
Journal of Multivariate Analysis 132 (2014) 215–228

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

On the strong convergence of the optimal linear shrinkage
estimator for large dimensional covariance matrix
Taras Bodnar a, Arjun K. Gupta b,∗, Nestor Parolya c

a Department of Mathematics, Humboldt-University of Berlin, D-10099 Berlin, Germany
b Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
c Institute of Empirical Finance (Econometrics), Leibniz University of Hannover, 30167, Germany

a r t i c l e i n f o

Article history:
Received 9 March 2013
Available online 4 September 2014

AMS 2010 subject classifications:
60B20
62H12
62G20
62G30

Keywords:
Large-dimensional asymptotics
Randommatrix theory
Covariance matrix estimation

a b s t r a c t

In this work we construct an optimal linear shrinkage estimator for the covariance matrix
in high dimensions. The recent results from the random matrix theory allow us to find
the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate
them consistently. The developed distribution-free estimators obey almost surely the
smallest Frobenius loss over all linear shrinkage estimators for the covariance matrix. The
case we consider includes the number of variables p → ∞ and the sample size n → ∞ so
that p/n → c ∈ (0,+∞). Additionally, we prove that the Frobenius norm of the sample
covariancematrix tends almost surely to a deterministic quantitywhich canbe consistently
estimated.

Published by Elsevier Inc.

1. Introduction

Nowadays, the estimation of the covariance matrix is one of the most important problems not only in statistics but
also in finance, wireless communications, biology, etc. The traditional estimator of the covariance matrix, i.e. its sample
counterpart, seems to be a gooddecision onlywhen thedimension p ismuch smaller than the sample sizen. This case is called
the ‘‘standard asymptotics’’ (see, e.g., [21]). Here, the sample covariance matrix is proven to be an unbiased and a consistent
estimator for the covariancematrix.More problems arisewhen p is comparable to n, i.e. both the dimension p and the sample
size n tend to infinity while their ratio p/n tends to a positive constant c. It is called the ‘‘large dimensional asymptotics’’
or ‘‘Kolmogorov asymptotics’’ (see, e.g., [6,8]). This type of asymptotics have been exhaustively studied by Girko [15,16],
where it was called the ‘‘general statistical analysis’’. There is a great amount of research done on the asymptotic behavior
of functionals of the sample covariance matrix under the large dimensional asymptotics (see, e.g., [17–19,5]).

There are some significant improvements in the case when the covariance matrix has a special structure, e.g. sparse, low
rank, etc. (see, [7,24,9,10], etc.). The case when the underlying random process obeys the factor structure is studied by Fan
et al. [11]. In these cases the covariance matrix can be consistently estimated even in high-dimensional case. In the case
when no additional information on the structure of the covariance matrix is available, the problem has not been studied
in detail up to now. The exception is the paper of Ledoit and Wolf [22], where a linear shrinkage estimator was suggested
which possesses the smallest Frobenius loss in quadratic mean.
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Marc̆enko and Pastur [23], Yin [31], Silverstein [26], Bai et al. [2], Bai and Silverstein [5] used the large dimensional
asymptotics to study the asymptotic behavior of the eigenvalues of general random matrices. They discovered that appro-
priately transformed random matrix at infinity has a nonrandom behavior and showed how to find the limiting density of
its eigenvalues. In particular, Silverstein [26] proved under very general conditions that the Stieltjes transform of the sam-
ple covariance matrix tends almost surely to a nonrandom function which satisfies some equation. This equation was first
derived by Marc̆enko and Pastur [23], who showed how the real covariance matrix and its sample estimate are connected
at infinity. In our work we use this result for estimating functionals of the covariance matrix consistently.

In this work we concentrate on certain type of estimators, namely the shrinkage estimators. The shrinkage estimators
were introduced by Stein [30]. They are constructed as a linear combination of the sample estimator and some known
target. These estimators have remarkable property: they are biased but can significantly reduce the mean square error of
the estimator. In the large as well as in the small dimensional cases it is difficult to find the consistent estimators for the
so-called shrinkage intensities. In this situation Ledoit and Wolf [22] made progress when the target matrix is the identity
and found a feasible linear shrinkage estimator for the covariancematrix which is optimal in the sense of the squaredmean.
This estimator provided a remarkable dominance over the sample estimator and other known estimators for the covariance
matrix. The linear shrinkage presented by Ledoit andWolf [22] shows its best performance in case when the eigenvalues of
the covariance matrix are not dispersed and/or the concentration ratio c is large.

In this paper we extend the work of Ledoit and Wolf [22] by constructing a more general linear shrinkage estimator for
a large dimensional covariance matrix. The target matrix here is considered to be an arbitrary symmetric positive definite
matrix with uniformly bounded trace norm. Using random matrix theory we prove that the optimal shrinkage intensities
are nonrandom at infinity, find their asymptotic deterministic equivalents and estimate them consistently. Additionally
we show that the Frobenius norm of the covariance matrix tends to a deterministic quantity which can also be estimated
consistently. The resulting estimator obeys almost surely the smallest Frobenius loss when the dimension p and the sample
size n increase together and p/n → c ∈ (0,∞) as n → ∞.

