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A linear model with random effects, p,, and random error variances, o,, is 
considered. The linear Bayes estimator or the best linear unbiased predictor 
(BLUP) of p, is first obtained, and then the unknown parameters in the model are 
estimated to arrive at the empirical linear Bayes estimator or the empirical BLUP 
(EBLUP) of n,. A second-order approximation to mean square error (MSE) of the 
EBLUP and an approximately unbiased estimator of MSE are derived. Results of 
a simulation study confirm the accuracy of these approximations. c 1992 Academic 

Press. Inc. 

1. INTRODUCTION 

Consider the following linear model with random error variances: 

yii=pi+ev, i = 1, . . . . m j = 1, . ..) n, (1.1) 

with 

Pi - w-4 5), (e,l~i) - MO2 ~,I3 fJi - (8, a), (1.2) 

where pi and eii are all independently distributed given 6 = (a,, . . . . cm)‘. 
Further, the error variances oi are assumed to be nonnegative i.i.d. random 
variables with mean B and variance c1 and independent of pi and eU. The 
special case of equal error variances, ci= /?, has received considerable 
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attention in the literature. In particular, the linear Bayes estimator or the 
best linear unbiased predictor (BLUP) of p, is first obtained, and then the 
unknown parameters in the model are estimated to arrive at the empirical 
Bayes estimator or the empirical BLUP (EBLUP) of pi (see, e.g., [2]). 
Prasad and Rao [3] derived second-order approximations to the mean 
square error (MSE) of the EBLUP and the estimator of MSE, assuming 
equal error variances and large m. 

The main purpose of this article is to obtain a second order-approxima- 
tion to MSE of the EBLUP of pi and an approximately unbiased estimator 
of the MSE under the general model (1.1) with random error variances. 
These approximations are correct up to terms of order l/m. Finite sample 
properties are also studied through a simulation study. Aragon [ 1 ] studied 
more general models with random error variances, but he did not consider 
the prediction of random effects like pi,. Instead, he considered the 
estimation of parameters like p, T ,  /I, and CI, assuming inverse Gaussian 
errors with variances (TV. 

The results derived in Sections 2, 3, and 4 should be useful in small area 
estimation, where p, and CJ, correspond to ith small area mean and 
variance. It is more realistic to assume random small area variances than 
a constant variance across small areas. 

2. DERIVATION OF EBLUP 

Let yi. =cj y&r, y.. =Ciy,./m, and 6=r +j?/n. Then it is easy to see 
that the BLUP (or the linear Bayes estimator) of pi under the general 
model ( 1.1) is given by 

lii=Yj.-C(yi.-y..), c = fl/nS. (2.1) 

It is interesting to note that the same predictor is obtained under the 
assumption of equal error variances, di = /I. 

The BLUP bj depends on unknown parameters fl and 6. We use simple 
moments estimates of b and 6 to obtain an EBLUP of pi. An obvious 
unbiased estimator of 6 is 

s^=(m- 1)-l f (y,.-Y.-J2 (2.2) 
,=l 

with conditional expectation E,cf = T  + a./n given e = (a,, . . . . c,)‘, where 
rr. = xi a,/m. For the parameter j?, we use the unbiased estimator 

jj=m-l (n-1))’ f i (yY--y,.)‘= f Gj/m (2.3) 
r=l /=I r=l 



ESTIMATION OF MSE OF EBLUP 3 

which satisfies E2/? = c.. The estimators p^ and s^ are conditionally 
independent, since /? depends only on the within groups sum of squares 
while $ is a function of the within group means. 

Substituting b and 6 for fl and 6 in (2.1) we obtain the EBLUP as 

/.ii=yi.-4y;.-y..), f = j/n& (2.4) 

Again, the same EBLUP is obtained under the assumption of equal error 
variances, but the MSE of Gi under the general model (1.1) will be different. 

3. MSE APPROXIMATION 

3.1. MSE of the BLUP 

Before deriving a second-order approximation to MSE of the EBLUP, 
we derive the MSE of the BLUP, pi. We write fii-pi= e,. - c(y,. -.v..) so 
that 

(3.1 1 

where ei. = cj e,/n. We next evaluate the conditional expectation, E,, of 
the terms in (3.1) given 6= (a,, . . . . a,)‘. 

Using the decomposition yi.-y..= (pi--p.)+(e,.-e..), where p.= 
&pi/m we obtain 

E,ef. = a,/n 

E,(y,.-y..)e,.=o,(m-l)/nm 

Ez(yi.-y..)2=(z+a,/n)(m- l)/m+(a.-a,)/nm. 

