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a b s t r a c t

In this work we construct an optimal shrinkage estimator for the precision matrix in high
dimensions. We consider the general asymptotics when the number of variables p → ∞

and the sample size n → ∞ so that p/n → c ∈ (0,+∞). The precisionmatrix is estimated
directly, without inverting the corresponding estimator for the covariance matrix. The
recent results from random matrix theory allow us to find the asymptotic deterministic
equivalents of the optimal shrinkage intensities and estimate them consistently. The
resulting distribution-free estimator has almost surely the minimum Frobenius loss.
Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse
sample covariance matrices tend almost surely to deterministic quantities and estimate
them consistently. Using this result, we construct a bona fide optimal linear shrinkage
estimator for the precision matrix in case c < 1. At the end, a simulation is provided
where the suggested estimator is compared with the estimators proposed in the literature.
The optimal shrinkage estimator shows significant improvement even for non-normally
distributed data.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The estimation of the covariance matrix, as well as its inverse (the precision matrix), plays an important role in many
disciplines from finance and genetics to wireless communications and engineering. In fact, having a suitable estimator for
the precisionmatrixwe are able to construct a good estimator for different types of optimal portfolios (see [44,19]). Similarly,
in the array processing, the beamformer or the so-called minimum variance distortionless response spatial filter is defined
in terms of the precision matrix (see e.g., [58]). In practice, however, the true precision matrix is unknown and a feasible
estimator, constructed from data, must be used.

If the number of variables p is much smaller than the sample size n we can use the sample estimator which is biased
but a consistent estimator for the precision matrix (see e.g., [7]). This case is known in the multivariate statistics as the
‘‘standard asymptotics’’ (see [41]). There are many findings on the estimation of the precision matrix when a particular
distribution assumption is imposed. For example, the estimation of the precision matrix under the multivariate normal
distribution was considered by Krishnamoorthy and Gupta [38], Gupta and Ofori-Nyarko [32–34], Kubokawa [39] and
Tsukuma and Konno [57]. The results in the case of multivariate Pearson type II distribution as well as the multivariate
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elliptically contoured stable distribution are obtained by Sarr and Gupta [50] as well as by Bodnar and Gupta [9] and Gupta
et al. [35], respectively.

Unfortunately, in practice p is often comparable in size to n or even is greater than n, i.e., we are in the situation when
both the sample size n and the dimension p tend to infinity but their ratio keeps (tends to) a positive constant. This case
often arises in finance when the number of assets is comparable or even greater than the number of observations for each
asset. Similarly, in genetics, the data set can be huge comparable to the number of patients. Both examples illustrate the
importance of the results obtained for p, n → ∞.

We deal with this type of asymptotics, called the ‘‘large dimensional asymptotics’’ and also known as the ‘‘Kolmogorov
asymptotics’’, in the present paper. More precisely, it is assumed that the dimension p ≡ p(n) is a function of the sample
size n and p/n → c ∈ (0,+∞) as n → ∞. This general type of asymptotics was intensively studied by several authors (see
[26,27,12] etc.). In this asymptotics the usual estimators for the precision matrix perform poorly and are not consistent
anymore. There are some techniques which can be used to handle the problem. Assuming that the covariance (precision)
matrix has a sparse structure, significant improvements have already been achieved (see [13,14,16]). For the low-rank
covariance matrices see the work of Rohde and Tsybakov [47]. An interesting nonparanormal graphic model was recently
proposed by Xue and Zou [60]. Also, in order to estimate the large dimensional covariance matrix the method of block
thresholding can be applied (see [15]). If the covariance matrix has a factor structure then the progress has been made by
Fan et al. [20].

However, if neither the assumption about the structure of covariance (precision) matrix nor about a particular
distribution is imposed, not many results are known in the literature which are based on the shrinkage estimators in
high-dimensional setting (cf. [42,40,10,59]). The shrinkage estimator was first developed by Stein [55] and forms a linear
combination of the sample estimator and some target. The corresponding shrinkage coefficients are often called shrinkage
intensities. Ledoit and Wolf [42] proposed to shrink the sample covariance matrix to the identity matrix and showed that
the resulting estimator is well-behaved in large dimensions. This estimator is called the linear shrinkage estimator because
it shrinks the eigenvalues of the sample covariance matrix linearly. Recently, Bodnar et al. [10] proposed a generalization
of the linear shrinkage estimator, where the shrinkage target was chosen to be an arbitrary nonrandom matrix and they
showed the almost sure convergence of the derived estimator to its oracle.

The aim of our paper is to construct a feasible estimator for the precisionmatrix using the linear shrinkage technique and
random matrix theory. In contrast to well-known procedures, we shrink the inverse of the sample covariance matrix itself
instead of shrinking the sample covariance matrix and then inverting it. The direct shrinkage estimation of the precision
matrix can be used in several important practical situations where the application of the inverse of the shrinkage estimator
of the covariance matrix does not perform well. For instance, this could happen when the data generating process follows
a factor model which is very popular in economics and finance (cf. [4,20,22,21]). In this case the largest eigenvalue of the
covariancematrix is of order p and, consequently, the inverse of the linear shrinkage estimator for the covariancematrix does
not work well. In the case when c > 1 the pseudo inverse of the sample covariance matrix is taken. The recent results from
randommatrix theory allow us to find the asymptotics of the optimal shrinkage intensities and estimate them consistently.

Randommatrix theory is a very fast growing branch of probability theory with many applications in statistics. It studies
the asymptotic behavior of the eigenvalues of the different randommatrices under general asymptotics (see e.g., [1,8]). The
asymptotic behavior of the functionals of the sample covariancematriceswas studied byMarc̆enko and Pastur [43], Yin [61],
Girko and Gupta [28–30], Silverstein [51], Bai et al. [5], Bai and Silverstein [8], Rubio and Mestre [48] etc.

We extend these results in the present paper by establishing the almost sure convergence of the optimal shrinkage
intensities and the Frobenius norm of the inverse sample covariance matrix. Moreover, we construct a general linear
shrinkage estimator for the precision matrix which has almost surely the smallest Frobenius loss when both the dimension
p and the sample size n increase together and p/n → c ∈ (0,+∞) as n → ∞. Additionally, we provide a bona fide optimal
linear shrinkage estimator for the precision matrix in case c < 1.