The rest of paper is organized as follows. In Section 2 we present the preliminary results from the random matrix
theory which are used in the proofs of the theorems. Section 3 contains the oracle linear shrinkage estimator and the main
asymptotic results on the shrinkage intensities and the Frobenius norm of the sample covariance matrix. In Section 4 we
present the bona fide linear shrinkage estimator for the covariancematrix andmake a short comparisonwith thewell-known
Ledoit andWolf [22] estimator. The results of the empirical study are provided in Section 5, while Section 6 summarizes all
main results of the paper. The proofs of the theorems are moved to the Appendix.

2. Preliminary results and large dimensional asymptotics

By ‘‘large dimensional asymptotics’’ or ‘‘Kolmogorov asymptotics’’ it is understood that p
n → c ∈ (0,+∞) where the

number of variables p ≡ p(n) and the sample size n both tend to infinity. In this case the traditional sample estimators
perform poorly or very poorly and tend to over/underestimate the population covariance matrix.

We use the following notations in the paper:

• 6n stands for the covariance matrix, and Sn denotes the corresponding sample covariance matrix.
• The pairs (τi, νi) for i = 1, . . . , p are the collection of eigenvalues and the corresponding orthonormal eigenvectors of

the covariance matrix 6n.
• Hn(t) is the empirical distribution function (e.d.f.) of the eigenvalues of 6n, i.e.,

Hn(t) =
1
p

p
i=1

1{τi<t} (2.1)

where 1{·} is the indicator function.
• Let Xn be a p×nmatrix which consists of independent and identically distributed (i.i.d.) real random variables with zero

mean and unit variance such that

Yn = 6
1
2
n Xn. (2.2)

In the derivation of the main results the following five assumptions are used.

(A1) The population covariance matrix 6n is a nonrandom p-dimensional positive definite matrix.
(A2) Only the matrix Yn is observable. We know neither Xn nor 6n itself.
(A3) We assume that Hn(t) converges to some limit H(t) at all points of continuity of H .
(A4) The elements of the matrix Xn have uniformly bounded moments of order 4 + ε, ε > 0.
(A5) The largest eigenvalue of the covariance matrix 6n is at most of the order O(

√
p). Moreover, we assume that the order

of only finite number of eigenvalues could depend on p.

The assumptions (A1)–(A3) are important to proveMarc̆enko–Pastur equation (see, e.g., [26]) and they are standard in the
large dimensional asymptotics (see, e.g., [5]). In particular, the assumption (A3) on the existence of the limiting population
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spectral functionH(t) is also very general because the support ofH(t)may be unbounded and non-compact. The assumption
(A4) is needed for the proofs. This assumption is much weaker than the corresponding one used by Ledoit andWolf [22] for
similar purposes which is the existence of the 8th moment. The assumption (A5) ensures that the covariance matrix may
have a couple of very large eigenvalues. Indeed, it is practically relevant and a good example of a model with unbounded
eigenvalues of the covariance matrix is the factor model (see, [1,3,12]). Moreover, even if the structure of the data is more
complex and the factor model is not present we still fall within the proposed theoretical assumptions (A1)–(A5). To the end,
we do not impose the assumption of any particular distribution on the underlying data generating process and the presented
framework is also applicable if the sample covariance matrix is singular, i.e. if the sample size n is larger than the dimension
p. As a result, the assumptions (A1)–(A5) are general enough to cover many practical situations.

Let (λi,ui) for i = 1, . . . , p denote the set of eigenvalues and the corresponding orthonormal eigenvectors of the sample
covariance matrix1

Sn =
1
n
YnY′

n =
1
n
6

1
2
n XnX′

n6
1
2
n . (2.3)

Similar to (2.1) the (e.d.f.) of the sample covariance matrix Sn is defined by

Fn(λ) =
1
p

p
i=1

1{λi<λ}, λ ∈ R. (2.4)

The most powerful tool for investigating the asymptotics of (e.d.f.) Fn(λ) is the Stieltjes transform. For a nondecreasing
function Gwith bounded variation the Stieltjes transform is defined by

∀z ∈ C+ mG(z) =


+∞

−∞

1
λ− z

dG(λ). (2.5)

In our notations C+
= {z ∈ C : Im(z) > 0} is a half-plane of complex numbers with strictly positive imaginary part and

any complex number is given by z = Re(z) + i Im(z) with Re(z) and Im(z) the real and the imaginary parts accordingly.
The Stieltjes transform and its importance for the behavior of spectrum of large dimensional random matrices is discussed
in [27] in detail.

For all z ∈ C+ the Stieltjes transform of the sample (e.d.f.) Fn(λ) is given by

mFn(z) =
1
p

p
i=1


+∞

−∞

1
λ− z

δ(λ− λi)dλ =
1
p
tr{(Sn − zI)−1

}, (2.6)

where I is a suitable identity matrix, tr(·) is the trace of the matrix, and δ(·) is the Dirac delta function.
Marc̆enko and Pastur [23] proved that the (e.d.f.) Fn(λ) converges almost surely (a.s.) to a nonrandom limit F(λ). More-

over, they derived an equation, the so-called Marc̆enko–Pastur (MP) equation, which shows the connection between F(λ)
and H(τ ) at infinity. Under more general conditions the MP equation was considered by several authors (see, [31,29,28]).
The most general case was presented by Silverstein [26] where the strong convergence under very general conditions was
established. For illustration purposes, we summarize this result in Theorem 2.1.

