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a b s t r a c t

We develop lack of fit tests for linear regression models with many predictor variables.
General alternatives for model comparison are constructed using minimal weighted
maximal matchings consistent with graphs on the predictor vectors. The weighted graphs
we employ have edges based on model-driven distance thresholds in predictor space,
thereby making our testing procedure implementable and computationally efficient in
higher dimensional settings. In addition, it is shown that the testing procedure adapts
to efficacious maximal matchings. An asymptotic analysis, along with simulation results,
demonstrate that our tests are effective against a broad class of lack of fit.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

We consider the problem of testing the adequacy of a linear regression model

y = [1n, X]β + e

where the rows of X consist of the predictor vectors xi = (xi1, . . . , xip) ∈ Rp, 1 ≤ i ≤ n, which are possibly higher
dimensional. In addition, e⊤

= (e1, . . . , en) is a Gaussian distributed random vector with independent components having
E(ei) = 0 and E(e2i ) = σ 2, and 1n ∈ Rn denotes the vector consisting entirely of ones to accommodate an intercept in
the model. In the following we let W = [1n, X]. Since parametric regression models with many predictors are frequently
used in the natural and social sciences, it is important to first check the adequacy of a proposed model to avoid misleading
inferences. In this paper we present regression lack of fit tests for the case of many predictors which are effective against a
large class of lack of fit and are computationally efficient.

Our testing procedure involves the development of a supremum-type multiple test based on a collection of Fisher
statistics, each constructed from amatching on the predictor vectors xi. General alternatives for defining the Fisher statistics
use minimal weighted maximal matchings consistent with graphs on the xi. These graphs have edges weighted according
tomodel-driven distance thresholds in predictor space. Thematchings are constructed edge by edge, at each stage choosing
the edgewith smallest possibleweight. It is the use ofmatchingswhichmakes feasible the construction and implementation
of our lack of fit tests when p is large, although as seen in Section 2 it is necessary to have n > 2p + 2.
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In previouswork,Miller et al. [20,21] developed a graph theoretic representation of near replicate clusterings of statistical
units to obtain lack of fit tests for linear regressionmodels. Thiswork helps provide a framework for generalizing the classical
test presented by Fisher [11], an approach for testing linear regression lack of fit investigated by several authors as referenced
by Miller et al. [20,21]. Although presented in generality, implementation of our previous tests was focused on models with
lower dimensional predictor vectors. In particular, a graphon thepredictor vectorswas used to determine a special collection
of clusterings (the atoms consistent with the graph), and then an optimization procedure (a maximin method or restricted
least squares approach) was applied to choose an optimal clustering to test E(y) ∈ W (by whichwemean E(y) is an element
of the column space of W ). In the current work, we use a very different special collection of clusterings consistent with the
graph. These are the clusterings that group at most two vertices together, provided these two vertices form an edge of the
graph, which is why we call them edge clusterings. They are called matchings in the field of combinatorial optimization.
Edge clusterings possess special advantages for testing regression lack of fit, some of which were discussed in more recent
work by the authors (Miller andNeill [19]). However, they also allow efficient implementation in higher dimensionalmodels
with many predictor variables, which is the emphasis of the current work.

This paper is organized as follows. In Section 2 we first determine weighted graphs with vertices given by the {xi} and
edges based on distance thresholds. Matchings on such graphs are then used to determine subspaces of the lack of fit space,
and subsequently to construct lack of fit tests. The asymptotic behavior of such tests for a broad class of underlying true data
generators is given, as well as the large sample behavior of matching sequences on a hypercube in Rp. In addition, minimal
weighted maximal matchings useful for detecting misspecification associated with the model E(y) ∈ W are defined in
Section 2. A computationally efficient algorithm to determine suchmatchings is presented in Section 3, alongwith amultiple
testing procedure which follows Baraud et al. [2]. Given the unknown nature of any underlying lack of fit, this procedure is
implementedwith amodel-driven set of matchings to enhance detection of model inadequacy associatedwith the specified
model E(y) ∈ W . Section 4 provides the results of a simulation study for the cases p = 10 and p = 20. These results
demonstrate efficient implementation of our testing procedure to effectively detect general lack of fit in linear regression
models with many predictors. Proofs of theorems are given in the Appendix.

An extensive literature exists which addresses the problem of testing the adequacy of a specified parametric regression
model. This work includes not only generalizations of Fisher’s test as mentioned previously, but also the use of nonpara-
metric regression methods to test the fit of a parametric model. Hart [14] provides a thorough review of the development
and use of smoothing methodology to construct such lack of fit tests, with a focus on the p = 1 case. More recently, see
also Eubank et al. [8]. Nonparametric regression techniques have also been employed for the multivariate predictor case
(e.g. Staniswalis and Severini [23], Härdle and Mammen [13], Zheng [28], Dette [7], Fan et al. [10], Koul and Ni [17], Guerre
and Lavergne [12], Song and Du [22]). However, even for smaller values of p > 1, the use of smoothing methods is problem-
atic due to the curse of dimensionality. In many of these references, (yi, xi), 1 ≤ i ≤ n, are considered to be independent
and identically distributed Rp+1 random vectors from a population, and interest involves testing E(y|X = x) = m(x) where
m(x) is a specified parametric regression function. In this setting, Lavergne and Patilea [18] presented a test for m(x) with
many regressors involving estimation of conditional expectations given a linear index for a class of single-index models.
Combining the expectations as a single numerically estimated integral provides a test against nonparametric alternatives,
which reduces the dimension of the problem yet preserves consistency.

For another approach, Khmaladze and Koul [15] presented regression model adequacy tests based on innovation
martingale transforms. These tests are asymptotically distribution free for fitting a parametric model to the regression
function i.e. the asymptotic null distribution is free of the specified parametric model and the error distribution but depends
on the design distribution when p > 1. Christensen and Lin [5] also presented tests based on partial sum processes of the
residuals and determined the asymptotic null distributions of the maximized partial sums in order to check for lack of fit.
This work involves modifications of the test proposed by Su and Wei [27], whose test is based on a partial ordering of the
residuals and the asymptotic null distribution is approximated by simulation. As the power of tests based on partial sums
of residuals can be greatly influenced by the ordering chosen, Christensen and Lin [5] suggested a total ordering of the
data based on a modified Mahalanobis distance and empirically demonstrated their tests were effective for certain types
of model inadequacy involving multivariate predictors. Following work by Stute [24] and Stute et al. [26], Stute et al. [25]
also presented regressionmodel adequacy tests based on empirical processes of the regressors marked by the residuals, and
used a wild bootstrap approximation for the process distribution.