(3.2) 

Using (3.2) in (3.1) yields the MSE of the BLUP as 

E(ji, - p,)’ = Tp/nd + /12/mn26. (3.3) 

It is again interesting to note that the same MSE is obtained under the 
assumption of equal error variances gi = fl. 

3.2. Approximation to MSE of the EBLUP 

3.2.1. A starting Expression for MSE 

Replacing in (3.1) c by its estimator E, we obtain the squared deviation 
of ,Ci from pi, namely (fi, - pi)‘. By symmetry, E(,Ci - pi)* cannot depend 
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on i, so that by averaging over i and using (2.2), we obtain the MSE of the 
EBLUP as 

E(Pi-Pi)2=E Cei2.-2~C(yi.-y..)ei.+(m-l)PE/n 
L 

m. (3.4) 
I II 

Since E2 xi cf./m = a./n = E,b/n, an equivalent expression to (3.4) is 

E(i4-~J~=E(8-4~ +42)ln, 

where (3.5) 

41 = 2 C (yi. -y..) e,.j/m& qS2 = (m - 1) p ‘̂/mn& 

Further, we can replace /? and /I?2 in (3.5) by E2a and EZp, since /? is 
conditionally independent of y,., y.., e,., and 8. Hence, noting that 

&j-7= (T., Ezf12 = of + 2 C cf/(n - 1 )m2, (3.6) 

we obtain 

where 

E(fii-/Lj)‘= E(a. -8, + J2)/n, (3.7) 

and 

J, = 20.x (y,. -y..) e,./m6 
I 

&=(m-1) a5+2Cof/(n-l)m2 /mm?. 
I 1 (3.8) 

3.2.2. Approximations to E$, and E$, 

To evaluate (3.7) we need E$, and E$,, but no closed-form expressions 
for these expectations could be obtained. We have therefore derived 
approximations to E$, and E$, such that the neglected terms are of lower 
order than l/m, for large m. We use the expansion 

CT-‘= [l-(&6,)/6,+ {(8-6,)/6,)2-J/6,- ((8~6,)/6,}3/& (3.9) 

where 6, = E,8= t + o./n. We also need the following two lemmas proved 
in Section 6.1. 

LEMMA 1. Zf m >4k + 1 and z > 0, then E8-k d (2/~)~, where k is a 
positive integer. 
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LEMMA 2. Let f be a function with finite second moments, t > 0 and let 
ui have 4s th moment. Then for m > 11, 

E[(fJ-6,)/6,]“fl6^= O(mP”“), E[(6^-6,)/6,]“f=O(m-“‘2). (3.10) 

Routine computation based on well-known formulae for second 
moments of quadratic forms in normal variables shows that 

E2(yi.-y..)2ef.=~a,(nr-- l)/mn+2of[(m- l)/mn]” 

+a,[(m-2)oi+o.]/mn2. (3.11) 

This expectation is bounded as a function m. Therefore, assuming finite 
fourth-order moments for the vector ~7 = (a,, . . . . cm)‘, the functions 
f= (y,. -y..) ei.a. and g = a! + 2 xi of/(n - 1)m’ satisfy the assumptions 
made in Lemma 2. Using (3.9) in (3.8) it follows from (3.10) that 

EJ,=2E a.x(y,.-y..)e,. 
II i 1 [1+(6-6,)2/6:]/m6,+O(mP3’2) (3.12) 

and 

E$,=(m-1)E o!+2xaf/(n-l)m2 
[ I 1 

x [l + (s^- 6,)2/6:]/mn6, + O(m-3”). (3.13) 

Denote the expectations on the right-hand side of (3.12) and (3.13) by E$, * 
and Ed2., respectively. 

3.2.3. Conditional Expectation Given 5 = (a,, . . . . om)’ 

It remains to evaluate Ed,, and E#,,. We evaluate these expectations by 
first evaluating the conditional expectation, E,, given d = (a,, . . . . gm)‘. To 
evaluate E,q5,, we need (see Section 6.2 for details): 

c (y,. -y..)e,. = n-‘(m - 1)a. 1 (3.14) 

x(y,.--y..)e,.6^ =n-’ 1 [ (m-1)a.6,+2~6,,oi/m i 1 
+ O(m-‘) (3.15) 

