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Abstract

This article considers regression problems where both the predictor and the response are functional in nature. Driven
by the desire to build a parsimonious model, we consider functional reduced rank regression in the framework of
reproducing kernel Hilbert spaces, which can be formulated in the form of linear factor regression with estimated
multivariate factors, and achieves dimension reduction in both the predictor and the response spaces. The convergence
rate of the estimator is derived. Simulations and real data sets are used to demonstrate the competitive performance
of the proposed method.
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1. Introduction

It is increasingly common to deal with regression problems in which the predictor, the response or both are
functional in nature, with recent contributions include but not limited to [2, 6, 9, 12, 13, 16, 17, 20, 23, 24, 27, 29]. In
this article we consider the following functional linear regression model with functional response

Y(t) = µ(t) +

∫ 1

0
β(t, s)X(s) ds + ε(t), (1)

where Y , X, ε ∈ L2([0, 1]) and E(ε | X) = 0. This problem has been studied in [1, 4, 10, 25, 27]. We assume that the
entire functional predictor and response are observed. As the mean function can be trivially estimated in this situation,
for simplicity and without loss of generality we assume E(Y) = E(X) = 0 and thus do not model the intercept µ(t).

With either scalar or functional responses, there are several approaches to fit the functional linear model given
a random sample (X1,Y1), . . . , (Xn,Yn). The traditionally most popular one is to approximate functional variables
via basis expansion. Polynomial splines were used in [25] whereas Fourier bases are more appropriate for periodic
functional data. Wavelet bases in functional data analysis were popularized because of their suitability for modeling
spatially heterogeneous functions [21, 22]. Random basis functions obtained from functional principal component
analysis (PCA) are also used, with particular advantages in theoretical analysis [8, 13].

The framework adopted here is based on reproducing kernel Hilbert spaces (RKHS), which were studied in [7, 28],
and extended in [18] to functional responses. Assuming that for all t ∈ [0, 1], β(t, ·) is in an RKHSHK with kernel K,
and denoting the L2 norm and the RKHS norm by ‖ · ‖ and ‖ · ‖HK , respectively, we can estimate β by

β̂ = arg min
β

1
n

n∑

i=1

∥∥∥∥∥∥Yi −
∫ 1

0
β(·, s)Xi(s) ds

∥∥∥∥∥∥
2

+ λ

∫ 1

0
‖β(t, ·)‖2HK

dt. (2)
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The single most important special case of RKHS is the second order Sobolev space in which

∫ 1

0
‖β(t, ·)‖2HK

dt =

∫ 1

0

∫ 1

0

∂2

∂s2 β(t, s)dsdt.

By Lemma 7.1 in Chapter 8 of [5], any β ∈ L2([0, 1]2) can be expressed as a converging infinite sum

β(t, s) =

∞∑

j=1

a j(t)b j(s)

for some non-unique sequences a1, a2, . . . and b1, b2, . . . in L2([0, 1]). The proposed method here is to truncate this
infinite sum at some small integer r which will be called the rank of the model. That is, we assume that for some r < ∞,

β(t, s) =

r∑

j=1

a j(t)b j(s). (3)

This is an extension of the traditional reduced rank regression model [3, 15], which postulates that, for all i ∈
{1, . . . , n}, Yi = CXi + Ei with rank(C) ≤ r, where Yi ∈ Rq is the vector of responses, Xi ∈ Rp is the vector of
predictors, Ei is the mean zero noise, and C is the q× p coefficient matrix. Since rank(C) ≤ r, we can write C = AB>
with A and B being a q × r and a p × r matrix, respectively.

If a1, . . . , ar and b1, . . . ,br are the columns of A and B, respectively, we can write C = a1b>1 + · · · + arb>r . Since
AB> = (AG)(G−1B>) for any nonsingular r × r matrix G, it is easy to see that we can assume A>A = I without
loss of generality. Similarly, for functional reduced rank regression, we can assume that the functions a1, . . . , ar are
orthogonal to each other with unit norm in L2([0, 1]).

To see that this orthonormal property can be achieved for any β(t, s), suppose that A is the r× r matrix with entries∫
a j(t)a j′ (t)dt. Let a = (a1, . . . , ar)> and b = (b1, . . . , br)>. Further define a′ = (a′1, . . . , a

′
r)
> = A−1/2a. Then the

matrix with entries
∫

a′j(t)a
′
j′ (t)dt is

∫ 1

0
a′(t){a′(t)}>dt =

∫
A−1/2a(t)a>(t)A−1/2dt = I

and hence a′1, . . . , a
′
r are orthonormal. We can then write β(s, t) = a′1(s)b′1(t)+· · ·+a′r(s)b′r(t) with (b′1, . . . , b

′
r)
> = A1/2b.

Assumption (3) induces a more parsimonious functional regression model and can hopefully increase estimation
efficiency if the assumption is true or nearly so. Although theoretically the convergence rate obtained in our analysis
does not indicate this, the simulation results demonstrate that this is indeed the case when the assumption is met. Thus
our comparison is mainly through numerical studies.

For the estimator (2), Proposition 1 of [18] implies that given the data, the estimator has at most rank r = n, which
is large and also increases with the sample size. In the current work, due to the imposed low-rank constraint, we
estimate β differently from [18], with a j and b j estimated separately. The motivation for the low-rank assumption on
β is to reduce complexity of the estimation problem (reduce the estimation of a bivariate function to the estimation of
multiple univariate functions) and also to gain additional interpretability in modeling.

Reduced rank modeling can be understood from the point of view of dimension reduction. The conditional expec-
tation of Y is ∫ 1

0
β(·, s)X(s)ds =

r∑

j=1

{∫ 1

0
b j(s)X(s)ds

}
a j.

Thus the predictor X affects the response through r estimated “factors” z j =
∫

b j(s)X(s)ds. Furthermore, only the
projection of Y onto the space spanned by a1, . . . , ar can be predictable through X. In this sense, functional reduced
rank regression achieves dimension reduction both in the predictor and the response. More explicitly, if the functions
a1, . . . , ar are orthonormal in L2([0, 1]), the model is equivalent to

∀ j∈{1,...,r} 〈Y, a j〉 = 〈X, b j〉 + 〈ε, a j〉, ∀a⊥{a1,...ar} 〈Y, a〉 = 〈ε, a〉, (4)
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where we write 〈 f , g〉 =
∫

f (s)g(s)ds for the inner product in L2. Based on this representation, the fitted model is
more easily interpretable than the general model (1). The projection of Y along the direction a j is dependent on the
projection of X along the direction b j. One cannot interpret the model in this way when using the functional PCA
approach where a j, b j are the eigenfunctions, since a j (b j) is obtained on the observed response (predictor) alone and
is the direction that the response (predictor) varies the most.