The suggested approach can potentially be applied in functional data analysis (cf. [46,24,37,11,17]). For instance, Ferraty
et al. [23] pointed out that functional data can be seen as a special case of a high-dimensional vector. This point has been
further explored by Aneiros and Vieu [2,3]. The estimation of the covariance (precision) matrix of this high-dimensional
vector can be used in determining the prediction for the dependent variable as well as the corresponding predictive design
points.

The rest of the paper is organized as follows. In Section 2we present some preliminary results from randommatrix theory
and formulate the assumptions used throughout the paper. In Section 3 we construct the oracle linear shrinkage estimator
for the precisionmatrix and verify themain asymptotic results about the shrinkage intensities and the Frobenius normof the
inverse and pseudo-inverse sample covariance matrices. Section 4 is dedicated to the bona fide linear shrinkage estimator
for the precision matrix while Section 5 contains the results of the simulation study. Here, the performance of the derived
estimator is compared with other known estimators for the large dimensional precision matrices. Section 6 includes the
summary, while the proofs of the theorems are presented in the supplementary material (Section 7).

2. Assumptions and notations

The ‘‘large dimensional asymptotics’’ or ‘‘Kolmogorov asymptotics’’ include p
n → c ∈ (0,+∞) as both the number of

variables p ≡ p(n) and the sample size n tend to infinity. In this case the traditional sample estimator performs poorly or
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very poorly. The inverse of the sample covariance matrix S−1
n is biased, inconsistent for p

n → c > 0 as n → ∞ and it does
not exist for c > 1. For example, under the normality assumption S−1

n has an inverse Wishart distribution if c < 1 and (cf.
[31])

E(S−1
n ) =

n
n − p − 2

Σ−1
n .

In particular, for p = n/2 + 2 we have that c = 1/2 and E(S−1
n ) = 2Σ−1

n . In general, as c increases the sample estimator of
the precision matrix becomes worse.

We use the following notations in the paper:

• Σn stands for the covariancematrix, Sn denotes the corresponding sample covariancematrix.1 The population covariance
matrix Σn is a nonrandom p-dimensional positive definite matrix.

• ∥A∥
2
F = tr(AA′) denotes the Frobenius norm of a square matrix A, ∥A∥tr = tr


AA′

1/2 stands for its trace norm, while
∥A∥2 is the spectral norm.

• The pairs (τi, νi) for i = 1, . . . , p denote the collection of eigenvalues and the corresponding orthonormal eigenvectors
of the covariance matrix Σn.

• Hn(t) is the empirical distribution function (e.d.f.) of the eigenvalues of Σn, i.e.,

Hn(t) =
1
p

p
i=1

1{τi≤t} (2.1)

where 1{·} is the indicator function.
• Let Xn be a p×nmatrix which consists of independent and identically distributed (i.i.d.) real random variables with zero

mean and unit variance. The observation matrix is defined as

Yn = Σ
1
2
n Xn. (2.2)

Only the matrix Yn is observable. We know neither Xn nor Σn itself.
• The pairs (λi,ui) for i = 1, . . . , p are the eigenvalues and the corresponding orthonormal eigenvectors of the sample

covariance matrix2

Sn =
1
n
YnY′

n =
1
n
Σ

1
2
n XnX′

nΣ
1
2
n . (2.3)

• Similarly, the (e.d.f.) of the eigenvalues of the sample covariance matrix Sn is defined as

Fn(λ) =
1
p

p
i=1

1{λi≤λ} ∀ λ ∈ R. (2.4)

• In order to handle the case when c > 1 we introduce the dual sample covariance matrix defined as

S̄n =
1
n
Y′

nYn =
1
n
X′

nΣnXn (2.5)

with the corresponding (e.d.f.) defined by

F̄n(λ) =
1
n

n
i=1

1{λi≤λ} ∀ λ ∈ R. (2.6)

Note that the matrix S̄n has the same nonzero eigenvalues as Sn, they differ only in |p − n| zero eigenvalues.

The main assumptions, which we mention throughout the paper, are as follows

(A1) We assume that Hn(t) converges to a limit H(t) at all points of continuity of H .
(A2) The elements of the matrix Xn have uniformly bounded 4 + ε, ε > 0 moments.
(A3) For all n large enough there exists the compact interval [h0, h1] in (0,+∞)which contains the support of Hn.

All of these assumptions are quite general and are satisfied in many practical situations. The assumption (A1) is essential
to prove theMarc̆enko–Pastur equation (see e.g., [51]) which is used for studying the asymptotic behavior of the spectrum of
general randommatrices (see e.g., [8]). The fourth moment is needed for the proof of Theorems 3.2 and 3.3. The assumption

1 Since the dimension p ≡ p(n) is a function of the sample size n, the covariance matrix Σn also depends on n via p(n). That is why we make use of the
subscript n for all of the considered objects in order to emphasize this fact and to simplify the notation in the paper.
2 The samplemean vector x̄was omitted because the 1-rankmatrix x̄x̄′ does not influence the asymptotic behavior of the spectrum of sample covariance

matrix (see [8, Theorem A.44]).
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(A3) ensures that both the matrix Σn and its inverse Σ−1
n have uniformly bounded spectral norms at infinity. It means that

Σn has the uniformly bounded maximum eigenvalue and its minimum eigenvalue is greater than zero. Rubio et al. [49]
pointed out that (A2) and (A3) are only some technical conditions which can be further violated. Finally, it is noted that
the assumption of the independence of the columns can further be weakened by controlling the growth of the number of
dependent entries, while no specific distributional assumptions are imposed on the elements of Yn (see [25]).

In order to investigate the (e.d.f) Fn(λ) the Stieltjes transform is used. For nondecreasing functionwith bounded variation
G the Stieltjes transform is defined as

∀z ∈ C+ mG(z) =


+∞

−∞

1
λ− z

dG(λ). (2.7)

In our notation C+
= {z ∈ C : Im(z) > 0} is the half-plane of complex numbers with strictly positive imaginary part and

any complex number is defined as z = Re(z) + iIm(z). More about the Stieltjes transform and its properties can be found
in [52].