In addition to the precedingwork, Aerts et al. [1] and Fan andHuang [9] considered lack of fit tests formultiple regression
where the {xi} are considered to be fixed. To circumvent the curse of dimensionality, these authors placed restrictions on the
alternativemodels. For example, Aerts et al. developed tests based on functions of score statistics but require specification of
a path in the additive alternative models space, which quickly becomes complex with increasing predictor dimensionality.
Fan and Huang constructed tests based on the adaptive Neyman test for the multivariate case but the ability of these tests
to detect various types of model inadequacy depends on the ordering of residuals, which can be challenging in higher
dimensions. Christensen and Sun [6] followed Fan and Huang with Fourier transforms in the multivariate linear model
context, and suggested modifications to the normalizing constants for improved small sample size while maintaining the
same asymptotic distributions as Fan and Huang. As noted by Christensen and Sun, their tests also depend on the ordering
of the observations to ensure that large Fourier coefficients are concentrated on the lower frequencies. As in these works,
we construct lack of fit tests based on fixed predictors in Rp. Unlike these works, we consider the case of moderate to large
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numbers of predictor variables and show our testing procedure is effective and implementable for such values of p. This is
demonstrated in our simulations for the cases p = 10 and p = 20.

Some notation that is used in the paper is now introduced. In general, if V denotes a real inner product space, we let
⟨u, v⟩ represent the inner product for u, v ∈ V and let dimV represent the dimension of V . If U ⊂ V is a subspace then U⊥

is the orthogonal complement of U and PU denotes the orthogonal projection operator of V onto U. Also, ̸ (u, U) denotes
the angle in [0, π/2] between a vector u and a subspace U. In particular, if V = Rn then ⟨u, v⟩ is the usual Euclidean inner
product u · v = u1v1 + · · · + unvn and ∥v∥

2
= v2

1 + · · · + v2
n denotes the squared Euclidean length of v ∈ Rn. For a matrix

A, C(A) is the linear subspace of Rn generated by the columns of A and In is the n× n identity matrix. The cardinality of a set
S will be denoted by |S|. In addition, we let F (r, s) denote the central F distribution with r numerator and s denominator
degrees of freedom, and write F (α; r, s) for the 100αth percentile of the F (r, s) distribution. Also, F̄ (u; r, s) = Pr(F > u)
where F ∼ F (r, s) so that F̄ −1(α; r, s) = F (1 − α; r, s).

2. Matchings on a graph and lack of fit tests

To develop our lack of fit testing procedure, we first recall the definition of a matching associated with a specified graph
G = (V , E), where V is a set of points (vertices) and E is a collection of subsets of V , each having cardinality two. If {x, y} ∈ E,
it is called the edge between x and y. As defined by Korte and Vygen [16], a matching for a graph G is a subset M ⊂ E such
that {x, y} ∈ M , {x1, y1} ∈ M , with {x, y} ≠ {x1, y1}, implies {x, y} ∩ {x1, y1} = ∅.

We define suppM = ∪{{x, y}|{x, y} ∈ M} ⊆ V , and say that a matchingM ismaximal if

{x, y} ∈ E implies {x, y} ∩ suppM ≠ ∅.

The elements of V\suppM are called singleton vertices associated with M . We will denote the collection of maximal
matchings associated with the graph G by M.

In turn, subspaces determined by matchings are used to construct test statistics based on clusterings of the statistical
units. With such in mind let RV

= {f | f : V → R}, and with (af + bg)(x) = af (x) + bg(x) and ⟨f , g⟩ =


x∈V f (x)g(x)
for f , g ∈ RV , x ∈ V and a, b ∈ R, it follows that RV has the structure of a real inner product space. Next, letting M be a
matching for G, we define the subspaces

VM = {f :V → R | {x, y} ∈ M H⇒ f (x) = f (y)}

and

V⊥

M = {f :V → R | {x, y} ∈ M H⇒ f (x) = −f (y) and x ∉ suppM H⇒ f (x) = 0}.

Thus, RV
= VM ⊕

⊥V⊥

M , and with n = |V | andm = |suppM|,

dim VM = m/2 + (n − m) and dim V⊥

M = m/2.

Note that if we use the identificationRV
≃ Rn then amatchingM for the graphG corresponds to an edge clusteringmatrix Z ,

with VM corresponding to C(Z). The matrix Z contains only zeros and ones, and the nonzero values in each ofm/2 columns
of Z correspond to the vertices of a particular edge in M . The remaining n − m columns of Z , if any, each contain a single
nonzero value corresponding to any singleton vertices associated withM .

We remark that for most purposes in this paper, matchings may be based on the identification RV
≃ Rn as described

above. However, in studying clustering on a weighted graph G, the vector space RV is an often used construction, with
subspaces, angles and operators naturally arising on this space. Such occurs in the hypotheses and proof of our Theorem 1,
for example. Another example is the large field of spectral clustering where the graph Laplacian acts on this space, and the
important functions f : V → R are the eigenvectors of the graph Laplacian. To investigate the relationship between these
different forms of clustering, the constructions given above find a natural utility. Furthermore, although our focus in this
paper is on testing for between-cluster lack of fit, as defined by Christensen [3,4], the problem of testing for within-cluster
lack of fit can also be usefully based on such constructions.

Statistics for testing lack of fit based on matchings can now be constructed. Let V = {x1, . . . , xn} consisting of the
predictor vectors represent the graph vertices, and for a fixed δ > 0 let an edge set be defined by

Eδ = {{xi, xj} | xi ≠ xj and ∥xi − xj∥2 < δ}.