Related to this work is [19], which studied functional reduced-rank regression from a Bayesian point of view. In
that work, reduced-rank models with latent variables are considered where the latent variables serve as the unknown
common factors relating X and Y . Our work is on reduced-rank regression with manifest variables, which is a direct
extension of the classical reduced-rank regression of [3].

The rest of the paper is organized as follows. In Section 2, we discuss the estimation approach of the functional
reduced rank regression model and obtain the convergence rate of the estimator. We further discuss the effect of
discretization in implementation and theory. Section 3 contains our simulation studies and real data illustrations. We
conclude the paper with a discussion in Section 4.

2. Estimation and convergence rate

2.1. Estimator definition and estimation in the population

First, we note that although we choose to work within the RKHS framework, we can similarly estimate the
coefficient β with the reduced rank methodology using other approaches such as basis expansion. The main purpose
of this work is to propose a new estimator under the reduced rank framework and to compare functional reduced rank
regression with general functional linear regression in estimation efficiency and interpretability through numerical
studies, instead of comparing RKHS-based estimation with basis-expansion-based estimation. Some comparisons
between the RKHS estimator and the functional PCA estimator are made in [7, 18] for general functional linear
regression (2).

Given a positive definite kernel K(s, t), the induced RKHSHK is the range of the operator K1/2, where K1/2 is the
operator square root of

K : f ∈ L2([0, 1])→
∫ 1

0
K(·, t) f (t)dt ∈ L2([0, 1]).

See, e.g., [26]. As mentioned in Section 3 of Chapter III in [11], we have ‖ f ‖ = ‖K1/2 f ‖HK for any f ∈ L2([0, 1]).
Although we use K to denote both the bivariate kernel function and the associated operator, its meaning should be
clear from the context.

Informally, one can think of HK as containing functions that possess certain smoothness properties. We assume
b j ∈ HK . It is not necessary to impose any smoothness condition on a j, which does not need to be regularized.
Technically, this is because we take the inverse of the covariance operator of X, but not the inverse of the covariance
operator of Y . Furthermore, without loss of generality, we assume that a1, . . . , ar form an orthonormal set of functions
in L2([0, 1]). This will also allow us to derive closed form estimators of a j, b j.

In reduced rank regression, (2) reduces to

({â j}, {b̂ j}) = arg min
a j∈L2([0,1]),b j∈HK

1
n

n∑

i=1

∥∥∥∥∥∥∥∥
Yi −

r∑

j=1

a j

∫ 1

0
b j(s)Xi(s) ds

∥∥∥∥∥∥∥∥

2

+ λ

r∑

j=1

‖b j‖2HK
. (5)

In the population, the minimization problem is

E



∥∥∥∥∥∥∥∥
Y −

r∑

j=1

a j

∫ 1

0
b j(s)X(s) ds

∥∥∥∥∥∥∥∥

2
,

with the constraint b j ∈ HK . Since b j ∈ HK is equivalent to b j = K1/2 f j for some f j ∈ L2([0, 1]), we can write the
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above minimization problem in terms of the a js and f js as

E



∥∥∥∥∥∥∥∥
Y −

r∑

j=1

a j

∫ 1

0
f j(s)(K1/2X)(s) ds

∥∥∥∥∥∥∥∥

2
.

In the above, given a1, . . . , ar, the minimizer for f1, . . . , fr is similar to that in functional linear regression and is
given by

f j = T−1
X TXYa j, (6)

where TX = E{(K1/2X) ⊗ (K1/2X)} is the covariance operator of K1/2X, which is assumed to be invertible although
the inverse is not bounded. Also, TXY = E{(K1/2X) ⊗ Y} is the cross-covariance operator, where for x, y ∈ L2([0, 1]),
x ⊗ y : L2([0, 1])→ L2([0, 1]) is defined by (x ⊗ y)(g) = 〈y, g〉x for any g ∈ L2([0, 1]). If fact, to see (6), we note that

E



∥∥∥∥∥∥∥∥
Y −

r∑

j=1

a j

∫ 1

0
f j(s)(K1/2X)(s) ds

∥∥∥∥∥∥∥∥

2
= E‖Y‖2 − 2E

〈
Y,

r∑

j=1

〈 f j,K1/2X〉a j

〉
+

∥∥∥∥∥∥∥∥

r∑

j=1

〈 f j,K1/2X〉a j

∥∥∥∥∥∥∥∥

2

= E‖Y‖2 − 2E
〈
Y,

r∑

j=1

〈 f j,K1/2X〉a j

〉
+

r∑

j=1

E〈 f j,K1/2X〉2,

where in the last step above we used that a1, . . . , ar are orthonormal. Thus f j is the minimizer of

E〈 f j,K1/2X〉2 − 2E〈Y, 〈 f j,K1/2X〉a j〉 = 〈TX f j, f j〉 − 2E〈Y, a j〉〈 f j,K1/2X〉 = 〈TX f j, f j〉 − 2〈TXYa j, f j〉,

which implies (6). Using f j = T−1
X TXYa j, we have

∥∥∥∥∥∥∥∥
Y −

r∑

j=1

a j

∫ 1

0
f j(s)(K1/2X)(s) ds

∥∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥∥
Y −

r∑

j=1

〈TYXT−1
X K1/2X, a j〉a j

∥∥∥∥∥∥∥∥

2

= ‖Y‖2 − 2
〈
Y,

r∑

j=1

〈TYXT−1
X K1/2X, a j〉a j

〉
+

r∑

j=1

〈TYXT−1
X K1/2X, a j〉2,

where TYX = E{Y ⊗ (K1/2X)} is the adjoint operator of TXY . Direct calculations yield

〈Y, 〈TYXT−1
X K1/2X, a j〉a j〉 = 〈Y, a j〉〈TYXT−1

X K1/2X, a j〉 = 〈TYXT−1
X {(K1/2X) ⊗ Y}a j, a j〉,

and

〈TYXT−1
X K1/2X, a j〉2 = 〈K1/2X,T−1

X TXYa j〉2 = 〈(K1/2X ⊗ K1/2X)T−1
X TXYa j,T−1

X TXYa j〉
= 〈TYXT−1

X (K1/2X ⊗ K1/2X)T−1
X TXYa j, a j〉.