Theorem 2.1 (Silverstein [26]). Assume that assumptions (A1)–(A3) are satisfied on the common probability space and p
n →

c ∈ (0,+∞) as n → ∞. Then Fn(t)
a.s.
⇒ F(t) as n → ∞. Moreover, the Stieltjes transform of F satisfies the following equation

mF (z) =


+∞

−∞

1
τ(1 − c − czmF (z))− z

dH(τ ), (2.7)

in the sense that mF (z) is the unique solution of (2.7) for all z ∈ C+.

The MP equation (2.7) has a closed-form solution in several restricted cases. The famous Marc̆enko–Pastur law appears
only when the covariance matrix 6n is the multiple of the identity matrix, i.e., 6n = σ I.

3. Optimal shrinkage estimator for covariance matrix

In this section we construct an optimal shrinkage estimator for the covariance matrix under high-dimensional asymp-
totics. This estimator is only oracle one, i.e., it depends on unknown quantities. The corresponding bona fide estimator is
given in Section 4.

1 It must be noted that the sample mean vector was omitted because the 1-rank matrix x̄x̄′ does not effect the asymptotic behavior of the spectrum of
the sample covariance matrix (see, [5, Theorem A.44]).
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Note that the linear shrinkage estimator of Ledoit and Wolf [22] has the smallest Frobenius loss only in quadratic mean.
Consequently, it would be a great advantage to construct an estimator with almost sure smallest Frobenius loss. The general
linear shrinkage estimator (GLSE) for the covariance matrix is given by

6GLSE = αnSn + βn60 with ∥60∥tr ≤ M (3.1)

where the symmetric positive definite matrix 60 has bounded trace norm at infinity, i.e., there exists M > 0 such that
supn ∥60∥tr = supn tr(60) ≤ M . No assumption is imposed on the shrinkage intensities αn and βn which are objects of our
interest.

Since the shrinkage intensities are the main object of investigation and 60 is fixed, a question arises how to choose this
target matrix. It could depend on the underlying data as well as on the branch of science where the shrinkage estimator for
the covariance matrix is applied, i.e., wireless communications, finance, etc. On the other hand, from the view of Bayesian
statistics 60 can be interpreted as a hyperparameter of a priori distribution. The useful comments about the choice of the
target matrix 60 can be found e.g. in [4,22].

The aim is to find the optimal shrinkage intensities αn and βn whichminimize the Frobenius norm for a given nonrandom
target matrix 60 expressed as

L2F = ∥6GLSE − 6n∥
2
F = ∥6n∥

2
F + ∥6GLSE∥

2
F − 2 tr(6GLSE6n). (3.2)

As a result, using (3.1) we want to solve the following optimization problem

L2F = α2
n∥Sn∥

2
F + 2αnβn tr(Sn60)+ β2

n∥60∥
2
F

− 2αn tr(Sn6n)− 2βn tr(6n60) −→ min with respect to αn and βn. (3.3)

Taking the derivatives of L2F with respect to αn and βn and setting them equal to zero we get

∂L2F
∂αn

= αn∥Sn∥2
F + βn tr(Sn60)− tr(Sn6n) = 0, (3.4)

∂L2F
∂βn

= αn tr(Sn60)+ βn∥60∥
2
F − tr(6n60) = 0. (3.5)

The Hessian of the L2F has the form

H =


∥Sn∥2

F tr(Sn60)

tr(Sn60) ∥60∥
2
F


. (3.6)

From the following inequality it follows that the Hessian matrix H is always positive definite:

det(H) = ∥Sn∥2
F∥60∥

2
F − (tr(Sn60))

2
≥ ∥Sn∥2

F∥60∥
2
F − ∥Sn∥2

∞
(tr(60))

2

Jensen
≥ (∥Sn∥2

F − ∥Sn∥2
∞
)∥60∥

2
F > 0, (3.7)

where ∥Sn∥∞ denotes the spectral norm (square root of maximum eigenvalue of matrix S2n). The last inequality in (3.7) is
well-known (see, e.g., [20]).

From Eqs. (3.4) and (3.5) it is easy to find the optimal shrinkage intensities α∗
n and β∗

n as

α∗

n =
tr(Sn6n)∥60∥

2
F − tr(6n60)tr(Sn60)

∥Sn∥2
F∥60∥

2
F −


tr(Sn60)

2 , (3.8)

β∗

n =
tr(6n60)∥Sn∥2

F − tr(Sn6n)tr(Sn60)

∥Sn∥2
F∥60∥

2
F −


tr(Sn60)

2 . (3.9)

Next, we consider the asymptotic behavior of the quantities (3.8) and (3.9), namelywe look for their asymptotic equivalents.
Recall that the sequence of random variables ξ̃n is called asymptotically equivalent to a nonrandom sequence ξn whenξ̃n − ξn

 −→ 0 a.s. for n → ∞. (3.10)

Note that it is sufficient to know the asymptotic equivalents of the quantities ∥Sn∥2
F , tr(Sn6n) and tr(Sn60). It is not difficult

to find the asymptotic equivalents to the last two quantities. This is done in Theorem3.2.More difficult is to find a asymptotic
equivalent to the first quantity, namely ∥Sn∥2

F . Since the Frobenius norm of the sample covariance matrix is very important
in high dimensional statistics, it would be a great advantage to investigate its asymptotic behavior.
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In Theorem 3.1 we present our first result where we show that the normalized Frobenius norm of Sn tends almost surely
to a nonrandom quantity for p/n → c ∈ (0,+∞) as n → ∞.