Now for any matching M of the graph Gδ = (V , Eδ), we have Rn
= W ⊕

⊥ W⊥ where the lack of fit subspace W⊥ follows
a decomposition given by Christensen [3,4]. Specifically, using the correspondence RV

≃ Rn, we use a special collection of
clusterings consistent with the graph, namely the matchings (i.e. edge clusterings) to write

W⊥
= (VM ∩ W⊥) ⊕

⊥(V⊥

M ∩ W⊥) ⊕
⊥ SM

for a matching M . The first two subspaces in this decomposition are called the (orthogonal) between- and within-cluster
lack of fit subspaces, respectively, corresponding to a particular matching. The third subspace SM denotes the orthogonal
complement of the sum of the first two subspaces with respect toW⊥.
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From the preceding, for every matchingM , we have a lack of fit test based on the Fisher statistic

FM(y) =
dim EM ∥PBM y∥2

dim BM ∥PEM y∥2

where BM = VM ∩ W⊥ and EM = (V⊥

M ∩ W⊥) ⊕
⊥ SM . For a particular matching, we may thus conclude lack of fit, that is

E(y) ∉ W , whenever FM(y) > F (1 − α; dim BM , dim EM). Recall dim VM = m/2 + (n − m) where m = |suppM|, so that
(generically) dim BM = dim VM −dim PVMW = {m/2+ (n−m)}− (p+ 1) and dim EM = dim V⊥

M −dim PV⊥
M
W +dim SM =

(m/2) − (p) + (p). The Fisher test statistic is based on the constructed alternative model subspace BM for a given matching
M . With Gaussian errors, the Fisher statistic FM(y) provides a level test α test for any fixed n, and the test is UMPI against
between-cluster lack of fit based on a specified matching M . However, our interest centers on testing E(y) ∈ W against a
large class of lack of fit. Such is investigated in Section 4 with simulated data generators, as well as an asymptotic analysis
in Section 2.1. Test construction using alternative models is simply a method to develop the test statistic.

The choice of δ and a matching M are of course important in order to distinguish the model E(y) ∈ W from a true
data generator. In this regard, there are three points of consideration to be discussed next, including a matching selection
criterion. Model-driven choices for δ are presented in Section 3.2.

2.1. Asymptotic behavior of tests against a broad class of alternatives

The first point discusses the role of δ and variance estimation. In particular, ∥PEM y∥2 must be controlled so that
∥PEM y∥2/ dim EM is a good estimate of the error variance. Such can be achieved by taking δ sufficiently small, as indicated
in Theorem 1. Prediction points must accommodate a choice of small δ so that Eδ ≠ ∅, although suppM ≠ V is permitted.
If Eδ = ∅ then δ must be readjusted. The choice of δ > 0 restricts the support of our chosen matching M and thus prevents
the use of edges that contaminate ∥PEM y∥2. The large n, small δ behavior of FM(y) against a broad class of lack of fit is given
in Theorem 1.

In Theorem 1, and Lemma 2 in the Appendix, X denotes the p-dimensional subspace of W generated by the columns of
an n × p matrix with rows given by the predictor vectors xi, 1 ≤ i ≤ n. In the proof of Theorem 1, we assume without loss
of generality that W = 1n ⊕

⊥ X . We define T = PWPVM PW , a self-adjoint operator with TX ⊂ X , and let Xk, 1 ≤ k ≤ p,
be an orthonormal basis for X consisting of eigenvectors for T with corresponding eigenvalues λk, 1 ≤ k ≤ p. Also, we let
θk = ̸ (Xk, VM) with 0 ≤ θk ≤ π/2 for 1 ≤ k ≤ p. In the theorem, δn determines a graph Gδn as described above. Finally, we
assume independent and identically distributed errors {ei} with finite fourth order moments in the proof of Theorem 1.

Theorem 1. Suppose the true data generator is

yi = f (xi) + ei for 1 ≤ i ≤ n

where f : U → R is of class C1 on an open set U ⊂ Rp. Suppose δn → 0 as n → ∞ with a corresponding sequence of matchings
Mn such that θnk → 0, 1 ≤ k ≤ p. Then with predictor vectors contained in any compact convex subset B ⊂ U, we have for large
n that FMn(y) ≥ Fn(y) where

Fn(y) =
dim EMn∥PBMn

y∥2

dim BMn


(ei − ej)2

+ oP(1)

where the sum is over all {i, j} for which {xi, xj} ∈ Mn.

As shown in Lemma 2, the condition on the angles θnk implies that the third space SMn in the decomposition of W⊥

is marginalized as far as lack of fit is concerned, and thus leads to better variance estimation. Our simulations show this
tends to be true for large n. Indeed, Lemmas 1 and 2 given in the Appendix, and used to prove Theorem 1, show that
∥PEMn

y∥2/ dim EMn is asymptotically upper bounded by


(ei − ej)2/ dim EMn , a model-independent function of the errors
which is unbiased for σ 2 for a broad class of true data generators (C1 functions with errors not necessarily Gaussian). In
turn, Theorem 1 concludes the Fisher statistic is asymptotically lower bounded by a random variable with denominator
equal to this model-independent unbiased function for σ 2. Since FMn(y) is a variance-ratio test statistic, it is most effective
(i.e., detects departures from the hypothesized model) when the denominator variance estimator well-approximates the
error variance σ 2 under not only the hypothesized model but also under departures representing general lack of fit. Given
the unknown nature of any underlying lack of fit, a multiple testing procedure is described in Section 3.2. The procedure
rejects the adequacy of the model E(y) ∈ W only if at least one of a collection of Fisher statistics is significant. To enhance
detection of any model inadequacy, effective variance estimation is thus critical under a broad class of lack of fit.

2.2. A criterion for selecting matchings

The second point involves the specification of a matching selection criterion to choose a maximal matching in Eδ ,
along with properties of matching sequences for increasing n. Because of Theorem 1, we want to select a matching from
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Mδ = {M ⊂ Eδ |M is a maximal matching}with small weightsw(xi, xj) = ∥xi −xj∥2 for {xi, xj} ∈ Eδ , which by construction
restricts to edges withweights less δ. We determine such amaximalmatching edge by edge, at each stage choosing the edge
with the smallest possible weight, and define the result to be a minimal weighted maximal matching. Note that consistent
with smoothing residuals, we are choosing an M ⊂ Eδ such that W0 := PVMW approximates W . In this case PBM y, that is
PVM y − PW0y, approximates y − PWy.