Thus minimization of

E



∥∥∥∥∥∥∥∥
Y −

r∑

j=1

〈TYXT−1
X K1/2X, a j〉a j

∥∥∥∥∥∥∥∥

2

is equivalent to maximization of
∑r

j=1〈TYXT−1
X TXYa j, a j〉. It is well known that the maximizers a1, . . . , ar are the

eigenfunctions of TYXT−1
X TXY associated with the largest r eigenvalues; see, e.g., Theorem 4.2.5 of [14].

For simplicity we assume that the largest r eigenvalues are distinct and that the a js are uniquely identified.
Note that because 〈K1/2X,T−1

X TXYa1〉 = 〈X, b1〉 is the conditional mean of 〈Y, a1〉 — see (4) — and a1 maximizes
E〈K1/2X,T−1

X TXYa〉2 = 〈TYXT−1
X TXYa, a〉, we can interpret a1 as the direction such that the projection of Y has the

largest variability explained by the predictor.
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2.2. Empirical estimator and asymptotic properties

Similarly to the previous subsection, for the sample version (5), it can be shown that â1, . . . , âr can be obtained as
the eigenfunctions of T̂YX(T̂X + λI)−1T̂XY and b̂ j = K1/2(T̂X + λI)−1T̂XY â j, where I is the identity operator,

T̂X =
1
n

n∑

i=1

K1/2X ⊗ K1/2X and T̂XY =
1
n

n∑

i=1

K1/2X ⊗ Y

are the sample versions of TX and TXY , respectively. Thus the ridge-type penalty in (5) provides regularization of the
inverse of T̂X , given that both T̂X and TX do not have a bounded inverse.

We now study the asymptotic property of the estimators. Suppose that the spectral decomposition of TX is

TX =

∞∑

j=1

γ je j ⊗ e j,

with γ1 > γ2 > · · · > 0. By Theorem 7.2.6 in [14], this is guaranteed if K1/2X is a random element of L2([0, 1]) and
E‖K1/2X‖2 < ∞, which is implied by our assumption (A1) below. The following technical assumptions are imposed.

(A1) X is a random element of L2([0, 1]), K ∈ L2([0, 1]2), E‖K1/2X‖4 < ∞. The eigenvalues of TX are all positive
and distinct.

(A2) β(t, s) = a1(t)b1(s)+ · · ·+ar(t)br(t) for some fixed integer r, a j ∈ L2([0, 1]), b j ∈ HK . 〈a j, a′j〉 = δ j j′ . TYXT−1
X TXY

has r distinct nonzero eigenvalues with associated eigenfunctions a j.

(A3) ε ∈ L2([0, 1]), E〈ε, h〉 = 0 and E(〈ε, h〉2) < ∞ for any h ∈ L2([0, 1]).

Assumptions (A1) implies that TX is a trace-class operator (i.e.,
∑
γ j < ∞). If TX has non-trivial kernel space,

then only the projection of b j orthogonal to the kernel space of TX can be identified. Thus invertibility of TX is
typically assumed in functional linear regression for convenience. In (A2), it can be shown that the expression for
β(t, s) actually implies that TYXT−1

X TXY has r nonzero eigenvalues, and we further assume that they are distinct so that
the a js are identified. Actually, that the eigenvalues are distinct is only assumed for simplicity so that â j can converge
to a j; otherwise we can only say that the subspace spanned by â1, . . . , âr will converge to that spanned by a1, . . . , ar.

For the convergence of â j, we can directly use the L2 norm. However, for b j, the risk we consider is E∗〈b̂ j −
b j, X∗〉2 = ‖Σ1/2

X (b̂ j − b j)‖2, where X∗ is a copy of X independent of the training data, E∗ is the expectation taken over
X∗, and ΣX = E(X ⊗ X) is the covariance operator of X.

Theorem 1. Under Assumptions (A1)–(A3), we have

‖â j − a j‖2 = op(1), ‖Σ1/2
X (b̂ j − b j)‖2 = op(1), E∗

∥∥∥∥∥∥

∫ 1

0
β̂(t, s)X∗(s)ds −

∫ 1

0
β(t, s)X∗(s)ds

∥∥∥∥∥∥
2

= op(1),

where β̂(t, s) =
∑r

j=1 â j(t)b̂ j(s). Obviously, the right-most term is directly related to prediction error.

To get a nontrivial convergence rate, we use the following additional assumptions.

(B1) γ j � j−α for some α > 1.

(B2) For all f ∈ L2([0, 1]),

E
{∫

X(t) f (t)dt
}4

≤ c

E
{∫

X(t) f (t)dt
}2

2

.

Assumptions (B1) and (B2) also appeared in [7].
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Theorem 2. Under Assumptions (A1)–(A3) and (B1)–(B2), and that λ � n−α/(α+1), we have ‖â j−a j‖2 = Op{n−α/(α+1)},
‖Σ1/2

X (b̂ j − b j)‖2 = Op{n−α/(α+1)}, and

E∗
∥∥∥∥∥∥

∫ 1

0
β̂(t, s)X∗(s)ds −

∫ 1

0
β(t, s)X∗(s)ds

∥∥∥∥∥∥
2

= Op{n−α/(α+1)}.

So far, for notational simplicity, we assumed that K is a positive definite kernel and that the RKHS norm of
b j is used in the penalty in (5). In practice, one can usually decompose HK = H0 ⊕ H1, where H0 and H1 are
orthogonal subspaces and H0 is finite-dimensional, and only the projection of b j on H1 is used in the penalty. A
common example is again the second-order Sobolev space, where H0 is the space of linear functions. Our theory
and methodology can be straightforwardly extended to this case. For our numerical results on the real data, we use
the second-order Sobolev space of periodic functions since our functional observations are periodic in nature. In this
situation,H0 contains functions that are constants. We only penalize the projection b j ontoH1 in our numerical study.

