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We develop mathematical models for high-dimensional binary distributions. and
apply them to the study of smoothing methods for sparse binary data. Specifically,
we treat the kernel-type estimator developed by Aitchison and Aitken (Biometrika
63 (1976), 413-420). Our analysis is of an asymptotic nature. It permits a concise
account of the way in which data dimension. data sparseness, and distribution
smoothness interact to determine the over-all performance of smoothing methods.
Previous work on this problem has been hampered by the requirement that the
data dimension be fixed. Our approach allows dimension to increase with sample
size. so that the theoretical model may accurately reflect the situations encountered
in practice; e.g., approximately 20 dimensions and 40 data points. We compare the
performance of kernel estimators with that of the cell frequency estimator, and
describe the effectiveness of cross-validation. ¢ 1993 Academic Press. Inc

1. INTRODUCTION

The problem of estimating cell probabilities for multivariate, binary data
is an important one, with applications in a variety of problems where data
are recorded only as yes/no, or zero/one, responses. When the dimension
is large, data may be distributed quite sparsely among cells, and cells with
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no data may arise. In such cases it can be advantageous to make use of
relationships among probabilities in neighbouring cells. If cells which are
“close™ in some sense have probabilities which are also close, then data
from neighbouring cells can be employed to help estimate cell probabilities.

The kernel esimator introduced by Aitchison and Aitken [ 1] is designed
to make use of just such neighbourhood information. It incorporates a
smoothing parameter, designated by { in the present paper, which may be
chosen empirically to optimise the extent to which information from
neighbouring cells can be employed to estimate cell probabilities. The con-
text of Aitchison and Aitken’s estimator is that of a relatively high number
of dimensions, with relatively few data per cell. For example, the binary
data sets to which Aitchison and Aitken applied their estimator were of
m =17 dimensions, with sample sizes n =37 and n =40. Thus, the number
of data per cell was at most 12" =40/,2" x3x 10 *. Estimation in such
high-dimensional, sparse contexts is quite feasible, provided the underlying
probability distribution is sufficiently smooth.

Theoretical accounts of the performance of Aitchison and Aitken's
estimator have hitherto been restricted to the case of a fixed value of m,
with sample size increasing (e.g.. Bowman [3], Hall [9]). In this setting
the average number of data values per cell diverges to + x, and so the
context of Aitchison and Aitken’s estimator is not preserved. The aim of
the present paper is to develop an entirely different mathematical model for
describing the performance of Aitchison and Aitken's estimator, reflecting
the high-dimensional, multivariate character of the problem, and describing
the way in which distribution smoothness may be used to overcome
difficulties caused by data sparseness.

We describe smoothness by an adjustable parameter, J§, with the
property that smoothness increases as & —0; we allow the number of
dimensions, m, to increase with sample size, #; and we permit §, m, and n
to vary simultaneously. Tractable theoretical models for cell probabilities
are developed within this framework, and the performance of Aitchison
and Aitken’s estimator is studied under those models. In particular, our
models permit »/2” to decrease to zero. We show theoretically that,
depending on the smoothness of the underlying distribution, Aitchison and
Aitken’s estimator can produce substantial improvements over the cell
frequency estimator, which estimates cell probabilities as the observed data
frequencies.

Our models allow us to identify concisely the way in which dimension m,
data sparseness (represented by n/2”), and distribution smoothness
(represented by & ') affect performance. We discuss three distinct cases:
where there is a significant improvement to be gained by using Aitchison
and Aitken’s estimator, or where the amount of improvement is marginal,
or where there is no possibility of improvement in a first-order sense. We
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investigate these three different situations using both isotropic and
anisotropic models for cell probabilities, ensuring that the models cover a
broad range of distributions, and we show that cross-validation can be
used to determine empirically the optimal smoothing parameter even in
contexts of extreme data sparseness (i.c., small values of n/2").

In problems where dimension is large, individual cell probabilities are
usually small, and consistency of estimation of those probabilities is not
usually the central issue. Instead, one is typically interested in a global
measure of performance, such as mean summed squared error,

MSSE=Y E(j,— p,).

Here, p; denotes the probability that an arbitrary data value falls into cell
i, the cell index ie {0, 1}” standing for the outcomes of the m underlying
binary variables; g, represents Aitchison and Aitken’s estimator of p,; and
enumeration is taken over all 2” cells. An alternative measure of fidelity is
mean Kullback-Leibler loss,

MKL =; p.E {log (%)}

Indeed, provided the function f in our mathematical model for cell
probabilities (see (2.5} and (2.6) below) is bounded away from zero, it may
be shown using the techniques of Section 5 that first-order properties of
MKL are asymptotically equivalent to those of a particular form of
weighted mean summed squared error,

WMSSE=1Y E(p,—p)'p, "

Furthermore, Kullback-Leibler cross-validation leads to asymptotic
minimisation of mean Kullback-Leibler loss, for a wide range of values of
dimension, data sparseness and distribution smoothness. We confine atten-
tion to verifying this result in the case of squared-error cross-validation and
squared-error loss.