(y,.-y..) ei.i2 =nP1 1 [ (m + 1) 0.6: + 2s2(6”)a. + 46, C Gl,o,/m 
I 1 

+ O(m-‘). (3.16) 
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Here s” = (6 ,,, . . . . ~3,~)‘~ ~3,~ = T + aJn, 6, = rr-’ xi 6,,, and 
rn-’ xi (d,,-~!?~)~. U sing the above expressions in (3.12), we obtain 

E,&*= -2Cr.(mn6,)) (m+ 1)0.-2(m~,)-‘~6,,a,+2s~(6”)cJ/6f 
I I 

+ U(nc2). (3.17) 

Turning to the evaluation of E,&,, it follows from (3.13) that 

where 

L i 

E*(S-4)z=2(m- 1) 
r 

2 
1 

(1+2/m)Cqi+: 
1 1 

Hence, neglecting terms of order less than m-‘, we obtain 

E,42,=(nh,)P1 a5+2Ca:/(n-l)m2-ot/m+20ZC6:,/m’6: 
1 i I 1 

+ u(m-3’2). (3.18) 

We can now write, using (3.17) and (3.18), 

&(#,,-f,&.)=nd,1{-(6,-T)2+d[(3+2/(n-1))(6,-T)2 

+ 2s2(s”)(n(n- 1))’ - (z/S,)Q]} + O(m-3’2). (3.19) 

In arriving at (3.19), we used the following identities: 

m-‘~bf,=S2(6)+6~, m~‘n~‘Ca:=s2(6”)+(6,-~)2, 
i 

n-‘a.= (6, -T), m ~‘n-‘~B,i~,=~2(~)+8,(61-r). 

3.2.4. Expectation over 5 

Substituting (3.19) in (3.7), it remains to evaluate the expectation over 6 
to arrive at a second-order approximation to MSE of the EBLUP. 
Expressing E(o./n) = p/n = E(6, - t), the formula (3.7) may be written as 

E(~i-~i)2=E[z(l-r/6l)+m~16;1{(3+2/(n-1))(6,-t)2/6’ 

+2s2(8)[(n/(n- l))-(t/6’)‘]}] +O(mp3”). (3.20) 
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Note that all terms on the right-hand side of (3.20) are nonnegative, since 
a,-z>O and n/(n-l)>(r/~5,)~. 

Now an approximation to the leading term, 1 - sE6;‘, follows by 
expanding 8;’ as 

S,‘=S~‘[1-(6,-6)/6+(6,-6)‘/6”]-61’(6,-S)3/63, (3.21) 

where 6 = Ed, = r + P/n. Since 6, > t, the expectation of the remainder term 
in (3.21) is bounded by a constant times E(6, --c?)~ which is of order 
O(mP3’2), noting that 6, - 6 = n- ‘(c. - /I) and that the cri are i.i.d. random 
variables with Ea, = /?. Hence 

and 

rE(l-r/d,)=r[j-- 7cc/nrn62]/n6+O(m~3'2). (3.22) 

Unfortunately the approximation (3.22) is not always positive, although 
the left-hand side of (3.22) is a nonnegative quantity. Therefore, in case a 
negative value is obtained, zero or the absolute value will serve as 
good approximation. A simple sufficient condition for fi- tulnmLi’> 0 is 
m/?‘- c1> 0 which we can easily take as an assumption, since our 
approximation is restricted to large m anyway. But note that some special 
distributions for 5, giving large weight to small error variances and still 
having large expectations due to large tails, will not satisfy this assumption 
for any m. 

Turning now to the O(m - ‘) terms in (3.20) we use the identity 

m ./Is”) (6, -6) 6 
-i-=7 l---- 

(3.23) 
1 [ 6 6, 1 

for_any functionfof 8= (X,,, . . . . ~5~~)‘. Assuming finite second moments for 
f(S), an application of Holder’s inequality to the remainder term of (3.23) 
gives 

Ef($)/d, = Ef(g)/6 + O(m-I/‘). (3.24) 

It follows from (3.24) that 

E(6,-z)2/6,=(6-r)2/6+O(m~“‘) 

and 

(3.25) 

Es’(g)/d, = a/h2 + O(mp”2). (3.26 
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Finally, it follows from (3.23) that 

3 

=f(&V[l-3(6, -S)/S, +3(6, -6)2/+(6, -s)‘/s:]. (3.27) 

Using Holder’s inequality, it follows from (3.26) that the expectations of all 
but the first term are O(m -I’*) or less. Hence, 

Es2(6)/S: = c(/d3n2 + O(m-“‘). (3.28) 