In the Online Supplement, we further discuss how the theory can be adapted to the case when r is not the same as
the rank for the true model.

2.3. Computation and theoretical implications of discretization

In our implementation, all operators are approximated by matrices and numerical integration is used. For example,
with a grid (t1, . . . , tp) on [0, 1], K1/2 is represented by the p × p matrix {K(t j, tk)} with j, k ∈ {1, . . . , p} and then we
approximate K1/2Xi by

1
p

p∑

k=1

K1/2(t j, tk)Xi(tk) (7)

for all j ∈ {1, . . . , p}. Then T̂X can be represented by a p × p matrix with its inverse readily computed after adding
λI. Similarly we can represent T̂XY by a matrix and then compute the eigenvector of the matrix approximation of
T̂YX(T̂X + λI)−1T̂XY to get a p-dimensional vector as the discretized version of â j.

Our implementation simply treats the discretized functional variable as multi-dimensional vectors and thus mul-
tivariate procedures are directly used. Alternatively, in estimating b j for example, one can also base implementation
on a representer theorem as derived in [7], which looks more elegant. However, since modern desktop PCs can easily
deal with multivariate variables with large dimensions, there seems to be no convincing advantage to this approach
compared to straightforward discretization of the functional variables.

To see the computational complexities, suppose we discretize different functions using a grid of p points. The time
complexity for computing the matrix square root of the p × p matrix {K(t j, tk)} is O(p3). The complexity is O(p2n) to
approximate K1/2Xi by (7), and to construct the discretized version of T̂X . The complexity to compute the inverse of
T̂X + λI is O(p3). The calculation of eigenvectors takes at most O(p3). All other steps, including calculating b̂ j, takes
no more than O{p2(n + p)} and thus the overall complexity is O{p2(n + p)}.

We now discuss how discretization impacts our asymptotic theory. Computationally, after discretization, the
operators reduce to matrices and eigenfunctions to finite-dimensional eigenvectors.

Let X̌i(t) = Xi(tk) if t ∈ [tk, tk−1), and similarly define Y̌i. We assume tk = (k − 1)/p for all k ∈ {1, . . . , p}
for simplicity. Note that â j is the eigenfunction of T̂YX(T̂X + λI)−1T̂XY . The discretization procedure is equivalent to
computing the eigenfunction of ŤYX(ŤX+λI)−1ŤXY , denoted by ǎ j, where ŤX =

∑n
i=1 X̌i⊗X̌i/n and ŤXY =

∑n
i=1 X̌i⊗Y̌i/n.

We have

‖n(ŤX − T̂X)‖2 =

∥∥∥∥∥∥∥

n∑

i=1

X̌i ⊗ X̌i −
n∑

i=1

Xi ⊗ Xi

∥∥∥∥∥∥∥

2

≤ 3

∥∥∥∥∥∥∥

n∑

i=1

(Xi − X̌i) ⊗ Xi

∥∥∥∥∥∥∥

2

+ 3

∥∥∥∥∥∥∥

n∑

i=1

Xi ⊗ (Xi − X̌i)

∥∥∥∥∥∥∥

2

+ 3

∥∥∥∥∥∥∥

n∑

i=1

(Xi − X̌i) ⊗ (Xi − X̌i)

∥∥∥∥∥∥∥

2

.
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Furthermore, the right-hand term can be bounded above by

6


n∑

i=1

‖Xi − X̌i‖ × ‖Xi‖


2

+ 3


n∑

i=1

‖Xi − X̌i‖2


2

≤ 6


n∑

i=1

‖Xi − X̌i‖2



n∑

i=1

‖Xi‖2
 + 3


n∑

i=1

‖Xi − X̌i‖2


2

,

so that ‖n(ŤX − T̂X)‖2 = Op{n2(δx + δ2
x)}, where δx = E‖Xi − X̌i‖2. Similarly, we can show ‖ŤXY − T̂XY‖2 = Op(δx +

δy + δxδy), where δy = E‖Yi − Y̌i‖2. In the following we assume δx, δy = o(1). Then we have

‖ŤYX(ŤX + λI)−1ŤXY − T̂YX(T̂X + λI)−1T̂XY‖
≤ ‖ŤYX − T̂YX‖‖(T̂X + λI)−1T̂XY‖ + ‖ŤYX(ŤX + λI)−1(ŤX − T̂X)(T̂X + λI)−1T̂XY‖

+ ‖ŤYX(ŤX + λI)−1‖‖ŤXY − T̂XY‖ = Op(
√
δx + δy/λ

2).

Thus ‖ǎ j − â j‖2 = Op{(δx + δy)/λ4}. Let f̌ j = (ŤX + λI)−1ŤXY ǎ j. Then

‖ f̌ j − f̂ j‖ ≤ ‖(ŤX + λI)−1ŤXY‖‖ǎ j − â j‖ + ‖(ŤX + λI)−1(ŤXY − T̂XY )â j‖
+ ‖(ŤX + λI)−1(ŤX − T̂X)(T̂X + λI)−1‖‖T̂XY â j‖ = Op(

√
δx + δy/λ

3).

If we then define b̌ j = K1/2 f̌ j and β̌(t, s) =
∑r

j=1 ǎ j(t)b̌ j(s), then ‖Σ1/2
X (b̌ j − b̂ j)‖2 = Op{(δx + δy)/λ6} and

E∗
∥∥∥∥∥
∫

β̌(t, s)X∗(s)ds −
∫

β̂(t, s)X∗(s)dx
∥∥∥∥∥

2

= Op{(δx + δy)/λ6}.

Thus under some smoothness assumptions of the sample paths of X and Y , with large enough p, the error in discrete
sampling of functional data can be ignored. For example, one can use assumption (A.2) of [9] to get δx = p−κ for
some κ > 0.