The Stieltjes transform of the sample (e.d.f.) Fn(λ) for all z ∈ C+ is given by

mFn(z) =
1
p

p
i=1


+∞

−∞

1
λ− z

δ(λ− λi)dλ =
1
p
tr{(Sn − zI)−1

} (2.8)

where I is a suitable identity matrix and δ(·) is the Dirac delta function.

3. Optimal linear shrinkage estimator for the precision matrix

3.1. Case c < 1

In this section we construct an optimal linear shrinkage estimator for the precision matrix under high-dimensional
asymptotics. The estimator is an oracle one, i.e., it depends on unknown quantities. The corresponding bona fide estimator
is given in Section 4. We use a procedure similar to Bodnar et al. [10] where the optimal linear shrinkage estimator for the
covariance matrix was constructed. The general linear shrinkage estimator of the precisionmatrix Σ−1

n for c < 1 is given by

ΠGSE = αnS−1
n + βnΠ0 with sup

p

1
p
∥Π0∥

2
F ≤ M. (3.1)

Note that we need the condition c < 1 to keep the sample covariance matrix Sn invertible. The assumption3 that the target
matrix Π0 has a uniformly bounded normalized trace norm, i.e., there exists M > 0 such that supp

1
p∥Π0∥

2
F ≤ M , is rather

general and it is actually needed to keep the coefficient βn bounded for large dimensions p. This condition can be replaced
with an equivalent assumption on βn. Note that the target matrix can also be random but independent of Yn. In practice,
Π0 = I is used when no information about the precision matrix is available. On the other hand, the information about
the structure of the precision matrix can be included into Π0, like, e.g., sparsity. In order to present the results in the most
general case, throughout this section we assume only that Π0 satisfies supp

1
p∥Π0∥

2
F ≤ M . The choice of the target matrix

Π0 is not treated in the paper in detail and it is left for future research.
Our aim is now to find the optimal shrinkage intensities whichminimize the Frobenius-norm loss for a given nonrandom

target matrix Π0 given by

L2F = ∥ΠGSE − Σ−1
n ∥

2
F = ∥Σ−1

n ∥
2
F + ∥ΠGSE∥

2
F − 2tr

ΠGSEΣ
−1
n


.

As a result, using (3.1) the following optimization problem has to be solved

min
αn,βn

α2
n∥S

−1
n ∥

2
F + 2αnβntr(S−1

n Π0)+ β2
n∥Π0∥

2
F − 2αntr(S−1

n Σ−1
n )− 2βntr(Σ−1

n Π0).

Next, taking the derivatives of L2F with respect to αn and βn and setting them equal to zero we get

∂L2F
∂αn

= αn∥S−1
n ∥

2
F + βntr(S−1

n Π0)− tr(S−1
n Σ−1

n ) = 0, (3.2)

∂L2F
∂βn

= αntr(S−1
n Π0)+ βn∥Π0∥

2
F − tr(Σ−1

n Π0) = 0. (3.3)

The Hessian of the L2F has the form

H =


∥S−1

n ∥
2
F tr(S−1

n Π0)

tr(S−1
n Π0) ∥Π0∥

2
F


(3.4)

3 The similar assumption is presented by Bodnar et al. [10] but with supp ∥Π0∥
2
F ≤ M . Note that the assumption supp 1/p∥Π0∥

2
F ≤ M is more general.
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which is always positive definite, since

det(H) = ∥S−1
n ∥

2
F∥Π0∥

2
F − (tr(S−1

n Π0))
2

≥ ∥S−1
n ∥

2
F∥Π0∥

2
F − ∥S−1

n ∥
2
2(tr(Π0))

2 Jensen
≥ (∥S−1

n ∥
2
F − ∥S−1

n ∥
2
2)∥Π0∥

2
F > 0, (3.5)

where the last inequality in (3.5) is taken from Horn and Johnson [36].
Thus, the optimal α∗

n and β∗
n are given by

α∗

n =
tr(S−1

n Σ−1
n )∥Π0∥

2
F − tr(Σ−1

n Π0)tr(S−1
n Π0)

∥S−1
n ∥

2
F∥Π0∥

2
F −


tr(S−1

n Π0)
2 , (3.6)

β∗

n =
tr(Σ−1

n Π0)∥S−1
n ∥

2
F − tr(S−1

n Σ−1
n )tr(S

−1
n Π0)

∥S−1
n ∥

2
F∥Π0∥

2
F −


tr(S−1

n Π0)
2 . (3.7)

Now, we formulate our first main result in Theorem 3.1 which states that the normalized Frobenius norm of the inverse
sample covariance matrix 1/p∥S−1

n ∥
2
F tends almost surely to a nonrandom quantity.

Theorem 3.1. Assume that (A1) and (A3) hold and p
n → c ∈ (0, 1) for n → ∞. Then the normalized Frobenius norm of the

inverse sample covariance matrix ψn =
1
p∥S

−1
n ∥

2
F almost surely tends to a nonrandom ψ which is given by

ψ =
1

(1 − c)2


+∞

−∞

dH(τ )
τ 2

+
c

(1 − c)3


+∞

−∞

dH(τ )
τ

2

. (3.8)

The proof is given in the supplementary material (see Appendix A). Theorem 3.1 presents an important result which
indicates that the Frobenius normof the inverse sample covariancematrix is asymptotically nonrandomaswell as it depends
on H and concentration ratio c only. Moreover, Theorem 3.1 gives us an intuitive hint how to find the asymptotic equivalent
representation of ∥S−1

n ∥
2
F . The corresponding result is presented in Theorem 3.2.

Theorem 3.2. Let the assumptions (A1)–(A3) hold and p
n → c ∈ (0, 1). Then as n → ∞,

1
p

∥S−1
n ∥

2
F −


1

(1 − c)2
∥Σ−1

n ∥
2
F +

c
p(1 − c)3

∥Σ−1
n ∥

2
tr

 −→
a.s.