The existence of matching sequences on a hypercube in Rp with arbitrarily small edge differences for large n is given
in Theorem 2. The importance of Theorem 2 stems from the need to consider matchings with small δ as established in
Theorem 1. Also, the predictor vectors xi are assumed to lie in a fixed hypercube, given by S in Theorem 2.

Theorem 2. With p and b ∈ R fixed, let S = [0, b]p ⊂ Rp. Suppose we have a sequence of finite subsets, Pn ⊂ S, such that
limn→∞ |Pn| = ∞, and let ζ > 0. Then there exists n0 and a sequence of matchings Mn for Pn such that n ≥ n0 gives

{v, w} ∈ Mn H⇒ ∥v − w∥ < ζ and lim
n→∞

|Mn| = ∞.

In fact,

|Mn| > |Pn|/2 − 2pk
− 1

where k is chosen such that
√
p(b/2k) < ζ . Further, the number of singletons for each Mn is bounded by 2(2pk

+ 1), independent
of n for a fixed ζ .

2.3. Computational feasibility for large p

Lastly, a third point addresses the computational feasibility for determining a minimal weighted maximal matching
in the case of large p. Since we only use Rp in determining the distances ∥xi − xj∥2 for each pair of predictor vertices
in V , the calculations are reduced to a graph matching construction on Gδ = (V , Eδ), as an abstract graph with weights
w(xi, xj) = ∥xi − xj∥2 for {xi, xj} ∈ Eδ , and are thus independent of the value of p. An efficient algorithm to compute
minimal weighted maximal matchings for graphs Gδ is given in Section 3.1.

3. Implementation of minimal weighted maximal matchings for testing lack of fit

For a specified δ, we consider a graph Gδ = (V , Eδ) as defined in Section 2, and present an algorithm to compute a
minimal weighted maximal matching for Gδ . In addition, given the unknown nature of the underlying regression function,
we implement a testing procedure which uses multiple matchings to enhance detection of general lack of fit associated
with the specified model E(y) ∈ W . Thus, our lack of fit testing procedure actually involves the specification of a set ∆

of δ values, along with a corresponding set of minimal weighted maximal matchings, each of which is determined by the
following algorithm. The algorithm is described with V = {xi}, followed by a multiple lack of fit testing procedure and a
model-driven specification of the set ∆.

3.1. An algorithm for minimal weighted maximal matchings

For a specified value of δ, the following steps provide an algorithm to efficiently compute a minimal weighted maximal
matchingMδ for a graph Gδ .

1. Create a list Lδ containing Eδ and corresponding ∥xi − xj∥2 (if length Lδ = 0 then adjust δ for new Lδ; otherwise continue).
2. Determine the edge in Lδ with minimum ∥xi − xj∥2.
3. Store this edge in a listMδ and remove this edge from Lδ , along with any edge connected to the chosen edge.
4. Return to steps 2 and 3 with updatedMδ and Lδ until length Lδ = 0.
5. Identify any remaining singleton vertices associated withMδ .

An R code was written to implement this algorithm for the simulations in Section 4 and is available from the authors on
request.

3.2. A multiple testing procedure for matchings with model-driven choices for δ

The efficacy of a particular choice of δ and correspondingmaximalmatching depends on the unobservable lack of fit. Thus,
we implement a testing procedure using a model-driven collection of maximal matchings. Specifically, given the predictor
vectors {xi}, a generally applicable choice of δ values, consistent with variance estimation as discussed in Section 2.1, is given
by

∆ = {ηMSD |MSD = mean{∥xi − xj∥2, i ≠ j = 1, . . . , n} and η = .1, . . . , .5},

whereMSD denotes themean-squared distance of the edgeweights and is computed by the R function mean. That is, we use
amodel-driven choice based on the average of all edge weights to determine the set∆, borrowing an idea that is sometimes
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Table 1
True data generators have E(y) ∈ W + γ LOF where LOF is one of
the lack of fit functions given by A, . . . , I.

Key Lack of fit functions for simulations

A
3

j=1 x
2
j

B (
3

j=1 xj)
2

C
3

j=1 x
2
j + x1x2 + x1x3 + x2x3 + x1x2x3

D
6

j=1 x
2
j

E (
6

j=1 xj)
2

F
6

j=1 x
2
j + x1x2 + x1x3 + x2x3 + x1x2x3

G
6

j=1 x
2
j +x1x2+x3x4+x5x6+x1x2x3+x2x3x4+x4x5x6

H
12

j=1 x
2
j

I (
12

j=1 xj)
2

used in the definition of clustering. In particular, a cluster may be defined as a group of points whose intra-point distance is
less than the average distance in the pattern as a whole.

The multiple testing approach of Baraud et al. [2] is then implemented based on the corresponding set of minimal
weighted maximal matchings {Mδ | δ ∈ ∆} as determined by the algorithm in Section 3.1 to test the adequacy of the model
E(y) ∈ W . In particular, we simultaneously employ more than one alternative lack of fit subspace, each based on a maximal
matching selected from {Mδ | δ ∈ ∆}. Given the unknown nature of any potential lack of fit, the objective of such a multiple
testing procedure is to increase our chance of detecting a discrepancy associated with the proposed model. Accordingly, we
let

Tα = sup
δ∈∆

{FMδ
(y) − F̄ −1(αδ; dim BMδ

, dim EMδ
)}

and reject E(y) ∈ W whenever Tα > 0. In the preceding, {αδ | δ ∈ ∆} is a collection of numbers in (0, 1) such that
Pr(Tα > 0 |W ) ≤ α. Note that with e ∼ N (0, σ 2In), this multiple testing procedure rejects the adequacy of the specified
model if the Fisher statistic FMδ

(y) for testing E(y) ∈ W is significant at level αδ for some δ ∈ ∆. Further, if an denotes the
α-quantile of the random variable

Tn = inf
δ∈∆

F̄ (Rδ; dim BMδ
, dim EMδ

)

where Rδ = FMδ
(e), then the choice of αδ = an for all δ ∈ ∆ ensures that Pr(Tα > 0 |W ) = α. As in Baraud et al. [2], in this

paper we use simulation (using Gaussian errors) to determine the value of an. This is discussed in Section 4 in connection
with simulation studies to assess the ability of our testing procedure to detect lack of fit. Alternatively, a choice of αδ such
that


δ∈∆ αδ = α provides a conservative testing procedure with level at most equal to α according to the Bonferroni

inequality.