So far, we have taken into account that the functional data are discretely sampled. Another related problem
is that when calculating b̌ j = K1/2 f̌ j, we need to compute the operator K1/2. This can only be done in practice
after discretization to represent K as a matrix. Let Ǩ be the discretized version of K, i.e., Ǩ(s, t) = K(si, t j) for
s ∈ [si, si+1), t ∈ [ti, ti+1), where si = (i − 1)/p and ti = (i − 1)/p for all i ∈ {1, . . . , p}. Smoothness assumptions will
produce bounds for ‖Ǩ−K‖. For example, if K(s, t) is Lipschitz continuous, we have ‖Ǩ−K‖ = O(1/p). The difficulty,
however, is that we need to bound ‖Ǩ1/2 −K1/2‖, which seems hard, especially because the eigenvalues of K typically
converge to zero. We could get around this difficulty by truncating the spectral expansion of (Ǩ)1/2. In fact, suppose
the spectral decomposition of K is K =

∑
s jφ j ⊗φ j with s1 > s2 > · · · > 0, and that of Ǩ is Ǩ =

∑
j s̃ jφ̃ j ⊗ φ̃ j. Then by

Theorems 5.1.6 and 5.1.8 of [14], |s j− s̃ j| ≤ ‖K̃−K‖ and ‖φ̃ j−φ j‖ ≤ C‖K̃−K‖/r j, where r j = min(s j−1− s j, s j− s j+1).
Let the truncated version Ǩ1/2 be K̃1/2

(m) =
∑m

j=1
√

s̃ jφ̃ j ⊗ φ̃ j. We have

K̃1/2
(m) − K1/2 =

m∑

j=1

√
s̃ jφ̃ j ⊗ φ̃ j −

m∑

j=1

√
s jφ j ⊗ φ j −

∞∑

j=m+1

√
s jφ j ⊗ φ j

=

m∑

j=1

√
s̃ j(φ̃ j ⊗ φ̃ j − φ j ⊗ φ j) +

m∑

j=1

(
√

s̃ j − √s j)φ j ⊗ φ j −
∞∑

j=m+1

√
s jφ j ⊗ φ j.

We have
∥∥∥∥∥∥∥∥

m∑

j=1

√
s̃ j(φ̃ j ⊗ φ̃ j − φ j ⊗ φ j)

∥∥∥∥∥∥∥∥
≤ C max

j∈{1,...,m}
√

s̃ j‖K̃ − K‖/r j ≤ C max
j∈{1,...,m}

(
√

s j + ‖K̃ − K‖)‖K̃ − K‖/r j,

∥∥∥∥∥∥∥∥

m∑

j=1

(
√

s̃ j − √s j)φ j ⊗ φ j

∥∥∥∥∥∥∥∥
≤ C max

j∈{1,...,m}
|s̃ j − s j|/(

√
s̃ j +

√
s j) ≤ C max

j∈{1,...,m}
‖K̃ − K‖/√s j.
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Then by letting m be large enough to make ‖∑∞j=m+1
√s jφ j ⊗ φ j‖ arbitrarily small, and then choosing p to be large

enough to make ‖K̃−K‖ arbitrarily small, we can make ‖K̃1/2
(m)−K1/2‖ arbitrarily small, so that the rates in Theorems 1–2

are not affected.
Although theoretically this truncation makes it possible to bound ‖K̃1/2

(m) −K1/2‖, empirically we find the truncation
is not necessary and do not use it in our numerical implementation. It remains an open problem whether one can get
a bound for ‖K̃1/2 − K1/2‖.

3. Numerical results

3.1. Simulations

The construction of the RKHS and the covariates in our simulations is the same as that used in [7]. We consider
the RKHS with kernel

K(s, t) =

∞∑

j=1

2 cos( jπs) cos( jπt)/( jπ)4,

and thusHK consists of functions of the form

f (t) =

∞∑

j=1

f j cos( jπt),

such that
∑

j j4 f 2
j < ∞. In our implementation, the kernel K(s, t) is approximated by using the first 100 terms in the

infinite sum. In this RKHS, we actually have ‖ f ‖2HK
=

∫
( f ′′)2. For the covariate kernel ΣX(s, t) = E{X(s)X(t)}, we set

the covariate kernel to be

ΣX(s, t) =

∞∑

j=1

2θ j cos( jπs) cos( jπt),

where θ j = (| j− j0|+ 1)−2. When j0 = 1, the two kernels ΣX and K have the same sequence of eigenfunctions (ordered
by eigenvalues). By choosing j0 > 1, we allow the sequences to be different. The error process is generated from

εi(t) =

10∑

j=2

√
2ηi cos( jπt)/ j, ηi

iid∼ N(0, σ2).

As we will see later in the results, if σ is large enough, the error will significantly affect the major mode of
variability (as assessed by functional PCA) of the response. Thus the basis obtained from functional PCA on Y does
not represent the mode of variability that can be predicted.

The responses are generated from (1) without the intercept term, using the following three examples of coefficient
function:

Example 1: β(t, s) = sin(2πt) cos(2πs)

Example 2: β(t, s) = {sin(πt) + sin(2πt)}{cos(πs) − cos(2πs)} + {sin(πt) − sin(2πt)}{cos(πs) + cos(2πs)}
Example 3: β(t, s) = sin(πt) cos(πs) + {sin(πt) + cos(πt)} cos(2πs) + {sin(πt) + cos(2πt)} cos(4πs)

Example 4: β(t, s) =

50∑

j=1

4
√

2(−1) j sin( jπt) cos( jπs)/ j2

Thus the first three examples represent models with rank 1, 2 and 3, respectively. Although β in the fourth example
also has a finite rank, the purpose is to demonstrate that a small rank suffices to fit the data well if it can provide a
good approximation to the truth. In generating the data, the integral is approximated by a Riemannian sum on an
equally-spaced grid (t1, . . . , t100) with 100 points, and all functional variables are also discretized on the same grid of
100 points.
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The estimators for a j are obtained as eigenfunctions of T̂YX(T̂X + λI)−1T̂XY and estimators for b j is obtained by
b̂ j = K1/2(T̂X + λI)−1T̂XY â j based on discretization as mentioned in Section 2.3. With our implementation in R, all
simulations are completed in about three hours using a HP Z230 workstation running Windows 7 with i7-4790 CPU
@ 3.60GHz.

We first examine the results for different values of λ with r set at the true value. We consider ln λ ∈ {−10, . . . ,−1}.
Although the results could be improved a little by using a finer sequence of λ, we find that such a relatively coarse
sequence is usually sufficient.