0. (3.9)

Additionally, for the quantity tr(S−1
n Θ)with a symmetric positive definite matrix Θ which has uniformly bounded trace norm

as n → ∞,tr(S−1
n Θ)−

1
1 − c

tr(Σ−1
n Θ)

−→
a.s.

0 for
p
n

→ c ∈ (0, 1). (3.10)

The theorem is proved in the supplementary material (see Appendix A). Theorem 3.2 provides us the asymptotic
behavior of the Frobenius norm of the inverse sample covariance matrix and of the functional tr(S−1

n Θ). It shows that the
consistent estimator for the Frobenius norm of the precisionmatrix under the general asymptotics is not equal to its sample
counterpart. Using Theorem 3.2 we can easily determine the asymptotic bias of the sample estimator which consists of the
two types of biases. The multiplicative bias is violated by multiplying ∥S−1

n ∥
2
F by (1 − c)2. After that, the additive bias is

dealt by subtracting c
p(1−c)∥Σ−1

n ∥
2
tr . The sample estimator of the functional tr(S−1

n Θ) is also not a consistent estimator for
tr(Σ−1

n Θ). The consistent estimator is obtained by multiplying tr(S−1
n Θ) by the constant (1 − c).

Results similar to those given in Theorems 3.1 and 3.2 are also available for the estimation of the population covariance
matrix (cf. [10]). However, in the case of the covariance matrix, the sample estimator for the Frobenius norm possesses only
the additive bias c

p tr(∥Σ−1
n ∥tr), while tr(SnΘ) is a consistent estimator for tr(ΣnΘ).

Next, we show that the optimal shrinkage intensities α∗
n and β∗

n are almost surely asymptotic equivalent to nonrandom
quantities α∗ and β∗ under the large-dimensional asymptotics p

n → c ∈ (0, 1).

Corollary 3.1. Assume that (A1)–(A3) hold and p
n → c ∈ (0, 1) for n → ∞. Then for the optimal shrinkage intensities α∗

n
and β∗

nα∗

n − α∗
−→

a.s.
0, (3.11)
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where

α∗
= (1 − c)

∥Σ−1
n ∥

2
F∥Π0∥

2
F −


tr(Σ−1

n Π0)
2

∥Σ−1
n ∥

2
F +

c
p(1−c)∥Σ−1

n ∥
2
tr


∥Π0∥

2
F −


tr(Σ−1

n Π0)
2 (3.12)

and β∗

n − β∗
−→

a.s.
0 with β∗

=
tr(Σ−1

n Π0)

∥Π0∥
2
F


1 −

α∗

1 − c


. (3.13)

Note that both the asymptotic optimal intensitiesα∗ andβ∗ are always positive aswell asα∗
∈ (0, 1−c)due to inequality

(3.5) and c ∈ (0, 1). Using these results we are immediately able to estimate α∗, β∗ consistently which is shown in Section 4.

3.2. Case c > 1

In this subsection we deal with the problem of the estimation of the precision matrix when the dimension p is greater
than the sample size n, i.e., c > 1. This case is very difficult to handle because of the loss of information as c becomes
greater than one. Moreover, the sample covariance matrix Sn is not invertible and thus the estimator S−1

n must be replaced
by a suitable one. This is usually done by using the generalized inverse matrix S+

n instead of S−1
n . In this case the general

shrinkage estimator has the form

ΠGSE = α̃nS+

n + β̃nΠ0 with sup
p

1
p
∥Π0∥

2
F ≤ M. (3.14)

The optimal shrinkage intensities α̃∗
n and β̃∗

n are determined following the procedure of Section 3.1. They are given by

α̃∗

n =
tr(S+

n Σ−1
n )∥Π0∥

2
F − tr(Σ−1

n Π0)tr(S+
n Π0)

∥S+
n ∥

2
F∥Π0∥

2
F −


tr(S+

n Π0)
2 , (3.15)

β̃∗

n =
tr(Σ−1

n Π0)∥S+
n ∥

2
F − tr(S+

n Σ−1
n )tr(S

+
n Π0)

∥S+
n ∥

2
F∥Π0∥

2
F −


tr(S+

n Π0)
2 . (3.16)

In Theorem 3.3 we derive the asymptotic properties of two quantities used in (3.15) and (3.16), namely tr(ΘS+
n ) and

∥S+
n ∥

2
F .

Theorem 3.3. Let the assumptions (A1)–(A3) hold and p
n → c ∈ (1,+∞). Then as n → ∞,1p∥S+

n ∥
2
F − c−1x′(0)

−→
a.s.

0, where x′(0) =
1

1
x2(0)

−
c
p tr


Σ−1
n + x(0)I

−2
 (3.17)

and x(0) is the unique solution of the equation

1
x(0)

=
c
p
tr


Σ−1
n + x(0)I

−1

. (3.18)

Additionally, for the quantity tr(ΘS+
n ) with a symmetric positive definite matrix Θ which has uniformly bounded spectral

norm, as n → ∞,1p tr(ΘS+

n )− c−1y(Θ)
−→

a.s.
0 for

p
n

→ c ∈ (1,+∞), (3.19)

where y(Θ) is the solution of

1
y(Θ)

=
c
p
tr


Σ−1/2
n ΘΣ−1/2

n + y(Θ)I
−1

. (3.20)

The proof of Theorem 3.3 is given in the supplementary material (see Appendix A). The results of Theorem 3.3 show that
using the generalized inverse technique it is not clear how to estimate the functionals of Σ−1

n consistently. The asymptotic
values obtained in Theorem 3.3 are far away from the desired ones. In order to correct these biases, we need to solve the
non-linear equation (3.18) and (3.20), respectively, which appears to be a difficult task. Finally, we notice, that the quantities
x(0) and x′(0), however, can be estimated consistently using Theorem 3.3.

In an important special case when the matrix Θ = ξη′ for some ξ and η with bounded Euclidean norms we get the
following result summarized in Proposition 3.1 which is proved in the supplementary material (see Appendix A).
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Proposition 3.1. Under the assumptions of Theorem 3.3 and Θ = ξη′ for some ξ and η with bounded Euclidean norms it holds

1
p

η′S+

n ξ −
c−1

c − 1
η′Σ−1

n ξ

−→
a.s.