Theorem 3.1. Assume that (A1)–(A5) hold and p
n → c ∈ (0,+∞) for n → ∞. Then the Frobenius norm of the sample

covariance matrix φn =
1
p∥Sn∥

2
F almost surely tends to a nonrandom variable φ which is given by

φ =


+∞

−∞

τ 2dH(τ )+ c


+∞

−∞

τdH(τ )
2

, (3.11)

where H(t) denotes the limiting function of the spectral e.d.f. Hn(t) defined in (2.1).

The proof of Theorem 3.1 follows from the MP equation (2.7) and is presented in the Appendix. In particular, it ensures
that the Frobenius norm of the sample covariance matrix is fixed and depends solely on the function H and c on infinity.
Nevertheless, we are not able to estimate ∥6n∥

2
F using this knowledge since the function H(t) is unknown. That is why we

need to find the asymptotically equivalent quantity to ∥Sn∥2
F .

Theorem3.1 gives us some intuition about this quantity. The idea is to replace the integrals in (3.11) by the corresponding
finite sums, namely 1/p

p
i=1 τ

2
i = 1/p tr(62

n) and 1/p
p

i=1 τi = 1/p tr(6n). The main advantage of the procedure is that
this substitution does not effect the almost sure convergence.

Theorem 3.2. Under assumptions (A1)–(A5) for p
n → c ∈ (0,+∞) it holds that

1
p

 ∥Sn∥2
F −


∥6n∥

2
F +

c
p
∥6n∥

2
tr

 −→ 0 a.s. for n → ∞ (3.12)

where ∥6∥
2
tr =


tr(6n)

2
is the squared trace norm of matrix 6n.

Additionally, for the quantity tr(Sn2), where 2 is a symmetric positive definite matrix with bounded trace norm, it holds that

1
p

tr(Sn2)− tr(6n2)

 −→ 0 a.s. for
p
n

→ c ∈ (0,+∞) as n → ∞. (3.13)

Theproof of the theorem is given in theAppendix. In contrast to Theorem3.1, Theorem3.2 contains a better interpretation
of the asymptotic result (3.12). It shows, in particular, that the consistent estimator of the Frobenius norm of the real
covariance matrix, ∥6n∥

2
F , is not equal to its sample counterpart. On the other hand the functionals of the type tr(Sn2)

are consistently estimated by the sample counterparts.
Moreover, it appears that under the large dimensional asymptotics, the Frobenius norm of Sn is shifted by the constant

c/p∥6∥
2
tr. As a result, we know the asymptotic value of the bias and the consistent estimator for Frobenius norm of the

covariance matrix can be constructed by subtracting it from the sample counterpart. The exact form of this estimator is
presented in Section 4.

Next, we consider the shrinkage intensities α∗
n and β∗

n . The application of Theorem 3.2 allows us to find their asymptotic
properties. This is done in Corollary 3.1.

Corollary 3.1. Assume that (A1)–(A5) are fulfilled. Then for p
n → c ∈ (0,+∞) as n → ∞ the optimal shrinkage intensities α∗

n
and β∗

n satisfyα∗

n − α∗

 −→ 0 a.s. for n → ∞, (3.14)

where

α∗
= 1 −

c
p∥6∥

2
tr∥60∥

2
F

∥6n∥
2
F +

c
p∥6n∥

2
tr

∥60∥

2
F −


tr(6n60)

2 (3.15)

and β∗

n − β∗

 −→ 0 a.s. for n → ∞, (3.16)

where

β∗
=

tr(6n60)

∥60∥
2
F


1 − α∗


. (3.17)
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Proof. This result follows straightforwardly from Theorem 3.2. Only the boundedness of the trace norm of thematrix 1/p6n
is needed. It obviously follows from (A5), namely

∥1/p6n∥tr = 1/p tr(6n) < ∞. � (3.18)

First, we observe that the application of Corollary 3.1 and Theorem 3.2 ensures that the shrinkage intensities α∗ and β∗

can be consistently estimated. We summarize this result in Section 4.
The second interpretation of the results of Corollary 3.1 shows that α∗ < 1 as soon as c > 0 which follows directly

from (3.7). Only if c = 0, we get α∗
= 1 and β∗

= 0. In this case, the sample covariance matrix is a good estimator for the
population covariance matrix whichminimizes the Frobenius norm. In contrast if p increases, i.e. if c > 0, the general linear
shrinkage estimator (3.1) improves the performance of the sample estimator. Moreover, the impact of this improvement
becomes larger as p approaches n.

4. Bona fide estimator for the covariance matrix

This section is dedicated to the bona fide estimation of the unknown parameters from Section 3. As we have already
mentioned the asymptotic shrinkage intensities α∗ and β∗ from Corollary 3.1 can be consistently estimated using the result
of Theorem 3.2.