First we set n = 100, σ = 0.25, 0.5 or 1, j0 = 3 and generate 100 datasets from Example 1. Another 1000
observations are generated from the same model for calculating the prediction error. For r = 1 and λ minimizing the
prediction error, the top row of Figure 1 compares the estimated b1 (normalized to have unit norm before visualization)
with the estimated first eigenfunction of X and the bottom row compares the estimated a1 with the estimated first
eigenfunction of Y , where the estimates for a1, b1 are averaged over the 100 simulations. We see that b1 is very
different from the eigenfunction of X and the former represents the direction of X that is useful for prediction. Looking
at the shape of b1, this can be interpreted as saying that the difference between value of X in the middle and the value
of X at the two ends is useful for prediction. When σ (noise) is small, a1 matches well with the eigenfunction of Y
since the variability of Y mainly comes from that of X. As σ increases, the shape of eigenfunctions of Y is increasingly
dominated by error variability which does not represent the “explained” variability of the response. Thus a1 is visually
different from the eigenfunction of Y . Whatever the noise, the estimated shape of a j suggests that X is only useful in
predicting the difference between the value of Y on [0, 1/2] and that on [1/2, 1]. The eigenfunction of Y only shows
the direction of Y that varies the most which is not necessarily the direction that is related to the predictor.

For Example 2, using the same set of parameters, the top row of Figure 2 shows the estimated b1, b2 (solid curves)
with the first two estimated eigenfunctions of the predictor, and the bottom row of Figure 2 shows the estimated a1, a2
(solid curves) with the estimated eigenfunctions of the response. In Figure 2, b1 and b2 are scaled to have unit norm.
We see that the estimated functions a1, a2, b1, b2 are indeed different from the eigenfunctions when the noise is large,
and the former can be interpreted in a similar fashion as we did for Example 1.

In practice, the parameters r and λ can be tuned via five-fold cross-validation. Now we consider the prediction
error with more parameter set-ups and assess the performance of five-fold cross-validation. We set n = 50 or 100,
σ = 0.25, 0.5 or 1, j0 = 1 or 3, for a total of 12 scenarios. We search the optimal set of tuning parameters r and
λ with r ranging from 1 to 5 and ln λ ∈ {−10, . . . ,−1}. Again an independent set of 1000 observations is generated
for testing. Besides comparing between reduced rank estimator (5) and the functional linear regression estimator (2),
we also compare the prediction error using r and λ selected by cross-validation (the selection of tuning parameters
does not use the test data) with the smallest prediction error achieved by different r and λ values (as in the previous
investigation without using cross-validation) in Tables 1–4, for the four examples, respectively. Using either r, λ with
the smallest prediction error, or obtained by cross-validation, we also compute the mean squared error of β̂, viz.

MSE =

∫∫

[0,1]2
{β̂(t, s) − β(t, s)}2dtds.

We see that in all cases under Examples 1–3, the reduced rank regression performs better than functional linear
regression without rank reduction of [18], although judging from the standard errors, the differences are not statisti-
cally significant. For Example 4, models with rank no more than 5 gives basically the same accuracy as functional
linear regression. The estimators with parameters chosen by the cross-validation method perform well with predic-
tion errors and MSE close to that without using cross-validation (the latter directly uses the independently generated
testing data for parameter tuning and thus is considered as infeasible estimators). In the column labeled “correct r”,
we also present the number of times (among 100 repetitions) that the true r (1 or 2) is selected by cross-validation.
We see that most of the time the true value of r can be identified.

3.2. Real data

We now illustrate functional reduced rank regression on two common functional datasets.
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Figure 1: The first row shows the estimated function b1 (solid line) and the first eigenfunction of X (dashed line), and the second row shows the
estimated function a1 (solid line) and the first eigenfunction of Y (dashed line). The three columns correspond to σ = 0.25, 0.5 and 1, respectively.
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Figure 2: The first row shows the estimated function b1, b2 (solid line) and the first two eigenfunction of X (dashed line), and the second row shows
the estimated function a1, a2 (solid line) and the first two eigenfunction of Y (dashed line). The three columns correspond to σ = 0.25, 0.5 and 1,
respectively. The first directions (a1, b1 and first eigenfunction) are shown in black and the second directions in red.
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Table 1: Prediction errors and mse for the simulations for the functional linear regression (FLR, Eq. (2), as in [18]) and reduced rank regression
(RRR, Eq. (5)), for Example 1. The numbers in brackets are the standard errors computed from simulations.

Prediction Error MSE (×10−4)

n j0 σ FLR FLR-CV RRR RRR-CV FLR FLR-CV RRR RRR-CV correct r
50 1 0.25 0.046 0.048 0.027 0.034 0.82 0.93 0.19 0.29 81

(0.008) (0.011) (0.009) (0.018) (0.66) (0.73) (0.20) (0.33)
50 1 0.5 0.086 0.096 0.055 0.069 2.26 2.94 0.77 1.18 80

(0.014) (0.021) (0.017) (0.035) (1.97) (2.84) (0.85) (1.34)
50 1 1 0.149 0.170 0.108 0.144 4.22 6.01 2.56 4.25 69

(0.031) (0.052) (0.031) (0.068) (3.87) (6.51) (3.02) (5.30)
50 3 0.25 0.052 0.055 0.028 0.033 0.96 1.05 0.21 0.28 86

(0.009) (0.012) (0.009) (0.016) (0.79) (0.90) (0.22) (0.31)
50 3 0.5 0.096 0.105 0.057 0.070 3.45 4.04 0.91 1.22 82

(0.013) (0.023) (0.018) (0.034) (2.86) (3.70) (1.00) (1.36)
50 3 1 0.167 0.194 0.116 0.154 9.84 12.7 4.13 6.07 63

(0.029) (0.051) (0.034) (0.070) (8.95) (12.9) (4.64) (7.14)
100 1 0.25 0.034 0.034 0.019 0.023 0.64 0.63 0.11 0.16 82

(0.005) (0.006) (0.007) (0.010) (0.48) (0.47) (0.12) (0.18)
100 1 0.5 0.060 0.063 0.039 0.046 1.03 1.10 0.44 0.63 82

(0.011) (0.013) (0.014) (0.020) (0.86) (1.06) (0.46) (0.69)
100 1 1 0.108 0.112 0.077 0.092 2.74 2.94 1.38 1.86 80

(0.023) (0.029) (0.026) (0.039) (2.41) (2.79) (1.58) (2.34)
100 3 0.25 0.038 0.038 0.020 0.024 0.57 0.62 0.10 0.15 80

(0.005) (0.006) (0.007) (0.010) (0.40) (0.47) (0.11) (0.17)
100 3 0.5 0.068 0.069 0.040 0.049 1.70 1.83 0.42 0.65 81

(0.010) (0.014) (0.014) (0.021) (1.45) (1.64) (0.44) (0.71)
100 3 1 0.125 0.128 0.081 0.097 5.33 5.63 1.74 2.57 80

(0.021) (0.030) (0.027) (0.041) (4.84) (5.35) (1.93) (2.98)
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Table 2: Prediction errors and mse for the simulations for the functional linear regression (FLR, Eq. (2)) and reduced rank regression (RRR,
Eq. (5)), for Example 2. The numbers in brackets are the standard errors computed from simulations.

