The term ∥


j>J


η∈Zj
βj,ηψj,η∥∞ can be handled as in Theorem 3.2. Moreover, (2.11) for p = ∞ entails, similarly to the

proof of Theorem 3.2,

E


j≤J


η∈Zj

βj,η − βj,η

ψj,η


∞

. Bb + Bs + Sb + Ss

with

Bb =


j≤J

2jE

sup
η∈Zj

|βj,η − βj,η|1{|βj,η |>Sj(δ,ε)}
1
{|βj,η |>Sj(δ,ε)/2}


Bs =


j≤J

2jE

sup
η∈Zj

|βj,η − βj,η|1{|βj,η |>Sj(δ,ε)}
1
{|βj,η |≤Sj(δ,ε)/2}


Sb =


j≤J

2j sup
η∈Zj

|βj,η|E

1
{|βj,η |≤Sj(δ,ε)}

1
{|βj,η |>2Sj(δ,ε)}


Ss =


j≤J

2j sup
η∈Zj

|βj,η|E

1
{|βj,η |≤Sj(δ,ε)}

1
{|βj,η |≤2Sj(δ,ε)}


.
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Now we have, using inequality (4.3),

Bb ≤


j≤J

2jE sup
η∈Zj

|βj,η − βj,η|1{|βj,η |>Sj(δ,ε)/2}

≤


j≤J

2j1
{∃η∈Zj, |βj,η |≥Sj(δ,ε)/2}

2jE sup
η∈Zj

|βj,η − βj,η|

.

j≤J

2j1
{∃η∈Zj, |βj,η |≥Sj(δ,ε)/2}

(j + 1)

ε2jν

∨ δ2j(ν−1/2)
∨ |βj,η|1{j≥j0}

. 2J1(ν+1)(J1 + 1)ε + 2I1(ν+3/2)(I1 + 1)δ +


j≥j0

2j
|βj,η|

where J1 is chosen so that, for j ≥ J1, |βj,η| ≤ τε
√

| log ε|2jν/2. We can take for example (see [18]) J1 verifying, for a certain
constant B,

2J1 = B

ε


| log ε|
−(s+ν+1−2/π)−1

.

Similarly, taking

2I1 = C

δ


| log δ|
−(s+ν+1/2−2/π)−1

for a certain constant C implies |βj,η| ≤ τδ
√

| log δ|2j(ν−1/2)/2 for all j ≤ I1. The term


j≥j0
2j

|βj,η| is easily treated. This
finally leads to the rates

Bb . | log ε|εµ
′(2)

∨ | log δ|δµ
′(1)

and

Ss ≤


j≤J

2j sup
η∈Zj

|βj,η|1{|βj,η |≤2Sj(δ,ε)}

.


j≤J1

2jε


| log ε|2jν
+


j>J1

2j
|βj,η|


∨


j≤I1

2jδ


| log δ|2j(ν−1/2)
+


j>I1

2j
|βj,η|


which are of the proper order. Turning to Bs and Sb, we write, using inequalities (4.1) and (4.3)

Bs ≤


j≤J

2jE

sup
η∈Zj

|βj,η − βj,η|1{|βj,η−βj,η |>Sj(δ,ε)/2}


≤


j≤J

2jE[sup
η∈Zj

|βj,η − βj,η|
2
]
1/2P(∃η ∈ Zj, |βj,η − βj,η| > Sj(δ, ε)/2)1/2

.

j≤J

2j


j + 1

ε2jν

∨ δ2j(ν−1/2)
∨ |βj,η|1{j≥j0}


22j(ετ

2
∨ δτ

2
)
1/2

.

Now apply inequality (4.1) and the fact that |βj,η| . 2−j to derive

Sb ≤


j≤J

2jE

sup
η∈Zj

|βj,η|1{|βj,η−βj,η |>Sj(δ,ε)}


.

j≤J

22jP

|βj,η − βj,η| > Sj(δ, ε)


.

j≤J

22j(ετ
2
∨ δτ

2
).

It is clear that for a well chosen τ these terms are smaller than the announced rates. �
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