Obviously, both α∗ and β∗ depend on the Frobenius norm of the covariance matrix 6n and on the functionals of the type
tr(6n2). Due to Theorem3.2 the consistent estimator of latter term is its sample counterpart, while the consistent estimator
of the Frobenius norm ψn =

1
p∥6n∥

2
F is given by

ψn =
1
p
∥Sn∥2

F −
1
np

∥Sn∥2
tr. (4.1)

The resulting estimator (4.1) is similar to that obtained by Girko [16]. In contrast to Girko [16], Theorem 3.2 was proved
under more general conditions and we use the complex Stieltjes transformwhile Girko [16] used the real one. Girko’s result
holds for c ∈ (0, 1)while our for c ∈ (0,+∞). Nevertheless, using Theorems 3.1 and 3.2 it can be shown that the so-called
G2
4-estimator considered by Girko [16] coincides with (4.1) and it is indeed the consistent estimator for the Frobenius norm

of the covariance matrix under the large dimensional asymptotics.
The optimal linear shrinkage estimator (OLSE) for the covariance matrix 6n is given by6OLSE = α̂∗Sn + β̂∗60 with ∥60∥tr ≤ M, (4.2)

where

α̂∗
= 1 −

1
n∥Sn∥

2
tr∥60∥

2
F

∥Sn∥2
F∥60∥

2
F −


tr(Sn60)

2 (4.3)

and

β̂∗
=

tr(Sn60)

∥60∥
2
F


1 − α̂∗


. (4.4)

The OLSE estimator possesses almost surely the smallest Frobenius loss according to Theorem 3.2 and has a simple
structure. Moreover, when p > n and the sample covariance matrix Sn is singular the optimal linear shrinkage6OLSE stays
invertible and applicable in practice.

Next, we consider an interesting special case when 60 =
1
p I in more detail. In this case 6OLSE looks very similar to the

linear shrinkage estimator proposed by Ledoit and Wolf [22]. However, they are not equal.
First, the linear shrinkage estimator of Ledoit and Wolf [22] has the smallest Frobenius loss in quadratic mean while the

suggested estimator in (4.2) ensures almost sure convergence to the oracle. Moreover, Ledoit and Wolf [22] assumed the
existence of 8th moment while our estimator is derived under the assumption that 4 + ε, ε > 0, moment exists.

Second, the estimator of Ledoit andWolf [22] and the suggested optimal linear shrinkage estimator (4.2) with60 = 1/pI
differ in α̂∗. Instead of 1

n∥Sn∥
2
tr Ledoit andWolf [22] used 1

n2
n

i=1 ∥yiy′

i−Sn∥2
F , where yi are the columns of thematrix6

1/2
n Xn.

Indeed, let d2 =
1
p∥Sn∥

2
F −


1/p tr(Sn)

2
and b2 =

1
p

1
n2
n

i=1 ∥yiy′

i − Sn∥2
F . Then the estimate for α∗ by Ledoit and Wolf [22]

is given by

α̂∗

LW = 1 −
min{b2, d2}

d2
. (4.5)

Consequently, from (4.5) we observe that the Ledoit–Wolf (LW) linear shrinkage estimator is constrained whereas our
optimal shrinkage estimator (4.2) for 60 =

1
p I is unconstrained. Moreover, if b2 > d2 in (4.5) then α∗

LW = 0 independently
how large p is with respect to n. In this case LW estimator is equal to the target matrix tr(Sn) 1p I. In contrast, for the suggested
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Fig. 1. PRIALs for the oracle, the bona fide OLSE, and the bona fide LW estimators for p = 3k, k ∈ {1, . . . , 33}, c = 1/3, and 60 =
1
p I, 1000 repetitions.

OLSE estimator (4.2) it holds always that 0 < α∗
≤ 1. Moreover, α∗

= 1 iff c = 0 which means that the sample covariance
matrix possesses the smallest Frobenius loss only if p is much smaller than n. For c > 0, the sample covariance matrix is not
an optimal estimator for the covariance matrix.

Third, the LW linear shrinkage estimator seems to be more computationally intensive than (4.2) for 60 =
1
p I. The reason

is that the quantity b2 is computed by a loop while 1
n∥Sn∥

2
tr needs only the computation of the trace.

Ledoit andWolf [22] proved that their linear shrinkage estimator tends on average to the oracle one while our estimator
tends to the oracle almost surely and, consequently, it is expected that they are asymptotically the same. Moreover, the
choice 60 =

1
p I can be too conservative and better results can be obtained for other values of 60.

In Fig. 1 we present the simulation results for normally distributed data in the case when 60 =
1
p I. We take, without loss

of generality, 6n as a diagonal matrix and separate its spectrum in three equal parts with eigenvalues 0.1, 5 and 10. In terms
of the corresponding cumulative distribution function of the eigenvalues of 6n (ct. Section 2) it holds that

H6n
n (t) = 1/3δ[0.1,∞)(t)+ 1/3δ[5,∞)(t)+ 1/3δ[10,∞)(t), (4.6)

where δ is the Dirac delta function. Doing so we leave the structure of population covariance matrix unchanged for all
dimensions p. Then, we compare the LW linear shrinkage estimator with the suggested OLSE estimator in terms of their
PRIAL’s. For an arbitrary estimator of the covariance matrix, M, the PRIAL (Percentage Relative Improvement in Average
Loss) is defined as

PRIAL(M) =


1 −

E∥M − 6n∥
2
F

E∥Sn − 6n∥
2
F


· 100%. (4.7)