Prediction Error MSE (×10−4)

n j0 σ FLR FLR-CV RRR RRR-CV FLR FLR-CV RRR RRR-CV correct r
50 1 0.25 0.047 0.048 0.039 0.046 0.87 0.91 0.41 0.55 63

(0.009) (0.011) (0.009) (0.016) (0.72) (0.73) (0.34) (0.58)
50 1 0.5 0.092 0.096 0.078 0.091 3.27 3.64 1.41 2.04 62

(0.017) (0.023) (0.018) (0.032) (2.77) (2.97) (1.20) (2.13)
50 1 1 0.173 0.191 0.155 0.186 8.18 11.6 5.00 8.66 59

(0.032) (0.043) (0.036) (0.064) (6.84) (11.4) (4.55) (9.26)
50 3 0.25 0.054 0.055 0.040 0.047 1.01 1.06 0.69 0.84 72

(0.010) (0.012) (0.009) (0.015) (0.85) (0.91) (0.63) (0.83)
50 3 0.5 0.105 0.110 0.080 0.094 3.82 4.16 2.63 3.17 68

(0.018) (0.024) (0.018) (0.031) (3.23) (3.58) (2.61) (3.18)
50 3 1 0.194 0.210 0.162 0.193 13.9 15.7 10.4 13.8 65

(0.031) (0.048) (0.036) (0.055) (11.8) (14.5) (10.6) (13.5)
100 1 0.25 0.034 0.034 0.027 0.030 0.66 0.62 0.22 0.25 75

(0.005) (0.005) (0.006) (0.007) (0.50) (0.46) (0.18) (0.23)
100 1 0.5 0.068 0.069 0.054 0.060 2.43 2.52 0.81 0.96 74

(0.011) (0.012) (0.013) (0.013) (1.89) (1.92) (0.67) (0.88)
100 1 1 0.119 0.127 0.108 0.120 3.68 4.52 2.84 3.83 72

(0.020) (0.023) (0.024) (0.027) (3.28) (4.24) (2.54) (3.54)
100 3 0.25 0.038 0.038 0.028 0.031 0.57 0.61 0.33 0.40 78

(0.005) (0.005) (0.006) (0.007) (0.40) (0.46) (0.30) (0.40)
100 3 0.5 0.076 0.077 0.056 0.062 2.23 2.47 1.28 1.57 78

(0.011) (0.012) (0.013) (0.015) (1.59) (1.91) (1.18) (1.57)
100 3 1 0.135 0.141 0.112 0.126 6.29 7.32 5.13 6.57 75

(0.019) (0.025) (0.024) (0.031) (5.32) (6.46) (4.75) (6.79)
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Table 3: Prediction errors and mse for the simulations for the functional linear regression (FLR, Eq. (2)) and reduced rank regression (RRR,
Eq. (5)), for Example 3. The numbers in brackets are the standard errors computed from simulations.

Prediction Error MSE (×10−4)

n j0 σ FLR FLR-CV RRR RRR-CV FLR FLR-CV RRR RRR-CV correct r
50 1 0.25 0.062 0.063 0.055 0.061 3.71 4.01 2.22 2.97 90

(0.010) (0.011) (0.012) (0.017) (2.38) (2.80) (1.87) (2.82)
50 1 0.5 0.121 0.126 0.106 0.119 13.8 15.4 8.03 10.8 92

(0.018) (0.023) (0.021) (0.036) (8.84) (10.9) (6.81) (9.88)
50 1 1 0.220 0.232 0.205 0.229 32.0 35.5 26.8 33.3 69

(0.032) (0.047) (0.036) (0.056) (26.0) (29.1) (22.4) (39)
50 3 0.25 0.065 0.067 0.055 0.063 2.50 2.91 1.52 2.18 91

(0.010) (0.011) (0.012) (0.018) (1.55) (1.98) (1.27) (2.01)
50 3 0.5 0.129 0.137 0.110 0.127 9.27 11.3 5.94 8.76 86

(0.018) (0.022) (0.022) (0.036) (5.94) (8.35) (4.72) (7.98)
50 3 1 0.236 0.238 0.216 0.230 19.9 20.5 19.7 20.0 67

(0.039) (0.049) (0.041) (0.046) (14.7) (16.9) (15.7) (24.4)
100 1 0.25 0.045 0.045 0.038 0.040 2.68 2.64 1.43 1.65 90

(0.005) (0.005) (0.006) (0.007) (1.59) (1.73) (1.27) (1.53)
100 1 0.5 0.088 0.091 0.076 0.081 9.52 10.5 5.45 6.46 88

(0.011) (0.011) (0.013) (0.015) (5.71) (7.10) (4.64) (6.36)
100 1 1 0.157 0.165 0.145 0.160 17.6 19.5 15.7 19.2 67

(0.022) (0.032) (0.026) (0.029) (13.4) (15.9) (13.3) (20.1)
100 3 0.25 0.048 0.048 0.039 0.041 1.71 1.83 1.00 1.11 96

(0.006) (0.006) (0.006) (0.008) (1.05) (1.15) (0.85) (0.99)
100 3 0.5 0.090 0.095 0.077 0.084 4.27 5.16 3.27 4.41 92

(0.011) (0.012) (0.013) (0.015) (2.98) (4.13) (2.63) (4.05)
100 3 1 0.163 0.163 0.147 0.161 10.1 11.1 8.94 10.9 69

(0.023) (0.023) (0.025) (0.030) (6.90) (8.06) (6.93) (9.51)
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Table 4: Prediction errors and mse for the simulations for the functional linear regression (FLR, Eq. (2)) and reduced rank regression (RRR,
Eq. (5)), for Example 4. The numbers in brackets are the standard errors computed from simulations.