0 for
p
n

→ c ∈ (1,+∞). (3.21)

It is remarkable to note that the results of Proposition 3.1 are very similar to those presented in Theorem 3.2 if Θ = ξξ′.
Here, the constant 1 − c need to be replaced by c(c − 1).

Next we use the asymptotic results of Theorem 3.3 for finding the asymptotic equivalents to the optimal shrinkage
intensities α̃∗

n and β̃∗
n given in (3.15) and (3.16), respectively.

Corollary 3.2. Assume that (A1)–(A3) hold and p
n → c ∈ (1,+∞) for n → ∞. Then for the optimal shrinkage intensities α∗

n
and β∗

n from (3.15) and (3.16) holds

α∗

n − α∗
−→

a.s.
0 with α∗

=
y(Σ−1

n )∥Π0∥
2
F − y(Π0)tr(Σ−1

n Π0)

x′(0)∥Π0∥
2
F − c−1y2(Π0)

(3.22)

and β∗

n − β∗
−→

a.s.
0 with β∗

=
tr(Σ−1

n Π0)x′(0)− y(Σ−1
n )y(Π0)

cx′(0)∥Π0∥
2
F − y2(Π0)

. (3.23)

Even if the targetmatrixΠ0 is chosen as a one-rankmatrix, i.e.,Π0 = ξη′, we are not able to provide consistent estimates
for α∗ and β∗ without an additional assumption imposed on Σn. One of possible assumptions for which α∗ and β∗ are
consistently estimable is Σn = σ I as illustrated in Corollary 3.4. If Σn = σ I, then for 1

p∥S
+
n ∥

2
F and 1

p tr(S
+
n )we get

Corollary 3.3. Under the assumptions of Theorem 3.3 assume additionally that Σn = σ I. Then it holds as n → ∞1p∥S+

n ∥
2
F −

σ−2

(c − 1)3

−→
a.s.

0. (3.24)

Additionally, for the quantity tr(S+
n ) as n → ∞ the norm1p tr(S+

n )−
c−1

(c − 1)
σ−1

−→
a.s.

0 for
p
n

→ c ∈ (1,+∞). (3.25)

The proof of Corollary 3.3 is based on the fact that Eq. (3.18) has the explicit solution x(0) =
σ−1

c−1 if Σn = σ I. The rest
calculations are only technical ones. It is interesting to note that the result of Corollary 3.3 coincides with the corresponding
one of Theorem 3.2 for c < 1 if Σn = σ I.

Next we apply Corollary 3.3 with Σn = σ I and Π0 = I to construct the asymptotic equivalents to the optimal shrinkage
intensities α̃∗

n and β̃∗
n given in (3.15) and (3.16), respectively.

Corollary 3.4. Assume that (A1)–(A3) hold, Σn = σ I, Π0 = I and p
n → c ∈ (1,+∞) for n → ∞. Then for the optimal

shrinkage intensities α∗
n and β∗

n from (3.15) and (3.16) holds

α̃∗

n −→
a.s.

0 and β̃∗

n −→
a.s.

σ−1. (3.26)

Corollary 3.4 implies that the oracle optimal shrinkage estimator for the precision matrix in the case c > 1 and Σn = σ I
is equal toΠGSE = Σ−1

n = σ−1I. (3.27)

The quantity σ−1
=

1
p tr(Σ

−1
n ) can be easily estimated using the result of Corollary 3.3. Namely, the consistent estimator of

σ−1 is given by

σ̂−1
= p/n

p/n − 1
p

tr(S+

n ). (3.28)

However, in the general case when Σn and Π0 are arbitrary, the results of Corollaries 3.3 and 3.4 do not hold anymore.
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4. Estimation of unknown parameters

In this section we present consistent estimators for the asymptotic optimal shrinkage intensities derived in Section 3.
The results of Theorem 3.2 allow us to estimate consistently the functionals of type tr(Σ−1

n Θ) and the Frobenius norm of
the precision matrix. The consistent estimator for the functional θn(Θ) = tr(Σ−1

n Θ) is given by

θ̂n(Θ) = (1 − p/n)tr(S−1
n Θ) (4.1)

which is a generalization of the so-called G3-estimator obtained by Girko [27]. In particular, in the case when Θ = ξη′ for
some vectors ξ and η with bounded Euclidean norm, Girko [27] showed that the corresponding estimator θ̂n(ξη′) tends to
θn(ξη

′) in probability. In contrast, Theorem 3.2 ensures the consistency of θ̂n(Θ) for more general forms of Θ which should
not be of rank 1.

Again, using (4.1) and Theorem 3.2 we construct a consistent estimator for ρn = 1/p∥Σ−1
n ∥

2
F which is given by

ρ̂n =
(1 − p/n)2

p
∥S−1

n ∥
2
F −

1 − p/n
pn

∥S−1
n ∥

2
tr . (4.2)

Note that the result (4.2) is entirely new and it was not mentioned in the literature up to now. Moreover, it is noted that for
the derivation of (4.2) we do not need the existence of the 4th moment (see the assumption (A2) in Section 2).