By definition (4.7), PRIAL(Sn) is equal to zero and PRIAL(6n) is equal to 100%.
Fig. 1 clearly shows that both the LW estimator and the suggested OLSE estimator converge quickly to their common

oracle in average. Moreover we conclude that there is no significant difference between the two estimators.
In Fig. 2 we show how the prior knowledge of the structure of the population covariance matrix can improve the OLSE

estimator when 60 = 1/pI. We assume that the prior matrix 60 conforms to the spectrum separation of the covariance
matrix 6n. Thus, suppose we know that the spectrum of population covariance matrix is separated in three equal blocks
(see equality (4.6)) and we do not take any other information into account. The diagonal elements of prior matrix 60 are
chosen to be 1, 2 and 3. In terms of the cumulative distribution function of 60 it holds that

H60(t) = 1/3δ[1,∞)(t)+ 1/3δ[2,∞)(t)+ 1/3δ[3,∞)(t). (4.8)

In this case Fig. 2 shows that improvement of the OLSE estimator is about 40% over the OLSE estimator constructed with
60 = 1/pI. It is remarkable that both the oracle and bona fide OLSE estimators dominate the corresponding oracle and bona
fide estimators calculated for 60 = 1/pI. Note that both the estimators now possess different oracles due to the prior 60.

Similar situation can be observed in the case c = 2. Here the proportion of zero eigenvalues is asymptotically equal to
1−c−1

= 0.5, i.e. 50% (see, e.g. [5]). In Figs. 3 and4wepresent the corresponding results of theMonte Carlo simulations. Fig. 3
shows that the derived estimator for the population covariancematrixwith the prior60 = 1/pI is on average asymptotically
the same as the linear shrinkage of Ledoit and Wolf [22]. It is noted that the overall performance of the OLSE estimator is
significantly better than in the case c = 1/3.
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Fig. 2. PRIALs for the oracle and the bona fide OLSE estimators with 60 = 1/pI and 60 as given in (4.8) for p = 3k, k ∈ {1, . . . , 33} and c = 1/3, 1000
repetitions.

Fig. 3. PRIALs for the oracle, the bona fide OLSE, and the bona fide LW estimators for p = 10k, k ∈ {1, . . . , 20}, c = 2, and 60 =
1
p I, 1000 repetitions.

Fig. 4. PRIALs for the oracle and the bona fide OLSE estimators with 60 = 1/pI and 60 as given in (4.8) for p = 10k, k ∈ {1, . . . , 20} and c = 2, 1000
repetitions.
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Fig. 5. Empirical distribution function of the Frobenius norms of the OLSE and the sample covariance matrix.

Fig. 4 presents the case when the additional information about the spectrum separation from (4.8) is taken into account.
Here, the spectrum of 60 is determined by

H60(t) = 1/3δ[1,∞)(t)+ 1/3δ[2,∞)(t)+ 1/3δ[60,∞)(t).

The dominance of about 20% is detected. It means that the information about the spectrum separation of the population
covariance matrix plays a crucial role for choosing the prior target matrix for the OLSE estimator. Consequently, when the
target matrix 60 departs away from the identity matrix, it has a positive influence on the OLSE estimator and can improve
it significantly.

Finally, we note that the optimal linear shrinkage estimator (4.2) seems to be a good generalization and modification of
the linear shrinkage estimator presented by Ledoit andWolf [22], which is also a good alternative to the sample covariance
matrix. This continues to be true even when the dimension p is greater than the sample size n.

5. Empirical study

In this section, we apply the derived estimator for the covariance matrix to real data which consist of daily asset returns
on the 431 assets listed in the S&P 500 (Standard & Poor’s 500) index and traded during thewhole period from 13.01.2004 to
10.01.2014. The S&P 500 is based on the market capitalizations of 500 large companies having common stock listed on the
NYSE or NASDAQ. The number of the considered assets reflects the common setting in high-dimensional portfolio problems.

Nextwe analyze the influence of the portfolio size and the sample size on the behavior of the estimators for the Frobenius
norm and the maximum and minimum eigenvalues of the population covariance matrix which are based on the derived
OLSE and the sample covariance matrix. In Fig. 5 we present the results in case of p = 156 and n ∈ {104, 130, 195, 312}
which leads to c ∈ {0.5, 0.8, 1.2, 1.5}, respectively. Since the choice of the assets is not unique, here we sample randomly
p = 156 assets out of 431 and generate 103 different portfolios. In Figs. 6 and 7, the results are shown for several values
of p ∈ {50, 100, 200, 300}. The sample size n is chosen such that c ∈ (0, 3). For each point from the figure the maximum
(minimum) eigenvalue is calculated based on a randomly chosen portfolio of the dimension p.

Fig. 5 provides the empirical distribution of the Frobenius norms of the OLSE and the sample covariance matrix in case
of 103 randomly chosen portfolios of the dimension p = 156. Here, we observe that the Frobenius norm of the OLSE is
uniformly smaller than the one of the sample covariance matrix. This result holds true for all of the considered values of
c ∈ {0.5, 0.8, 1.2, 1.5}. It is in line with the results of Theorem 3.2 where it is proved that the Frobenius norm of the sample
covariance matrix overestimates asymptotically the corresponding population value.

In Figs. 6 and 7, we analyze the behavior of the smallest and the largest eigenvalues of the OLSE and the sample estimator
of the covariance matrix. The results in case of the smallest eigenvalue are of great importance in Finance since the smallest
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Fig. 6. Maximum eigenvalue of the OLSE and the sample covariance matrix.