Prediction Error MSE (×10−4)

n j0 σ FLR FLR-CV RRR RRR-CV FLR FLR-CV RRR RRR-CV
50 1 0.25 0.077 0.076 0.077 0.077 5.50 5.44 5.56 5.53

(0.003) (0.003) (0.003) (0.003) (2.51) (2.42) (2.49) (2.43)
50 1 0.5 0.135 0.133 0.135 0.134 10.4 10.3 10.3 10.7

(0.008) (0.008) (0.008) (0.007) (6.21) (6.02) (5.91) (5.84)
50 1 1 0.230 0.228 0.230 0.229 19.9 20.0 20.0 20.2

(0.015) (0.016) (0.015) (0.016) (11.1) (11.3) (11.1) (11.3)
50 3 0.25 0.085 0.085 0.086 0.085 4.53 4.60 4.54 4.60

(0.004) (0.004) (0.004) (0.004) (2.06) (2.04) (2.10) (2.12)
50 3 0.5 0.152 0.149 0.152 0.149 10.3 10.1 10.2 10.1

(0.008) (0.008) (0.008) (0.008) (6.27) (6.20) (6.13) (6.06)
50 3 1 0.265 0.262 0.265 0.263 25.6 25.9 25.6 26.1

(0.014) (0.016) (0.014) (0.016) (20.2) (19.8) (20.1) (20.0)
100 1 0.25 0.058 0.057 0.058 0.058 3.99 4.05 4.14 4.15

(0.002) (0.002) (0.002) (0.002) (1.7) (1.74) (1.67) (1.74)
100 1 0.5 0.101 0.099 0.101 0.099 7.42 7.61 7.40 7.60

(0.004) (0.004) (0.004) (0.004) (4.09) (4.21) (3.97) (4.06)
100 1 1 0.174 0.170 0.174 0.170 14.1 14.2 14.1 14.2

(0.008) (0.009) (0.008) (0.009) (7.42) (7.49) (7.41) (7.51)
100 3 0.25 0.063 0.063 0.064 0.064 3.22 3.22 3.25 3.30

(0.002) (0.002) (0.002) (0.002) (1.28) (1.25) (1.52) (1.35)
100 3 0.5 0.111 0.110 0.111 0.111 6.56 6.53 6.53 6.57

(0.004) (0.004) (0.004) (0.004) (3.55) (3.43) (3.41) (3.35)
100 3 1 0.197 0.195 0.197 0.195 15.3 15.0 15.0 15.1

(0.008) (0.009) (0.008) (0.009) (10.4) (9.82) (10.3) (9.81)
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3.2.1. Canadian weather data
These daily data consist of daily temperature and precipitation measurements recorded in 35 Canadian weather

stations. Each observation consists of functional data observed on an equally-spaced grid of 365 points. We treat
temperature as the independent variable and the goal is to predict the corresponding precipitation curve given the
temperature measurements. As was previously done in [25], we set the dependent variable to be the log-transformed
precipitation measurements, and a small positive number is added to the values with 0 precipitation recorded. We pre-
smooth data by approximating the functional variables using cubic splines with 6 internal knots and then discretize
them using a grid of 100 points. Given the periodic nature of the data, we set HK =Wper

2 , the second-order Sobolev
space of periodic functions on [0, 1]. The reproducing kernel is given by K(s, t) = K1(s, t) + K2(s, t) with K1(s, t) = 1
and

K2(s, t) =

∞∑

j=1

2
(2π j)4 cos{2π j(s − t)}.

We use leave-one-out cross-validation to determine the best tuning parameters r and λ with ln λ ∈ {−10, . . . ,−1} and
r ∈ {1, . . . , 5}. The smallest cross-validation error for the reduced rank regression is achieved when r = 3. The
estimated values of a1, a2, a3 and b1, b2 and b3 are shown in Figure 3. For both the reduced rank regression and
the functional linear regression, the cross-validation error is 0.426. Since a1 (black solid curve in the bottom-left
panel of Figure 3) shows larger absolute values in the winter, this means the most significant effect of temperature on
precipitation is on the weighted average precipitation level with winter months receiving more weights. For this data
set, the estimated principal component functions for Y are very similar to a j.

3.2.2. Gait data
The Motion Analysis Laboratory at Children’s Hospital, San Diego, California, collected these data, which consist

of the angles formed by the hip and knee of 39 children over each child’s gait cycle. The cycle begins and ends at
the point where the heel of the limb under observation strikes the ground. Both sets of functions are periodic and
it is of interest to see how the two joints interact. In this application, we use hip angle as the predictor and knee
angle as the response. The smallest cross-validation error for the reduced rank regression is achieved when r = 4.
The estimated values of a1, a2, a3, a4 and b1, b2, b3, b4 are shown in Figure 4. For the reduced rank regression the
cross-validation error is 4.20, slightly smaller than the error of 4.27 achieved by the functional linear regression. The
shapes of a1, b1 (black solid curves) indicate that that the contrast between hip angle in the middle of the cycle and
that at the beginning and ends is predictive of the contrast between knee angle in the middle of the cycle and that at
the beginning and ends. For these data, the estimated principal component functions for Y are visually different from
a j and cannot be interpreted in this way.

4. Conclusion

In this paper, we considered reduced rank regression for functional regression models with functional responses.
Instead of estimating a bivariate function, we only need to estimate a finite number of univariate functions. The
model is thus more parsimonious and can potentially achieve higher estimation efficiency with finite sample sizes.
We can further interpret the model as aiming to achieve dimension reduction for both the predictor and the response.
We carried out simulation studies and further illustrated the methodology on two real datasets. Although on the real
data there are no significant improvements on prediction accuracy, the reduced rank model allows us to interpret the
estimated coefficients more easily than in general functional linear regression models.
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Figure 3: Estimated b j (first row) and a j (second row) functions for the gait data shown as solid curves. The dashed curves are the principal
component functions for X and Y , respectively.
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