Using (3.22), (3.25), (3.26), and (3.28) in (3.20), we obtain the second- 
order approximation to MSE of the EBLUP as 

E(ji, - pi)’ = z/J/n6 - T2crlmn2b3 + j3’/mbn2 

+ 2(mSn2)~‘[n(~* + ct)/(n- l)-ar2/d2] + O(mp3j2). (3.29) 

The first and the third terms on the right-hand side of (3.29) form the MSE 
of the BLUP, while the second and the fourth terms represent the change 
of MSE due to estimating the parameters j? and 6 in the BLUP. For the 
special case of equal error variances, i.e., o! = 0, (3.29) reduces to the 
approximation derived by Prasad and Rao [3]. 

4. AN APPROXIMATELY UNBIASED ESTIMATOR OF MSE 

Looking at the expression (3.5) for the MSE of fii, we see that 
(/?- #1 + d2)/n is an unbiased estimator of MSE, provided that e,. is 
known. Therefore, the estimation problem reduces to estimating ei. and 
then evaluating the resulting bias. A natural estimator of ei. is 

d,.=y,.-@i=E(y,.-y..). (4.1) 

Substituting this estimator in the formula for dl, to define dl, we obtain 
a preliminary estimator of MSE as 

mse,k) = (B - iI + d2)/n = (P - d2)/n. (4.2) 

Its bias is given by 

B = E mse,(fi,) - MSE (pi) = E(4, - 24,)/n. 



ESTIMATION OF MSE OF EBLUP 9 

It remains to find an approximation to the estimator for B. Now noting 
that Eqb, = EE,$, * and Ed, = EE,q&, and using the expressions (3.17) and 
(3.18) for E,d,, and Es&,, we obtain 

E,(b,-2&)=4(mn)-’ a.+s2(8)a./6:-C6,,o,/m6, 

+‘O(mmm3i’). 

1 

The above expression can be further simplified as follows by using the 
identities below (3.19): 

E2(q3, - 24,) = -4nm-’ {s2(C7)(S, -t)/6:+s2(g)/(n- 1)6, 

+n(6, -z)‘/(n- 1)6,}. (4.3 1 

Now using the expectations (3.25) and (3.26) in (4.3) and noting that 

Es2(6”)/d2 = a/(&)‘+ O(m-I’*) 1 9 (4.4) 

we obtain 

B=K’E(d,-24,) 

= -4(mn)p’{/?2/(n- l)d+/?a/r~~6~+a/n(n- 1)6} +O(mp312). (4.5) 

Hence, the order of the bias term, B, is O(m-‘). This suggests that we can 
correct the preliminary estimator (4.2) by estimating B, and the resulting 
estimator will be correct to terms of order rn-‘. 

We now turn to the estimation of bias B given by (4.5). To construct an 
estimator of f12/S, we observe that 

a? + 2 1 cf/m’(n - 1) 1 6,’ [ 1 + 2 1 6fi/m26: + O(m-3’2), 
I I 

1 

(4.6) 

using (3.6) and 

E,&’ = SF’ 1 + 2 c 6fi/m26T + O(me3’*). 
I > 

It now follows from (4.6) that 

E(p/~??)=j?~/d+ O(m-‘). (4.7) 
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Turning to the estimation of cr/6, we consider the expression m-i xi Bf 
with Bi defined in (2.3) whose expectation is 

Em~‘~c?~=E(n+1)(n-1)~‘~a~/m=(n+1)(n-1)~’(~*+~), (4.8) 

noting that (n- l)a,:‘~?;=a~-’ ‘&(y,-yi.)’ is a x’ variable with n-l 
degrees of freedom, given r? = (a,, . . . . (T,,)‘. It follows from (4.8) that 

(4.9) 

is an estimator for a with bias of order m ~ ‘. In fact, 

= En*s’($)/h, + O(mp”*) 

= a/6 + O(m p”2). (4.10) 

The last step follows from (3.26). It follows from (4.10) that oi/6^ estimates 
cr/6 to the desired order of approximation. 