Section 2 introduces our models for the cell probabilities p,, and
describes mean squared error properties of Aitchison and Aitken’s
estimator under those models. Our main results there identify the roles
played by dimension, data sparseness, and smoothness in determining the
relative merits of the kernel estimator and the cell frequency estimator.
Section 3 shows that minimising loss, minimising risk, and minimising the
cross-validation criterion are all asymptotically equivalent, to first order.
Section 4 demonstrates that the models of Section 2, though looking at first
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sight rather restrictive, indeed represent any finite-dimensional distribution.
All proofs are deferred to the Appendix.

Related work on the smoothing of sparse multinomial models includes
that of Sutherland er af. [15], Bishop et al. [2], [Chap. 12], Ighodaro
and Santner [11], Simonoff [13,14], Burman [5,6], and Hall and
Titterington [ 10]. However, none of the probability models in these papers
admits the case of multivariate binary data. Hall and Titterington [10] do
allow a degree of sparseness in their one-dimensional model, but neighbour
relationships among cells, inherent to that work, are all strictly one-dimen-
sional. While we employ univariate distributions as part of our m-variate
model, the neighbour relationships in that model are intrinsically m-variate.
In particular, our formula (2.6), in Section 2 below, cannot be written in
the form of Hall and Titterington’s [ 10] formula (3.1), since in our model
there is no natural linear ordering of the cells. Of more incidental interest
15 an observation made by Titterington [16] that a special form of
Aitchison and Aitken’s estimator falls into a class considered by Sutherland
et al. [I5] It would be possible to develop versions of our results for
estimators in that class.

There is an extensive literature on smoothing methods for categorical
data, which has been surveyed by Titterington [16], and Santner and
Duffy [12]. The work of Brown and Rundall [4] on smoothing in two-
dimensional contingency tables should also be mentioned. Grund [7, 8]
has developed a detailed theoretical account of smoothing for Aitchison
and Aitken’s estimator, in the case of fixed dimension.

2. PROPERTIES OF MEAN SQUARED ERROR

2.1. Summary

Subsection 2.2 introduces mathematical models for cell probabilities in
high-dimensional binary distributions. Two different cases are treated in
detail, representing isotropic and anisotropic distributions respectively.
Aitchison and Aitken’s [1] kernel estimator is defined in Subsection 2.3,
and 1ts mean squared error properties are described in Subsection 2.4.
There it is shown that the extent to which the kernel estimator improves
on the cell frequency estimator depends in a monotone increasing way on
smoothness of the binary probability distribution and on sparseness of the
data.

2.2. Moadels for Cell Probabilities

The sample space of possible data values is the set .# of all m-vectors
i={iy. . i,)", where each i, may be either 0 or 1. Thus, .# contains 2"
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elements. Given an m-vector v = (v, ..., v,,}', define [v| =3 [v,|. f v =i—|,
where i= (i, ... i,)" and i’ = (i|, .., i},) are elements of .#, then |v| equals
the number of indices j such that i,/ If }i—{| =r then we say that {' is
an rth order neighbour of i. Data are drawn from a distribution p on .#,
with probability p, ascribed to cell i

Our mathematical model for the p’s may be motivated as follows. To
ensure tractability, we wish to be able to adjust the p’s through a fixed
number of parameters no matter how large the number of dimensions. This
indicates that we should define the p/’s in terms of low-dimensional
functions, for example

ie?, (2.1)

pi=Cf(Ti, ..., o),

where 1> 1 is fixed; f is a nonnegative, f-variate function; w, .., w, are
m-vectors; and C is chosen to ensure that 3 p,=1.

Several modifications of the prescription (2.1) are in order. First, there
are no important qualitative or quantitative differences between the cases
tr=1and ¢>1. Taking r=1 in (2.1) greatly simplifies notation, and so we
adopt this convention, defining

p.=Cfl'i), e, (2.2)

Second, it is of interest to incorporate an additional parameter into (2.2),
so as to govern the smoothness of the binary distribution. Perhaps the
simplest way of doing this is to define

p.=Cldw™), e, (2.3)

where 4 20 can be varied to adjust the distance between p’s for neigh-
bouring i's. The smaller the value of 4, the smoother the probability
distribution; this suggests defining smoothness as & .