4. Simulations

Simulations were performed to study the ability of the testing procedure based on Tα to detect lack of fit associated with
the model E(y) ∈ W involving many predictors, and in particular for regression models with p = 10 and p = 20. The true
data generatorswere of the formE(y) ∈ W+γ LOF involving various functions of the predictor vectors {xi} as given in Table 1.
Note that these functions are not related to the subspaces BMδ

of the test statistics, which ensures realistically meaningful
simulations. Tables 2–10 report minimal γ values leading to empirical power 1 for the testing procedure based on Tα , with
α = .05, corresponding to the various lack of fit functions. That is, the percentage of rejection of the model E(y) ∈ W was
computed to be approximately 100% for the listed γ and corresponding true data generator representing model lack of fit.
The simulated size of our test procedure is included in the captions for Tables 2–10. In addition, an analytical diagnostic,
which is developed in Section 4.2, is also included in the tables for evaluating the simulation results. An R code was written
to implement the test procedure for the simulations and is available from the authors on request.

4.1. Simulation parameters

For the case p = 10, we let n = 100 and the {xi} were randomly generated as multivariate normal vectors in R10. Once
generated, these predictors were held fixed throughout all simulated datasets for various functions representing model
inadequacy. Then the random error vectors e ∼ N (0, σ 2I100) were generated for specified σ to provide 4000 simulated
datasets, each with n = 100 observations. We used σ = 1.5 in the simulations for the case p = 10. Thus, empirical power is
the frequency of rejections of themodel E(y) ∈ W based on the values of T.05 for the 4000 simulated datasets corresponding
to a particular lack of fit function listed in Table 1. The same approach was followed for the case p = 20 except that we let
σ = 1.0 and used n = 200, and generated predictor vectors in R20. We remark that in cases with many predictors, it would
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Table 2
p = 10 andn = 100with equal grouppredictormeans for 4 groups;
simulated size = .05325.

LOF γ Diagnostic Critical point |Mδ |

A .05525 13.51831 1.771288 47
B .01875 14.03796 1.771288 47
C .00625 12.06046 1.771288 47
D .02875 14.86045 1.771288 47
E .00485 15.16785 1.771288 47
F .00575 13.22626 1.771288 47
G .00275 12.20669 1.771288 47

Table 3
p = 10 and n = 100 with rowwise loaded group predictor means
for 4 groups; simulated size = .05525.

LOF γ Diagnostic Critical point |Mδ |

A .007500 11.33978 1.669059 49
B .002500 11.52123 1.669059 49
C .000375 10.83961 1.669059 49
D .000375 10.87604 1.669059 49
E .000675 10.98682 1.669059 49
F .000375 10.85550 1.669059 49
G .000130 10.14780 1.669059 49

Table 4
p = 10 and n = 100 with columnwise loaded group predictor means
for 4 groups; simulated size = .05200.

LOF γ Diagnostic Critical point |Mδ |

A .375000 7.316503 2.198433 25
B .139750 19.26270 10.70237 4
C .047250 28.73274 10.70237 4
D .261250 7.026641 2.198433 25
E .057500 10.42160 2.198433 25
F .046875 25.86990 10.70237 4
G .019500 35.95294 10.70237 4

Table 5
p = 20 and n = 200 with equal group predictor means for 4 groups;
simulated size = .04775.

LOF γ Diagnostic Critical point |Mδ |

D .011725 42.41159 1.548174 70
E .002075 40.90712 1.548174 70
F .002450 26.79558 1.548174 70
G .000975 40.46241 1.548174 70
H .005950 59.25644 1.548174 70
I .000510 60.30450 1.548174 70

be unrealistic to simulate each predictor according to a particular uniform distribution. To build structure into the predictor
vectors, we generated them as multivariate normal vectors for our simulations as described next.

In particular, for p = 10, 4 groups of predictor vectors, each of size 25, were generated with the R function mvnorm. The
mean and covariance parameters for the respective groups were specified as

(2110, I10), (6110, 2I10), (8110, 2I10), (12110, 4I10),

with simulation results presented in Table 2. In addition to this case, simulation results were obtained for other mean
parameters, with covariancematrices unchanged. Specifically, simulation results in Table 3 correspond tomean parameters
obtained as row vectors in a 4 × 10 matrix, which was obtained from the R function matrixwhere the integers 1 through
40 are loaded rowwise. Similarly, simulation results in Table 4 correspond to mean parameters obtained as row vectors in
a 4 × 10 matrix obtained by columnwise loading of the integers 1 through 40. Thus, the simulations in Table 3 are based
on mean vectors whose corresponding components are dissimilar, while the results in Table 4 have mean vectors with
corresponding components which are not dissimilar.
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Table 6
p = 20 and n = 200 with rowwise loaded group predictor means for 4
groups; simulated size = .05175.

LOF γ Diagnostic Critical point |Mδ |

D .000355000 46.85538 1.417452 100
E .000061250 46.99042 1.417452 100
F .000019250 51.59371 1.417452 100
G .000006738 54.80082 1.417452 100
H .000177500 48.61367 1.417452 100
I .000014250 48.64822 1.417452 100

Table 7
p = 20 and n = 200 with columnwise loaded group predictor means
for 4 groups; simulated size = .05425.

LOF γ Diagnostic Critical point |Mδ |

D .105750 3.912653 1.856307 79
E .022150 4.137984 1.856307 79
F .029550 4.534516 2.041126 50
G .007625 3.804703 1.911481 66
H .014250 4.611947 1.856307 79
I .001625 4.693023 1.856307 79

Table 8
p = 20 and n = 200 with equal group predictor means for 8 groups;
simulated size = .05600.

LOF γ Diagnostic Critical point |Mδ |

D .0033250 25.87497 1.461465 93
E .0005400 26.46414 1.461465 93
F .0004325 16.80317 1.461465 93
G .0001540 23.76868 1.461465 93
H .0016750 28.45851 1.461465 93
I .0001350 29.64136 1.461465 93

Table 9
p = 20 and n = 200 with rowwise loaded group predictor means for 8
groups; simulated size = .05200.