FinalLy, to estimate c$/S2 we try cij?/$*. Routine computation, using 
cov (oi, 8) = O(m - I ), yields 

Eoifi/cf2= Eo.(~a~jm-~af)/6~+O(m~‘/*) 

= En3s2(8)(6, -5)/c?: + O(mp”*) 

= cij3Jii’ + O(m ~ ‘I>). (4.11) 

The last step follows from (3.26) and (4.4). 
It now follows from (4.5), (4.7), (4.10), and (4.11) that an estimator of 

B to the desired order of approximation is given by 

B= -4[jC?/niY+np2/(n- l)+oi/(n- l)]/mn2i, (4.12) 

i.e., EB= B+ O(mw3j2). An estimator of MSE correct to terms of order 
m ~ i is now obtained as 

mse(&) = mse,(fi,) -B 

=E(t^+Ijlnm)+4(mn28)-’ 

x [(i’+(n-l))‘)(oi+jP)+Q/?*SP1], (4.13) 

where f = s  ̂- b/n and oi and t are given by (4.9) and (2.4), respectively. 
Note that the first term in (4.13) is the naive estimator of MSE obtained 
by ignoring the uncertainty in the estimators 5 and fl and using the MSE 
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of the BLUP as an approximation to the true MSE of the EBLUP. This 
naive estimator, 

mseN(fii) = ?(? + &nm), (4.14) 

could lead to a serious understatement; see Section 5. 

5. SIMULATION STUDY 

We performed a small simulation study to investigate the finite sample 
accuracy of the second-order MSE approximation (3.29), denoted by 
MSE,,(,k,), and the relative bias of mse(&), the approximately unbiased 
estimator of MSE of the EBLUP bi. To this end, we employed the 
following parameter values: p = 0, T = 1 (without loss of generality), /I = 5, 
m = 30, and two values of n: 3 and 10. Using these parameter values, we 
generated 10,000 independent data sets { yi.,di; i = 1, . . . . 30) as follows: 

Step 1. For each set, generate or, . . . . CT~~ from a x2 distribution with 
fl= 5 degrees of freedom (o! = 2/3 = 10 in this case). 

Step 2. For each set generate p, from N(0, 1) and e,. from N(0, o,/n), 
i= 1, . . . . 30. Let yi. = pi+ e,., i= 1, . . . . 30. Further generate ai from a x’ 
distribution with n - 1 degrees of freedom, and let 6, = a,g,/(n - I), 
i= 1, . ..) 30. All the variables were generated independently from the 
specified distributions. 

Without loss of generality, we consider the estimation of the true MSE of 
fi,, since the sample size, n, is the same for all the m groups. The EBLUP 
fi,, mse(ji,), and the naive estimator of MSE, mse,(F,), were computed 
from each data set {y;., 6,; i= 1, . . . . 30). Simulated values of MSE(fi,), the 
true MSE of @,, Emse(c,), and Emse,&,) wer then computed from the 
10,000 values of @, , mse(fi, ), and mseN(F, ) so generated. These values, 
along with the relative bias of mse(,C, ) and mse,&i,), as estimators of the 
true MSE of fil, are reported in Table I. We also calculated the values of 
the second-order MSE approximation and the MSE of the BLUP ii,, using 
the specified parameter values. These values are also reported in Table I. 

TABLE I 

Simulated values of MSE(&,), Emse(p,), Emse,(@,) and percent relative biases of 
mse(fi,) and mse,(fi,). 

n MSW,) MSEAP,) MSE,(@,) Emseth,) EmseN RB RBN 

3 0.805 0.800 0.660 0.833 0.527 0.034 -0.346 
10 0.355 0.353 0.339 0.356 0.324 0.002 -0.088 

Note. RR= [Emse(fi,)-MSE(fi,)]/MSE(fi,), RE,= [Emse,&i,)-MSE(P,)]/MSE(P,). 
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It is clear from Table I that the second-order MSE approximation is 
very accurate ever for small n( =3): MSE,(&,) =0.800 compared to 
MSE(fi,) =0.805. On the other hand, the use of MSE of the BLUP, 
denoted by MSE,,@,), as an approximation to the true MSE of the 
EBLUP, leads to serious understatement for n = 3 : MSE,(fi,) = 0.660 
compared to MSE(ji,) =0.805. The understatement, however, is less 
serious for n = 10: MSE,(fi,) = 0.339 compared to MSE(fi,) = 0.355. 

Turning to the relative bias of the estimators of MSE, we see from 
Table I that the relative bias of mse@, ) is very small even for n = 3: 3.4%. 
On the other hand, the naive estimator, mse,&i,), leads to serious 
underestimation for n = 3, since its relative bias is - 34.6 %. The 
underestimation, however, is less serious for n = 10, since the relative bias 
is reduced to - 9 %. 

Our simulation study has confirmed the accuracy of the second-order 
MSE approximation and the approximate unbiasedness of the estimator of 
MSE, for large m. 