For the sake of definiteness we take w in (2.3) to be an m-vector of 1’s,
w=1=(1,..,1)T. Other choices give rise to distributions with similar
properties, but require the elements of w to be carefully defined for each m.
This is feasible, but cumbersome. Taking w =1 in (2.3} is equivalent to
defining

pi=Cf(0 i]) (2.4)

Models such as (2.4) are anisotropic in character; they require all the
cell probabilities to be the same function of a single projection of the cell
index. Many binary data problems are intrinsically isotropic, with the rela-
tionship between p, and p,. depending principally on some measure of the
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separation of i and /', without regard to a specific direction. An isotropic
version of (2.4} is given by

p,=ClQ| ‘Lf(d(uTg')dm. (2.5)

where Q denotes the set of all unit vectors w (i.e., the m-dimensional sphere
of unit radius, centered at the origin) and ||| equals the surface content
of 2. Of course, the normalising constants C in (2.3)-(2.5) are generally
quite different.

The probability distribution determined by the p/s, defined by (2.4),
is centered in a corner of the 2x --- x2 “cube™ .#. The center may be
effectively translated to the centroid of the cube by re-defining

p,=Cf{dil —im)}. (2.6)

Asymptotic properties of estimators based on the distributions given by
(2.4) and (2.6) are quite similar, and may be established by identical
arguments. For the sake of brevity, our asymptotic analysis will focus on
the models (2.5) and (2.6). We show that the smoothness, § ', has greater
impact for the isotropic distribution (2.5) than it does in the anisotropic
case (2.6).

2.3. Definition of Estimator

Let Xy, ... X, denote a random sample drawn from the distribution p.
Thus, each X, is an m-vector of 0's and I's. Aitchison and Aitken’s
estimator is given by

[‘)'=n lz 0])(‘, 1|(1_0)m X, il’

i=1

where 0 e [0,1] is the smoothing parameter (not be confused with the
smoothness of the distribution p). Taking 6 — 0 produces the cell frequency
estimator,

pi=n 'Y I(X,=i)=n '(number of X /s in cell i).

J—1

Here, I(-) denotes the indicator function. Taking 0 =1 gives the other
extreme; 1., p,=2 " for each i. We confine attention to cases where the
optimal smoothing parameter, 0, converges to zero as m and n diverge.
Indeed, it turns out that the condition m0;, —0 is necessary and sufficient
for obtaining the variance formulae which we give.



HIGH-DIMENSIONAL BINARY DATA 327

If we define N,, to equal the number of rth order neighbours of cell §, i.c.,

N’irz Z I(IX/—!l=r)'
=1
then we may give the following alternative, equivalent definitions of p,
and p,:
ﬁizn l Z N”Hr(l_g)m " ﬁA:’I lN:()'

r=40
2.4. Properties of Mean Squared Error

As indicated in Subsection 2.3, the probabilities p, are governed by two
variable parameters » and J. Each of these may be regarded as a function
of n. Thus, conditions such as mé?—0 in the theory below may be
interpreted as m(n) 3(n)’ — 0 as n — . According to this convention, the
constant C in (2.5) and (2.6) is a function of n.

In much of our work we assume the following regularity conditions.

(a) The probabilities p, are defined by (2.6), for Theorems 2.1 and
2.2, or by (2.5), for Theorems 2.3 and 2.4.

(b) Either (bl) f" exists and 1s bounded on (—x, ), f=0,
f(0)#0, and md> — 0; or (b2) f is a positive semi-definite quadratic func-
tion, say f(x)=a,+a,x+a,x* with aya,#0, and either mé*> -0, or
md° -1 (0<l< o), or md> — x.

Mean summed squared error, MSSE=Y E(p,— p,)’, is a measure of the
performance of p. In the case =0, where p=p (the cell proportion
estimator), MSSFE admits the formula

MSSE=Y E(p,—p)V=n 'Y p(1—p)=n "1+o(l)}, (27)

assuming only that max p, — 0 as m increases. Thus, any estimator whose
mean summed squared error decreases at a faster rate than n ' improves
on the performance of § by an order of magnitude.

Theorem 2.1 below provides simplified asymptotic formulae for MSSE.
In those expressions, C denotes the normalizing constant in (2.6).
Theorem 2.2 refines those formulae and shows that if the distribution p is
sufficiently smooth then, for an appropriate choice of 0, the kernel
estimator p can indeed provide a significant improvement over the cell
frequency estimator.