LOF γ Diagnostic Critical point |Mδ |

D .000083310 19.44710 1.448027 100
E .000014150 19.43938 1.448027 100
F .000002211 19.35169 1.448027 100
G .000000761 19.01732 1.448027 100
H .000041750 19.05819 1.448027 100
I .000003544 19.07397 1.448027 100

Table 10
p = 20 and n = 200 with columnwise loaded group predictor means
for 8 groups; simulated size = .04575.

LOF γ Diagnostic Critical point |Mδ |

D .0354300 5.97736 2.047189 30
E .0062920 6.142708 2.047189 30
F .0043140 7.214581 1.676749 70
G .0009167 6.715452 2.047189 30
H .0067750 6.594721 2.047189 30
I .0007275 6.336556 2.047189 30

For p = 20, simulations were obtained for groups of size 50 and 25. For the case of size 50, 4 groups of predictor vectors
were again generated with the R function mvnorm. The mean and covariance parameters for the respective groups were
specified as

(2120, I20), (6120, 2I20), (8120, 2I20), (12120, 4I20),

with simulation results presented in Table 5. Similar to the p = 10 case, simulation results were obtained for other mean
parameters, with covariance matrices unchanged. In particular, simulations in Tables 6 and 7 correspond, respectively, to
mean parameters obtained from 4×20matrices obtained from the R function matrix by rowwise and columnwise loading
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of the integers 1 through 80. Finally, for size 25, 8 groups of predictor vectors were generated with mean and covariance
parameters for the respective groups specified as

(2120, I20), (6120, 2I20), (8120, 2I20), (12120, 4I20)
(14120, 4I20), (18120, 6I20), (20120, 6I20), (24120, 1I20),

with simulation results presented in Table 8. As in the preceding, simulation results were obtained for other mean
parameters, with covariance matrices unchanged. Specifically, simulations in Tables 9 and 10 correspond, respectively, to
mean parameters obtained from 8×20matrices obtained from the R function matrix by rowwise and columnwise loading
of the integers 1 through 160.

The test statistic Tα was computed with αδ = an for all δ ∈ ∆ to ensure a level α testing procedure, with ∆ as indicated
in Section 3.2. The value of an was calculated by simulation as follows. First, 10,000 values of the random variable Tn were
generated. To do so, 10,000 observations of the random vector e, which appears in the random variables Rδ, δ ∈ ∆, were
generated according to the N (0, In) distribution. Then the α-quantile of the corresponding values of Tn was computed to
approximate the value of an. As noted above, we set α = .05.

4.2. A diagnostic to evaluate lack of fit detection capability

Adiagnostic that is useful for assessing detection capability ofmodel lack of fit in our simulations is based on the following
theorem. It will be seen that the diagnostic uses only the specified predictors, not the observable responses. As in the proof
of Theorem 1, we assume independent and identically distributed errors {ei} with finite fourth order moments in the proof
of Theorem 3.

Theorem 3. Suppose the true data generator is given by y = w0 + γ ξ0 + ewherew0 ∈ W and ξ0 ∈ W⊥ with ∥ξ0∥ = 1where
PBMδ

ξ0 ≠ 0 and PEMδ
ξ0 ≠ 0, and ξ0 ∈ W⊥ is constructed as ξ0 = ξ1 ⊕ ξ2 ∈ BMδ

⊕
⊥ EMδ

. Then for any δ ∈ ∆,

lim
γ→∞

FMδ
(y) = λ(Mδ, ξ0) + oP(1)

where

λ(Mδ, ξ0) :=
dim EMδ

∥ξ1∥
2

dim BMδ
∥ξ2∥2

.

Thus, rejection of E(y) ∈ W by the test based on Tα requires, at least to approximation, that

λ(Mδ, ξ0) > F̄ −1(αδ; dim BMδ
, dim EMδ

)

for some δ ∈ ∆.
For each of the lack of fit functions in Table 1 we evaluate the function at the n predictor settings to get a vector in

Rn, which we project into W⊥ to get a vector ξ0 and then obtain the diagnostic λ(Mδ, ξ0). This diagnostic is reported in
the tables below as an indicator of the ability of the test based on Tα to detect lack of fit when the true data generator is
not necessarily constructed from the specified alternative model space BMδ

for some δ ∈ ∆. In particular, we report the
diagnostic and corresponding critical point in the preceding inequality with largest difference. The diagnostic being greater
than the critical point (given in the tables) guarantees that we will obtain power 1 for sufficiently large γ . We also give the
smallest value of γ which gives power 1. In addition, we report the number of matchings in the minimal weighted maximal
matching for the corresponding δ ∈ ∆.

4.3. Tables and discussion of simulation results

As indicated in the captions of Tables 2–10, all simulated cases have empirical size nearly equal to the desired α = .05.
Also, the tables report minimal γ values for which the testing procedure based on Tα achieves empirical power 1 for the
lack of fit functions specified in Table 1, and based on the predictor vectors {xi} discussed in Section 4.1. As can be ob-
served in the simulation results, the diagnostic developed in Section 4.2 provides a means of assessing the effectiveness
of the test statistic for a given data generator. In particular, diagnostic values and corresponding critical point with largest
difference are reported in the tables, which demonstrates the effectiveness of Tα to detect general lack of fit. In addition,
the number of matchings in the associatedMδ is reported, which indicates greater numbers of matchings corresponding to
cases with predictor vectors whose corresponding components are dissimilar. In particular, Tables 2 and 3, corresponding to
p = 10, n = 100 simulations, and Tables 5, 6, 8 and 9, corresponding to p = 20, n = 200 simulations, all have either equal
group predictormeans or rowwise loaded group predictormeans as described in Section 4.1. In either case, predictor vectors
between groups have corresponding components that are dissimilar, and thus provide vectors with a clustering structure
in higher dimensional predictor space. In all corresponding table entries, the cardinality of the selected matchings is con-
sistently near or at the possible maximal number across the lack of fit functions. On the other hand, Table 4, corresponding
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to p = 10, n = 100 simulations, and Tables 7 and 10, corresponding to p = 20, n = 200 simulations, have group predic-
tor means loaded columnwise as described in Section 4.1. Such predictor vectors have corresponding components that are
not dissimilar, and thus do not display a clustered structure. As seen in these tables, the cardinality of the matchings is not
consistently near possible maximal values, and for certain lack of fit functions the number of matchings chosen is relatively
low. However, the ability of Tα to detect lack of fit in all simulated cases indicates our testing procedure effectively adapts
to cases with smaller cardinality ofMδ as well.