Fig. 7. Minimum eigenvalue of the OLSE and the sample covariance matrix.

eigenvalue of the covariancematrix is directly related to the variance of the globalminimumvariance portfoliowhich is very
popular in Portfolio Theory (cf. [14]). We observe that the OLSE makes the largest eigenvalue smaller, whereas the smallest
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eigenvalue becomes larger in comparison to the sample covariance matrix. This result allows us to correct the investor’s
overoptimism concerning the risk when the global minimum variance is constructed by using the sample covariance
matrix.

6. Summary

This paper considers the problem of estimation of the covariance matrix in large dimensions. This case is known in
the literature as the large dimensional asymptotics and it includes the number of variables p → ∞ and the sample size
n → ∞ so that p/n → c ∈ (0,+∞). Here, we construct the optimal linear shrinkage estimator (OLSE) for the covariance
matrix which is proven to have almost surely the smallest Frobenius loss asymptotically. It is compared with the linear
shrinkage estimator constructed by Ledoit and Wolf [22]. A significant improvement is obtained when some additional
prior information on the population covariance matrix is available.
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Appendix

Here the proofs of the theorems are given.

Proof of Theorem 3.1. In order to prove Theorem 3.1 we use the MP equation (2.7). Before we proceed, we rewrite 1
p tr(S

2
n)

for all z ∈ C+ in the following way

1
p
tr(S2n) = −

1
2
∂2

∂z2
1
p
tr(Sn − 1/zI)−1

z


z=0

= −
1
2
∂2

∂z2


mFn(1/z)

z


z=0
, (A.1)

wheremFn(1/z) is the Stieltjes transform introduced in (2.5). From Theorem 2.1 we know thatmFn(1/z) tends almost surely
to a nonrandom mF (1/z) which satisfies the MP equation (2.7). Using this fact and denoting Θn(z) =

mFn (1/z)
z we get that

Θn(z) tends almost surely toΘ(z) =
mF (1/z)

z which is the unique solution of the following equation

Θ(z) =


+∞

−∞

1
zτ((1 − c)− cΘ(z))− 1

dH(τ ). (A.2)

Before we proceed with the second derivative of Θ(z) with respect to z, it is shown that the quantities Θ(z),Θ ′(z) and
Θ ′′(z), which appear in the calculation, are bounded at zero.

First, we point out that the limit under the integral sign in (A.2) can be safely moved by applying the dominated
convergence theorem together with the fact that H is a probability measure and the boundedness ofΘ(z). More precisely,
letm(z) = −z(1 − c)+ cmF (1/z) and rewrite (A.2) in the following way

Θ(z) = −


+∞

−∞

1
τm(z)+ 1

dH(τ ), (A.3)

where the function m(z) is another Stieltjes transformation of a positive measure on R+ (see, [26]). Thus, using inequality
(see, [25, Lemma 6]) τ

τm(z)+ 1

 ≤ τ
|z|

Im(z)
(A.4)

we get 1
τm(z)+ 1

 ≤
|z|

Im(z)
. (A.5)

Now, without loss of generality we construct the complex sequence zk = ihk such that hk → 0+ as k → ∞. Note that for
our framework the real part of z is not essential that is why without loss of generality we put it equal to zero. It follows that 1

τm(zk)+ 1

 ≤
|zk|

Im(zk)
=

hk

hk
= 1. (A.6)



226 T. Bodnar et al. / Journal of Multivariate Analysis 132 (2014) 215–228

So, using the fact that the function under the integral in (A.3) is bounded by an integrable function under the probability
measureH and thedominated convergence theoremwecanmove the limit z → 0+ under the integral sign in (A.2). It leads to

Θ(0) ≡ lim
z→0+

Θ(z) = −1, if lim
z→0+

zΘ(z) < ∞. (A.7)

The last inequality is true since if limz→0+ zΘ(z) = ∞ then from (A.2) we get that limz→0+ Θ(z) = 0. This leads to
limz→0+ zΘ(z) = 0 which contradicts the statement limz→0+ zΘ(z) = ∞.

A similar analysis is performed forΘ ′(z) given by

Θ ′(z) = −


+∞

−∞

τ((1 − c)− cΘ(z)− czΘ ′(z))
(zτ((1 − c)− cΘ(z))− 1)2

dH(τ ). (A.8)

Rearranging terms in (A.8) we get

Θ ′(z)

1 − cz


+∞

−∞

τ

(zτ((1 − c)− cΘ(z))− 1)2
dH(τ )


=


−(1 − c)+ cΘ(z)


+∞

−∞

τ

(zτ((1 − c)− cΘ(z))− 1)2
dH(τ ). (A.9)

Due toΘ(0) < ∞, we observe that the right hand side of (A.9) is bounded at zero and thus the left hand side tends toΘ ′(0)
as z → 0+. It leads to

Θ ′(0) ≡ lim
z→0+

Θ ′(z) = −


+∞

−∞

τdH(τ ). (A.10)

Next, we deriveΘ ′′(z). Let

M(z, τ ) = −
1

(zτ((1 − c)− cΘ(z))− 1)2
(A.11)

N(z, τ ) = τ((1 − c)− cΘ(z)− czΘ ′(z)). (A.12)

Using (A.8) together with (A.11) and (A.12),Θ ′′(z) can be rewritten in the following way