Using both the estimators (4.1) and (4.2), we are able now to construct the optimal linear shrinkage estimator (OLSE) for
the precision matrix which is given byΠOLSE =α∗

nS
−1
n +β∗

nΠ0 with sup
p

1/p∥Π0∥tr ≤ M, (4.3)

where

α∗

n = (1 − p/n)
pρ̂n∥Π0∥

2
F − θ̂2n (Π0)

pρ̂n +
p/n

p(1−p/n) θ̂
2
n (I)


∥Π0∥

2
F − θ̂2n (Π0)

= (1 − p/n)

1 −

p/n
p(1−p/n) θ̂

2
n (I)∥Π0∥

2
F

pρ̂n +
p/n

p(1−p/n) θ̂
2
n (I)


∥Π0∥

2
F − θ̂2n (Π0)


= 1 − p/n −

1
n∥S

−1
n ∥

2
tr∥Π0∥

2
F

∥S−1
n ∥

2
F∥Π0∥

2
F −


tr(S−1

n Π0)
2 (4.4)

and

β∗

n =
θ̂n(Π0)

∥Π0∥
2
F


1 −

α∗
n

1 − p/n


=

tr(S−1
n Π0)

∥Π0∥
2
F


1 − p/n −α∗

n


. (4.5)

The bona fideOLSE estimator (4.3) is optimal in the sense that itminimizes the Frobenius loss. Itmeans that the estimatorsα∗
n and β∗

n tend almost surely to their oracle asymptotic values (3.12) and (3.13) as n → ∞, respectively. According to
Corollary 3.1 the oracle optimal intensities α∗

n and β∗
n given in (3.6) and (3.7) behave similarly. It is a remarkable property of

the OLSE estimator which indicates that the bona fide OLSE estimator tends almost surely to its oracle one. Moreover, using
the inequality (3.5) it can be easily verified that the estimated optimal shrinkage intensitiesα∗

n andβ∗
n are almost surely

positive andα∗
n has the support (0, 1 − p/n). Only in the case when p/n → c = 0 as n → ∞ the shrinkage intensities

satisfyα∗
n → 1 andβ∗

n → 0. In this case the OLSE estimator coincides with the sample estimator which is consistent for the
standard asymptotics.

Next we present the asymptotic Frobenius losses of the suggested optimal linear shrinkage estimator, the traditional
estimator and different benchmark estimators which are frequently used in statistical literature. The first benchmark is
the optimal linear shrinkage estimator (OLSE) for the covariance matrix Σn, c ∈ (0,+∞), suggested recently by Bodnar
et al. [10]. It is given by Σ−1

OLSE with

ΣOLSE = α̂∗

CSn + β̂∗

CΣ0, ∥Σ0∥tr ≤ M, (4.6)

where Σ0 is a positive definite symmetric target matrix,

α̂∗

C = 1 −

1
n∥Sn∥

2
tr∥Σ0∥

2
F

∥Sn∥2
F∥Σ0∥

2
F −


tr(SnΣ0)

2 and β̂∗

C =
tr(SnΣ0)

∥Σ0∥
2
F


1 − α̂∗

C


. (4.7)

Bodnar et al. [10] proved that their ΣOLSE estimator possesses asymptotically almost surely the smallest Frobenius loss
over all linear shrinkage estimators. Moreover, they showed by simulations that if the target matrix is Σ0 = 1/pI then the
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estimatorΣOLSE is asymptotically equivalent to the linear shrinkage estimator proposed by Ledoit andWolf [42] for normally
distributed data.

The second considered estimator for the precision matrix is the scaled standard estimator (SSE), which is presented by
several authors, e.g., Stein [56], Mestre and Lagunas [45], Srivastava [53] and Kubokawa and Srivastava [40]. It is given by

ΠSSE =
n − p − 2
n − 1

S−1
n δ(p<n) +

p
n − 1

S+

n δ(p≥n) (4.8)

where S+
n is the Moore–Penrose inverse of Sn and δ(·) is a Dirac delta function. The third benchmark proposed by Efron and

Morris [18] is expressed as

ΠEM =
n − p − 2
n − 1

S−1
n +

p2 + p − 2
(n − 1)tr(Sn)

I. (4.9)

The last one is the empirical Bayes estimator considered in [40]ΠKS = p ((n − 1)Sn + tr(Sn)I)−1 . (4.10)
In order to compare the asymptotic performance of the considered estimators, wemake use of the normalized Frobenius

loss as a performance measure, i.e.,

L(M) =
1
p
∥M − Σ−1

n ∥
2
F (4.11)

where M is an arbitrary estimator for the precision matrix Σ−1
n . The following corollary follows from Theorem 3.1.

Corollary 4.1. Under the assumptions of Theorem 3.1, it holds that

L(ΠOLSE)−→
a.s.

1
p
β∗ 2

∥Π0∥
2
F


∥Σ−1

n ∥
2
F∥Π0∥

2
F

(tr[Σ−1
n Π0])2

− 1


+
α∗ 2

(1 − c)2
c

1 − c
1
p2

tr(Σ−1

n )
2

L(S−1
n )−→

a.s.

c2

(1 − c)2
1
p
∥Σ−1

n ∥
2
F +

c
1 − c

1
p2

tr(Σ−1

n )
2

L(ΠSSE)−→
a.s.

c
1 − c

1
p2

tr(Σ−1

n )
2

L(ΠEM)−→
a.s.


c

1/ptr(Σn)

2

+
c

1 − c
1
p2

tr(Σ−1

n )
2

L(Σ−1
OLSE)−→

a.s.

1
p
∥Σ−1

n ∥
2
F +

1
p
tr


α∗

C (1 − c)Σn + β∗

CΣ0
−2


cα∗

C
1
p tr(Σ

−1
n )

1 − c
Σn + I



− 2
1
p
tr

α∗

C (1 − c)Σn + β∗

CΣ0
−1

Σ−1
n


L(ΠKS)−→

a.s.

1
p
∥Σ−1

n ∥
2
F +

1
p
tr


1 − c
c

Σn +
tr(Σn)

p
I
−2

 1
p tr(Σ

−1
n )

1 − c
Σn + I



− 2
1
p
tr


1 − c
c

Σn +
tr(Σn)

p
I
−1

Σ−1
n


for p/n → c ∈ (0, 1) as n → ∞ where α∗

C and β∗

C are the asymptotic values for α̂∗

C and β̂∗

C given by

α∗

C = 1 −
c/p (tr(Σn))

2
∥Σ0∥

2
F

(∥Σn∥
2
F + c/p (tr(Σn))

2)∥Σ0∥
2
F − (tr(ΣnΣ0))

2 , (4.12)

β∗

C =
tr(ΣnΣ0)

∥Σ0∥
2
F
(1 − α∗

C ) . (4.13)

The proof of Corollary 4.1 is given in the supplementary material (see Appendix A). Corollary 4.1 possesses several
interesting applications. For instance, we get

L(S−1
n )− L(ΠSSE)−→

a.s.

c2

(1 − c)2
1
p
∥Σ−1

n ∥
2
F

for p/n → c ∈ (0, 1) as n → ∞, i.e., the scaled standard estimator always overperforms the traditional estimator
asymptotically.