Herewe also note the usefulness of themultiple testing procedure i.e., therewere caseswhen the diagnosticwas less than
the corresponding critical point indicating failure to detect model lack of fit. However, the use of Tα overcame this problem
in all simulated cases. Furthermore, we point out that if the simulated response noise were to be increased (i.e., increased
σ for the error vector e), then we may have to take γ larger in order to achieve empirical power equal to 1. However, for
our simulations, it is guaranteed (because of the diagnostic) that the test statistic will exceed the critical point for at least
one δ ∈ ∆ for sufficiently large γ . Finally, we note that the test based on Tα was successful in detecting lack of fit when
the true data generator was not necessarily constructed from the specified alternative model spaces BMδ

, δ ∈ ∆. Thus, the
simulation results, along with the asymptotic analysis in Section 2.1, support our interest in effectively testing E(y) ∈ W
against a large class of lack of fit.

4.4. Discussion and simulation results for non-smooth and irregular lack of fit

The purpose of this paper was to give computable lack of fit tests for linear regression models with many predictor
variables which are effective against a large class of lack of fit functions, including piecewise continuous polynomial
functions. This is seen asymptotically in Theorem 1, which is based on choosing matchings that effectively provide model-
independent variance estimates by controlling the terms ∥PV⊥

Mn
y∥2 and ∥PSMn

y∥2 as seen in Lemmas 1 and 2, respectively.
For such control, the variation of the lack of fit function within the matchings must not be too large. For a fixed finite n, this
has to do with the behavior of the lack of fit function in comparison with the design (predictor) points. To elucidate this
point, for a lack of fit function f (x) and a subset A of the predictor space, let

Vf (A) = sup{|f (u) − f (v)| | u, v ∈ A}.

If Vf (A) is small for most A which satisfy (diameterA)2 ≤ ηMSD, where MSD is defined in Section 3.2 and 0 < η < 1,
we say that the lack of fit is smooth for this design. Although purposefully and necessarily somewhat vague, this idea of
smoothness with respect to a design has diagnostic implications. For example, for the tests developed in this paper it is
a condition for being able to detect lack of fit. In fact, for large p, we can expect to detect lack of fit only if the lack of fit
is smooth with respect to the design. Even for smooth functions this can fail for fixed n. For example, functions which are
rapidly oscillating, say cos(νx) for ν large. For discontinuous functions, if the sets of discontinuity are not too dense, the
procedure (helped by multiple testing) may still succeed. The following simulations illustrate this.

To investigate the performance of the test procedure based on Tα when lack of fit associated with the model E(y) ∈ W
is irregular, we used the p = 10 dimensional predictor vectors which were generated for Table 3, again with n = 100. For
simulations with non-smooth lack of fit, we used the R function stepfun. In particular, define a step function fo by

fo(u) =


0, if u < 5;
5, if 5 ≤ u < 15;
10, if 15 ≤ u < 25;
5, if 25 ≤ u < 35;
10, if u ≥ 35,

and let fp be defined similarly but taking value 400 for 15 ≤ u < 25. The function fo was used to represent non-smooth lack
of fit at relatively low levels while fp provides non-smooth lack of fit with a peak. Lack of fit denoted by J and K in Table 11
were used to simulate non-smooth lack of fit with one and two peaks, respectively. To simulate smooth but oscillating lack
of fit, the cosine function was employed as with L and M in Table 11.

Simulationswere carried out in the samemanner as described in Section 4.1 for functions representingmodel inadequacy
as given in Table 11. Table 12, which is structured the same as Table 3, gives the results of these simulations and shows that
for the particular parameters and predictors used in these simulations, the test based on Tα was successful. However, we
note that additional simulations were performed with lack of fit specified by only the function 25 cos(2x1). In this case, the
test procedure was not successful, the (asymptotic) diagnostic and corresponding critical point with largest difference given
by 1.642214 and 1.669059, respectively, with the number of matchings in the corresponding minimal weighted maximal
matching observed to be 49. These results illustrate the ideas concerning the detection of lack of fit in relation to smoothness
with respect to a design for large p as discussed above.

5. Concluding remarks

A multiple testing procedure for assessing linear regression model adequacy with many predictors was presented, and
shown to be computationally efficient and effective against a broad class of lack of fit. Our approach to constructing general
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Table 11
True data generators have E(y) ∈ W + γ LOF where LOF is one of the
non-smooth or oscillating lack of fit functions given by J, . . . ,M.

Key lack of fit functions for simulations

J fo(x1) + fp(x2) + fo(x3)
K fp(x1) + fp(x2) + fo(x3)
L 25 cos(x1)
M 25 cos(2x1) + x22 + x23

Table 12
p = 10 and n = 100 with rowwise loaded group predictor means for
4 groups; simulated size = .05525.

LOF γ Diagnostic Critical point |Mδ |

J .0100000 15.412370 1.670107 48
K .0050000 13.655720 1.670107 48
L .5000000 2.014524 1.669059 49
M .0106250 10.679910 1.669059 49

alternatives for model comparison is based on model-driven minimal weighted maximal matchings of the statistical units.
Thesemaximalmatchings allow our testing procedure to be efficiently implemented in higher dimensional problems, unlike
other tests (e.g. smoothing based tests) which are prohibited from implementation due to complexity involving the curse
of dimensionality. Indeed, since we only use Rp in determining the distance between each pair of predictor vectors, the
calculations are reduced to a graphmatching construction, as an abstract graph with edges weighted by such distances, and
are thus independent of the value of p.

Appendix

Lemma 1. Under the assumptions for Theorem 1,

∥PV⊥
Mn

y∥2/ dim EMn ≤


(ei − ej)2/2 dim EMn + oP(1).