Θ ′′(z) =


+∞

−∞

N ′(z, τ )M(z, τ )dH(τ )+


+∞

−∞

M ′(z, τ )N(z, τ )dH(τ ), (A.13)

where

M ′(z, τ ) = −2M(z, τ )
N(z, τ )

(zτ((1 − c)− cΘ(z))− 1)
(A.14)

N ′(z, τ ) = τ

−2cΘ ′(z)− czΘ ′′(z)


. (A.15)

From (A.13) we get

Θ ′′(z)

1 − cz


+∞

−∞

τ

(zτ((1 − c)− cΘ(z))− 1)2
dH(τ )


= 2cΘ ′(z)


+∞

−∞

τ

(zτ((1 − c)− cΘ(z))− 1)2
dH(τ )+


+∞

−∞

M ′(z, τ )N(z, τ )dH(τ ). (A.16)

Taking the limit as z → 0+ in (A.11), (A.12) and (A.14) as well as using (A.10) and (A.7) we obtain

lim
z→0+

M(z, τ ) = −1, (A.17)

lim
z→0+

N(z, τ ) = τ , (A.18)

lim
z→0+

M ′(z, τ ) = −2τ . (A.19)

Hence, from (A.16) together with (A.17)–(A.19), (A.10) and (A.7) we get thatΘ ′′(0) < ∞ and

Θ ′′(0) ≡ lim
z→0+

Θ ′′(z) = −2c


+∞

−∞

τdH(τ )
2

− 2


+∞

−∞

τ 2dH(τ ). (A.20)

Now the result of Theorem 3.1 follows from (A.1), (A.2) and (A.20). �



T. Bodnar et al. / Journal of Multivariate Analysis 132 (2014) 215–228 227

Proof of Theorem 3.2. In order to prove the statement of the Theorem 3.2 we use the following lemma of Rubio and
Mestre [25].

Lemma A.1 (Lemma 4, Rubio andMestre [25]). Let {ξ1, . . . , ξn} be a sequence of i.i.d. real random vectors with zeromean vector,
identity covariancematrix, and uniformly bounded 4+εmoments for some ε > 0 and let Cn be some nonrandommatrix (possibly
random but independent of ξn) with bounded trace norm at infinity. Then1n

n
i=1

ξ′

iCnξi − tr(Cn)

 −→ 0 a.s. as n → ∞. (A.21)

Next, we proceed to the proof of Theorem 3.2 directly by considering the asymptotic behavior of the following two
quantities

η1 =
1
p
tr(Sn2) =

1
n

n
i=1

x′

i


1
p
21/26n2

1/2

xi (A.22)

η2 =
1
p
∥Sn∥2

F =
1
p
tr(S2n), (A.23)

where xi is the ith column of the matrix Xn defined in (2.2).
First, we prove that for p

n → c ∈ (0,+∞) as n → ∞ the following assertion holdsη1 −
1
p
tr(6n2)

 −→ 0 a.s. for n → ∞. (A.24)

For the application of Lemma A.1 we have to show that the trace norm of the matrix 1
p2

1/26n2
1/2 is bounded. It holds that

(see, [13])1p21/26n2
1/2

tr

=
1
p
tr(21/26n2

1/2) =
1
p
tr(26n) ≤

tr(2)τmax(6n)

p
, (A.25)

where τmax(6n) denotes the largest eigenvalue of the matrix 6n. At last, using the assumption (A5) we deduce the
boundedness of the trace norm of the matrix 1

p2
1/26n2

1/2. Thus, using Lemma A.1 we get the statement (A.24).
Next, we prove the main result of Theorem 3.2, namely the following statementη2 −

1
p


∥6n∥

2
F +

c
p
∥6n∥

2
tr

 −→ 0 a.s. for
p
n

→ c ∈ (0,+∞) as n → ∞. (A.26)

In order to prove (A.26) we use the result of Theorem 3.1. First, we rewrite the difference in (A.26) via the triangle inequality
in the following wayη2 −

1
p


∥6n∥

2
F +

c
p
∥6n∥

2
tr

 ≤

η2 − φ

+
φ −

1
p


∥6n∥

2
F +

c
p
∥6n∥

2
tr

, (A.27)

where φ =


+∞

−∞
τ 2dH(τ ) + c


+∞

−∞
τdH(τ )

2
is given in Theorem 3.1. Next we show that the right hand side of (A.27)

vanishes almost surely as n → ∞. Using Theorem 3.1 we get immediately that for the first term in (A.27) holdsη2 − φ

 −→ 0 a.s. for n → ∞. (A.28)

The second term in (A.27) is nonrandom. Next, we show that it approaches to zero as n → ∞. Due to assumption (A3) it
holds that Hn(t) tends to H(t) at all continuity points of H(t). Thus,

1
p
∥6n∥

2
F =

1
p
tr(62

n) =
1
p

p
i=1

τ 2i =


+∞

−∞

τ 2dHn(τ )
n→∞
−→


+∞

−∞

τ 2dH(τ ). (A.29)

The integral in (A.29) exists due to assumption (A5). Similarly, it can be shown that

1
p2

∥6n∥
2
tr

n→∞
−→


+∞

−∞

τdH(τ )
2

. (A.30)
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From (A.29) and (A.30) it follows thatφ −
1
p


∥6n∥

2
F +

c
p
∥6n∥

2
tr

 −→ 0 for n → ∞. (A.31)

As a result, (A.28) and (A.31) complete the proof of Theorem 3.2. �
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