10 T. Bodnar et al. / Journal of Multivariate Analysis ( ) –

Remark 1. In the case of other estimators the results of Corollary 4.1 cannot be applied straightforwardly, since the obtained
formulas of the loss functions are complicated expressions which involved the unknown precision matrix Σ−1

n and the
concentration ratio c. In a special case, when Π0 = Σ−1

n , i.e. the shrinkage target is perfectly chosen, we get that ΠOLSE

overperforms S−1
n ,ΠSSE , andΠEM . This statement follows directly from (4.4) which ensures that α∗ < 1− c and the fact that

the first summand in L(ΠOLSE) is zero in this particular case. Moreover, from the construction of the OLSE estimator and its
asymptotic properties we expect similar results also for other reasonable choices of Π0. The reason is that the OLSE have to
provide the asymptotically smallest Frobenius loss over all linear shrinkage estimators in the form (3.1). Another interesting
feature of Corollary 4.1 is that the asymptotic Frobenius loss of the OLSE estimator is a linear combination of the Frobenius
loss of traditional estimator and the distance between the true precision matrix Σ−1

n and the target matrix Π0.

Another important result is formulated as Corollary 4.2.

Corollary 4.2. Let assumptions of Theorem 3.1 hold. Then Σn is proportional to Π0 if and only if L(ΠOLSE) = 0 almost surely for
p/n → c ∈ (0, 1) as n → ∞. Moreover, it holds that L(S−1

n ) > 0, L(ΠSSE) > 0, L(ΠEM) > 0, L(Σ−1
OLSE) > 0, and L(ΠKS) > 0

almost surely for p/n → c ∈ (0, 1) as n → ∞.

The statement of Corollary 4.2 follows from the fact that L(ΠOLSE) = 0 if and only if α∗
= 0 and

∥Σ−1
n ∥

2
F∥Π0∥

2
F

(tr[Σ−1
n Π0])2

− 1


= 0.

These two conditions are equivalent to (tr[Σ−1
n Π0])

2
= ∥Σ−1

n ∥
2
F∥Π0∥

2
F , i.e., Σn is proportional to Π0. As a result, the choice

of the target matrix Π0 has a special role in the construction of the optimal shrinkage estimator for the precision matrix. If
the target matrix is closed to the true precision matrix, then a consistent estimator for the precision matrix in terms of the
normalized Frobenius norm could be constructed.

Corollary 4.1 also shows that the application of Π0 = I would lead to a Frobenius-norm consistent estimator with the
rate p−(1+ϵ), ϵ > 0. This rate could be improved if the covariance matrix Σn or the precision matrix Σ−1

n is of a special
structure, like a sparse matrix. An important question is the investigation of the convergence rate in such special cases. We
do not deal with this problem in the present paper and leave it for future research.

In Fig. 1 we present the asymptotic non-normalized Frobenius losses of the estimators considered in Corollary 4.1. The
population covariance matrix is chosen with a fixed proportions of eigenvalues in the spectrum, namely we set the first 20%
of eigenvalues equal to 1, 40% equal to 3 and the rest 40% are equal to 10. The orthogonal matrix of eigenvectors is generated
independently from the Haar distribution with a fixed random generator. Thus, the covariance matrix is dense positive
definite with the same spectral structure for every dimension. Further, for dimension p equal to 100 we plot the asymptotic
losses found in Corollary 4.1 as a function of the concentration ratio c . Remarkable, the suggested OLSE estimator dominates
all considered benchmarks uniformly with respect to c. The Frobenius losses of OLSE and inverted OLSE are bounded on
the interval c ∈ (0, 1) while the loss of other estimators rises faster than linear to infinity as c → 1. Losses of the SSE
and EM estimators coincide and they clearly dominate the traditional estimator. It is noted that the SSE and EM losses are
smaller than the loss of the inverted OLSE for c ≤ 0.5 while the inverted OLSE estimator is ranked in the second place for
c > 0.5. The KS estimator shows very non-linear and unpredictable behavior although it dominates the traditional as well
as SSE estimator for c > 0.6. The Frobenius loss of the inverted OLSE estimator seems to be a constant with respect to c
and it is quite close to the suggested OLSE estimator for c around 1. It means that the inverted OLSE estimator is still a good
alternative in the case when the sample covariance matrix is ill-conditioned.

4.1. Choice of Π0

The next question is the choice of the nonrandom target matrix Π0 which should be positive definite with uniformly
bounded normalized trace norm. Unfortunately, the answer on this question depends on the underlying data because the
choice of the target matrix is equivalent to the choice of the hyperparameter for the prior distribution of Σ−1

n . This problem
is well-known in Bayesian statistics. The application of different priors leads to different results. So it is very important to
choose the one which works fine in most cases. The naive one is Π0 = Iwhere I is the identity matrix. Obviously, the oracle
OLSE estimator has the prior matrix as the true precision matrix Σ−1

n and is a consistent estimator for the precision matrix
as shown in Proposition 4.1. Obviously, including some new information about the true covariance matrix Σn into the prior
can lead to a significant increase of performance (see [10]). In our simulation study, however, we takeΠ0 = I as a reasonable
prior in the case when no additional information is available.

Consider the OLSE estimator as amatrix functionΠOLSE(Π0) : Mp → M̃p, whereMp is the space of p-dimensional positive
definite symmetric matrices and M̃p is the corresponding space of the p-dimensional positive definite symmetric random
matrices. In the following propositionwe prove that theOLSE estimator is scale invariant as a function of the priormatrixΠ0.

Proposition 4.1. The matrix function ΠOLSE(Π0) is scale invariant, i.e., for arbitrary σ > 0 ΠOLSE(σΠ0) = ΠOLSE(Π0).
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Fig. 1. Asymptotic non-normalized Frobenius loss for the suggested ΠOLSE , the inverse of the bona fide estimator ΣOLSE , the scaled standard estimator
(SSE), the (EM) estimator of Efron and Morris [18], the (KS) estimator of Kubokawa and Srivastava [40] and the traditional estimator plotted as a function
of concentration ratio c with dimension p = 100.