Proof of Lemma 1. Since f is of class C1 on U , |f (u)− f (v)| ≤ L∥u−v∥ ∀u, v ∈ Bwhere L is a Lipschitz constant for f . Thus,
with L∗ = Lδn and mn = |suppMn|,

∥PV⊥
Mn

y∥2
=


|yi − yj|2/2 ≤ mnL2∗/4 + L∗


|ei − ej| +


(ei − ej)2/2

where the sum is over all {i, j} for which {xi, xj} ∈ Mn. Since δn → 0 as n → ∞,mnL2∗/4 dim EMn = L2δ2
n/2 → 0 as n → ∞.

Further, since


|ei − ej|/ dim EMn = OP(1), it follows that L∗


|ei − ej|/ dim EMn = oP(1). �

Lemma 2. Under the assumptions for Theorem 1,

∥PSMn
y∥2/ dim EMn ≤


(ei − ej)2/2 dim EMn + oP(1).

Proof of Lemma 2. First note λniXi = TXi = PW (PVMn
Xi), 1 ≤ i ≤ p, so that

λniXi = PJn(PVMn
Xi) ⊕

⊥

p
j=1

(PVMn
Xi · Xj)Xj

and thus PVMn
Xi · Xj = 0 for i ≠ j, and λni = ∥PVMn

Xi∥
2

= cos2 θni. Next note SMn = PW⊥PVMn
W and define Q = PVMn

− T ,
from which it follows SMn = QW = QX and QXi · QXj = 0 for i ≠ j. Letting κ = {i | 1 ≤ i ≤ p and 0 < θni < π/2}, it
follows that {QXi | i ∈ κ} is an orthogonal basis for SMn . Since QXi ∈ W⊥, y · QXi = PW⊥y · QXi = −PW⊥y · PV⊥

Mn
Xi using

QXi = (1 − λni)Xi − PV⊥
Mn

Xi. Thus,

∥PSMn
y∥2

=


i∈κ

(y · QXi)
2/∥QXi∥

2
=


i∈κ

(PV⊥
Mn

PW⊥y · PV⊥
Mn

Xi)
2/∥QXi∥

2.

Letting Ui = PV⊥
Mn

Xi/∥PV⊥
Mn

Xi∥ and noting that ∥QXi∥
2

= λni(1 − λni) and ∥PV⊥
Mn

Xi∥
2

= 1 − λni, we have

∥PSMn
y∥2

=


i∈κ

(PV⊥
Mn

PW⊥y · Ui)
2/λni.
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Now PV⊥
Mn

PW⊥y = PV⊥
Mn

y −
p

i=1(y · Xi)PV⊥
Mn

Xi. Since E∥y∥4
= O(n2), we have ∥y∥2

= Op(n). Also, ∥PV⊥
Mn

Xi∥
2

= 1 − λni =

sin2 θni. Thus p
i=1

(y · Xi)PV⊥
Mn

Xi


2

≤ Op(n)


p

i=1

sin2 θni

2

.

Since θni → 0 for 1 ≤ i ≤ p, and using Lemma 1, we have that Lemma 2 holds. �

Proof of Theorem 1. Since ∥PEMn
y∥2

= ∥PV⊥
Mn

∩W⊥y∥2
+ ∥PSMn

y∥2 and

∥PV⊥
Mn

∩W⊥y∥2
≤ ∥PV⊥

Mn
y∥2,

it follows that

FMn(y) ≥
dim EMn∥PBMn

y∥2

dim BMn(∥PV⊥
Mn

y∥2 + ∥PSMn
y∥2)

.

Thus, by Lemmas 1 and 2, FMn(y) ≥ Fn(y) where

Fn(y) =
dim EMn∥PBMn

y∥2

dim BMn


(ei − ej)2

+ oP(1). �

Lemma 3. With p and b fixed, let P = {v1, . . . , vn} ⊂ [0, b]p ⊂ Rp be n distinct points. For k fixed, let n ≥ 2pk+1. Then there
exist distinct points vi, vj in P such that ∥vi − vj∥ ≤

√
p(b/2k).

Proof of Lemma 3. Let S0 = [0, b]p ⊂ Rp and divide each of the edge intervals into two equal parts [0, b] = [0, b/2] ∪

[b/2, b], thus dividing S0 into 2p hypercubes with edge length b/2. Choose S1 to be one of these hypercubes such that
|P ∩ S1| ≥ n/2p. Continue in this way to obtain S0 ⊃ S1 ⊃ S2 ⊃ · · · ⊃ Sk where Sk is a b/2k

× · · · × b/2k hypercube
Rp and |P ∩Sk| ≥ n/2pk. Also note that diameter Sk =

√
p(b/2k). With n ≥ 2pk+1, |P ∩Sk| ≥ 2 so that there exist two distinct

points vi, vj in P and Sk. Thus, ∥vi − vj∥ ≤ diameter Sk =
√
p(b/2k). �

Proof of Theorem 2. Suppose
√
p(b/2k) < ζ . Since limn→∞ |Pn| = ∞, there exists n0 such that n ≥ n0 implies

|Pn|/2 − 2pk
≥ 2. Next choose the integer tn such that tn + 1 > |Pn|/2 − 2pk

≥ tn so that limn→∞ tn = ∞. Thus,
|Pn| ≥ (2)(2pk)+2tn. This implies, using Lemma 3, that there exists amatchingMn of Pn such that |Mn| = tn and {v, w} ∈ Mn
implies ∥v − w∥ ≤

√
p(b/2k) < ζ . Finally, |Mn| = tn > |Pn|/2 − 2pk

− 1. Thus, letting the number of singletons for Mn be
sn, tn = |Pn|/2 − sn/2 > |Pn|/2 − (2pk

+ 1), which gives sn < 2(2pk
+ 1). �

Proof of Theorem 3. Let δ ∈ ∆ and note

FMδ
(y) =

dim EMδ
∥γ PBMδ

ξo + PBMδ
e∥2

dim BMδ
∥γ PEMδ

ξo + PEMδ
e∥2

.

Thus, it suffices to show ∥PBMδ
e/γ ∥

2 and ∥PEMδ
e/γ ∥

2 are oP(1) as γ → ∞. Since both terms are no larger than ∥e∥2/γ 2,
which is oP(1) as γ → ∞, we have

lim
γ→∞

FMδ
(y) =

dim EMδ
∥ξ1∥

2

dim BMδ
∥ξ2∥2

+ oP(1). �
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