6. PROOFS 

6.1. Proofs of Lemmas 1 and 2 

Proof of Lemma 1. The estimator 8 may be written in matrix form as 

s^ = z’Mz/(m - 1 ), 

where z = (y, . , . . . . y,.)’ and M= Z, - l,lk/m with Z, and 1, denoting the 
identity matrix of order m and the vector of m unit elements, respectively. 
Further, we can write M = BB’, where B is a m x (m - 1) matrix such that 
B’B=Z,,-,. We form the random variable X=z’B(B’DB)-‘B’z with 
D = Diag,(r + o,/n) which has a x2 distribution on m - 1 degrees of 
freedom. If the symbols a,,(A) and LX,,,~~(A) denote the smallest and 
largest eigenvalues of a matrix A, then 

a,,,[(B’DB)-‘I< [u,,,(D)]-‘<t-l. 

Therefore, X < z’BB’z/z = z’A4zfz and 

8-” = [(m - l)/z’Mzlk < [(m - l)/~]~ Xpk. 

Also since X is x2 variable with m - 1 degrees of freedom, 

EX-k= 2-k fi (!!I$- i)-‘, 
i=l 
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provided m > 2k + 1. Therefore, 

Proof of Lemma 2. By Holder’s inequality, we have 

E[($-6,)/6,]“fis^<(Ef’)“’ [E(&-6,)4”c5;4S]1’4 (E8-4)“4. (6.1) 

The first term on the right-hand side of (6.1) is bounded by assumption, 
while the last term is bounded by Lemma I if m > 17. It remains to show 
that 

E(6^-6,)4”6;4”=O(m~2”). (6.2) 

We first investigate the conditional expectation given d = (a,, . . . . om)‘. 
Using the result iv(c), page 39 in Rao and Kleffe [4], the conditional 
expectation satisfies 

where M and D are as defined in the proof of Lemma 1, tr denotes the 
trace operator, and K is a constant independent of m. Also, by using M < Z, 

tr MDBD < f (z + r~Jn)~, 
;= I 

so that by Minkovski’s inequality, 

E2(6-6,)4’6;4~~(m-1)4’ K {F, (E(y)“‘)-“)“. 

The result (6.2) now follows from 

since the gi have finite 4sth moments. 

6.2. Derivation of (3.15) and (3.16) 

6.2.1. Computation of E, xi ( yi. -y..) ei.S 

We first express (y,. - y..), e,., and 8 as linear and quadratic forms in the 
random vectors ZJ = (pl, ..,, p,)’ and e = (e,. , . . . . e, .)‘; we obtain 

1 (yi.-y..)e,.=e’M(p+e), 8= (p + e)’ M(p + e)/(m - 1). 

683/43/l-2 
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Using now the independence of p and e and A4Ep = 0, we obtain 

&I (yi.-+v..)ei.6^=EJe’Me~‘M~+2(e’M~)2+ (e’A4e)2]/(m- 1). 

Next noting that p and e have covariance matrices tZ, and Diagi(ai/n), 
respectively, and using general results on moments of the above forms in 
normal variables (see [4, p. 53]), we obtain 

E2x(yi.-y..)e,.S^= (m-l)‘a.6,+2~a,6,, n(m-l)+O(m-‘) 
! I Ii 

which is equivalent to the expression (3.15). 

6.2.2. Computation of E, xi ( yi. -y..) ei.i2 

Expressing the required expectation in terms of vectors p and e yields 

E2x (yi.-y..)ei.6 ‘̂=E2(p+e)‘Me{(p’Mp)2+4~’Mpp’Me 

+ 2p’Mpe’Me + 4(p’Me)’ 

+ 4p’Mee’Me + (e’Me)2}/(m - 1 )2. 

This expression simplifies because of the symmetry property of the multi- 
variate normal distribution. Noting that the expectations of all order-3 
products vanish, we arrive at 

E2x (yi.-y..)e,.82=E2{~‘A4e[4~‘M,u~‘Me+4~’Mee’Me] 
I 

+ e’Me[(p’Mp)2 + 2p’Mpe’Me 

+4(p’Me)2 + (e’Me)2}/(m- 1)2. 

Computing term by term and neglecting terms of order less than m ~ ‘ leads 
to 

E,z(y,.-y..)e,.G^‘=c’ (m+1)a.6:+46,C6,,ai/m 
I I 

+ 2nP2a. 
(i 

Caf/(m-1)-c? 

an expression equivalent to (3.16). 
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