5. Application to linear discriminant analysis

In this section we perform a Monte Carlo simulation study in order to investigate the performance of the suggested
OLSE estimator for the precision matrix as well as of the existent estimators discussed in Section 4 when they are applied
to linear discriminant analysis. Since many of these estimators are non-standard for the linear discriminant function, we
consider its estimators when the covariance matrix is estimated by the diagonal of the sample covariance matrix diag(Sn)
and it is replaced by the identity matrix I (cf. [6,54]). We observe very poor results in case of diag(Sn) and for this reason
this approach was excluded from the simulation study.

As a performance measure, we use the normalized Euclidean distance between the linear discriminant function and the
corresponding estimator given by

l(M) =
1
p
∥Σ−1

n (µ1 − µ2)− M(x̄1 − x̄2)∥, (5.1)

where M is an estimator for precision matrix and x̄1, x̄2 are the sample counterparts of the two different population mean
vectors µ1 and µ2, respectively.

In each simulation run, two independent samples of equal sizes are generated from the normal distribution with same
covariancematrixΣn but with differentmeansµ1 andµ2. The elements ofµ1 andµ2 are simulated independently from the
uniform distribution on the interval [−1, 1] with a fixed set.seed(999).4 For a fixed concentration ratio c ∈ {0.5, 0.75}
we increase the dimension p from 15 to 300 and plot the averaged loss p l(M) for each of the considered estimators. The
averaging was provided via independent 1000 Monte Carlo repetitions. The structure of the population covariance matrix
is the same as presented in Section 4.

In Fig. 2 we present the results of simulations under the normal distribution for c = 1/2 (above), whereas the results in
the case of c = 0.75 are given below. The suggested oracle estimator is shown as a solid blue line, while the corresponding
bona fide estimator is a dashed blue line. In the case c = 1/2 we observe a fast convergence rate of the bona fide estimator
to its oracle, i.e., it converges already for the dimension as small as 50. It is remarkable that the bona fide OLSE estimator for
the precisionmatrixΠOLSE with the naive priorΠ0 = I dominates the corresponding inverted OLSE estimatorΣ−1

OLSE with the
prior 1

p I. The standard scaled estimator (SSE) and the EM estimator of Efron and Morris [18] lie close each to other and they

are a little worse than the inverted OLSE estimator Σ−1
OLSE . Next, we rank the KS estimator of Kubokawa and Srivastava [40]

followed by the estimator based on the identity matrix and the traditional one, respectively. The proposed OLSE estimator
(4.3) is the best one for c = 1/2.

Fig. 2 shows a different picture in the case of c = 0.75 (below). The inverse of the OLSE estimator from Bodnar et al. [10]
lies close to the one suggested in the paper for c = 0.75, although the later is still dominating. This finding is related to
the fact that when c approaches 1, then the sample covariance matrix becomes ill-conditioned. It is noted that the bona
fide OLSE estimator converges a little slower to its oracle. The KS estimator is behind the inverted OLSE estimator, whereas

4 Using set.seed() function in R we are able to fix the random generator in order to provide the possibility for reproducible results.
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Fig. 2. Euclidean distance for the oracle and bona fide estimator ΠOLSE with the prior (target) matrix Π0 = I, the inverse of the bona fide estimator ΣOLSE
with the prior 1/pI, the scaled standard estimator, the estimator of Efron and Morris [18], the estimator of Kubokawa and Srivastava [40], the traditional
estimator, and the estimator based on the identity matrix for p = 15k, k ∈ {1, . . . , 20}. The results are based on 1000 independent realizations.

the SSE and the EM estimators have roughly the same behavior and they are clearly worse than the other competitors.
Interestingly, that the loss of estimator based on the identity matrix is close to the losses of both SSE and EM estimators,
i.e. these estimators are not recommendable for the classification purposes if c close to 1. The worst behavior is detected for
the traditional estimator. Its loss was around 45, that is why we have excluded it from the second part of Fig. 2.

Both the simulation results and the theoretical findings show that the OLSE estimatorΠOLSE is a great alternative not only
to the sample estimator of the precision matrix, but also to the inverted linear shrinkage estimator proposed by Ledoit and
Wolf [42] and generalized by Bodnar et al. [10] as well as to other estimators suggested in the literature. The case of c > 1
is even more important for the practical purposes but it seems to be more difficult to handle analytically. This can be done
in an efficient way if the population covariance matrix is a multiple of identity. In general case, a good alternative would be
the inverse OLSE estimator given in (4.6), but it is not optimal for the precision matrix. This point has to be treated in detail
in future research.

6. Summary

In this paper,we dealwith the problemof the estimation of the precisionmatrix for large dimensional data. Our particular
interest is the case when both the dimension of the precision matrix p → ∞ and the sample size n → ∞ such that
p/n → c ∈ (0,+∞). Using the results from random matrix theory and linear shrinkage technique we develop an
estimator for the precision matrix which is distribution-free (only the existence of the fourth moments is required) and
possesses almost surely the smallest Frobenius loss. In particular, we prove that the Frobenius norms of the inverse and of
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the generalized inverse sample covariance matrices as well as of the optimal shrinkage intensities tend to the nonrandom
quantities under high dimensional asymptotics. In order to get the optimal linear shrinkage estimator for the precision
matrix we estimate the unknown quantities consistently. The performance of the suggested OLSE estimator is compared
with other known estimators for the precision matrix via the simulation study.

The results of the paper can be applied and further extended in several fields of the statistics. For instance, using
the suggested in the paper approach, an optimal linear shrinkage estimator for the inverse correlation matrix could be
constructed. Another possible area of applications is functional data analysis, where the precision matrix is used for
determining the prediction of the dependent variable and performing the variable selection of the impact points in a curve
(c.f., [23,2,3]). In both cases, the estimation of the precision matrix is expected to play a special role.
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