THEOREM 2.1.  Let the p;'s be given by (2.6), and assume that m — x and
0<d<l as n— .
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(I) If (b1) holds then
{Z E(p,~ p,f} (C2m FOFOF +n e MU T 1L R(0) (28)

where, for anv sequence &= ¢e(n) >0 satisfying £ =o(m *),

sup |R,(0)] -0 (2.9)
Qe
as n— oC.

(I If filx)=ag+a,x+ua,X? is a positive semi-definite quadratic
Sfunction, and f(0) >0, then

{Z E(p,— p,)z} LC2"m 320 ay +2m &2 {(1 — D) ay} )+ te ) !
=1+ R, (8), (2.10)
where (2.9) holds for any positive sequence ¢ =o(m "?).

Given 0 < 4, < o0, define x, to be the solution of the equation x,e™ = 4,,
and put g=(1+13xy)e “<lI. Let D(O)=3 E(p,— p,)>.

THEOREM 2.2. Let the ps be given by (2.6). Assume condition (b), and
that m— o and 0<d3<1. If mé*—=0, define p=f(0) *f'(0) and
A=27" " "m(pnd®y ' if mét -1 with 0<l <o, define p=(ay,+ia,l)
(@l +2a3l)l and 2=2"""'m’(pn) ', and if mé* — o, define p=16 and
A=2"""m(pn) . Assume that either ;. — 0, or /. — iy with 0 < i, < x, or
A— o, and put

0 i A0
0,=< 2m) 'x, if Ay (2.11)
(2m) '(log A—loglog 4) iff A .

In the case 4 — >, assume in addition that

m ¥ log(2"/né?) — 0. (2.12)
Then
n ! if A—-0
lnfD(()}ND(G())"’ n 1([ lf A."*/‘;() (213)
)

n Y(24) ‘(log 4)? if i- o

The following remarks elucidate and expand on Theorems 2.1 and 2.2.
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Remark 2.1. In the case where md* — ! and 0</< %, the constant C
appearing in (2.8) and (2.10) is asymptotic to a multiple of 2 . When
mé? — x it is asymptotic to a multiple of (md*) '2 .

Remark 22. In the terms forming the denominators on the left-hand
sides of (2.8) and (2.10), the quantity n 'e > represents the contribution
from variance to MSSE. That is,

Yovar(p)~n e (2.14)

The other quantities represent the squared bias contribution. The condition
mO* — 0 is necessary and sufficient for formula (2.14) to hold. Indeed, if
mb* -k, where 0 <k <, then the right-hand side of (2.14) must be
multiplied by a constant factor ¢(k)> 1; and if m0* —» o, then Y var( ;) is
an order of magnitude larger than n 'e¢ . This behaviour will be
elucidated at the end of Part (ii) of our proof of Theorems 2.1 and 2.2,
in the Appendix. Additional results, dealing with the case where mf® is
bounded away from zero, may be derived by similar methods but are not

given here.

Remark 2.3. Condition (2.12) is necessary and sufficient to ensure the
vital condition m6; — 0. 1t is needed only when 4 — o, since the condition
mo; — 0 is trivially satisfied if £ is bounded.

It may be shown by an argument based on convexity that there is a
unique 6,,, which minimises D(8). Our proof of Theorem 2.2 will show that
if (2.12) holds (for 4 — =), then there exists a local minimum of D(6} at
a point 0 which satisfies m0* — 0. This must, by uniqueness, be the point
which produces the global minimum.

Remark 2.4. Theorem 2.2 describes the behaviour of min D(f) in a
total of nine different cases: three depending on asymptotic properties of
md?, by three for the properties of i

Remark 2.5. The values of 8, given in (2.11) are of course not identical
to the optimal &’s which minimise MSSE. Rather, they denote relatively
simple quantities which asymptotically minimise MSSE, to first order. In
the case where 4 — o, the asymptotic formula D(8,)~n '(24) '(log 4)*
fails if the “log log 4" term is deleted from the definition 0, = (2m) ™ '(log 4 —
log log 2). This makes it clear that it is not sufficient to have simply
eopl/()o - l

Remark 2.6. The quantity Z represents a particular combination of the
notion of smoothness of the probability distribution p, and sparseness of
the distribution of data among cells. That combination turns out to be
crucial in determining the relative performances of the kernel estimator p
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and the cell frequency estimator p. Note that /4 is an increasing function of
the smoothness of p (represented by & ') and of the sparseness of the data
(represented by 2™/n). Furthermore, since mean summed squared error {or
the cell frequency estimator is asymptotic to n ' (see (2.7)), then we may
deduce from (2.13) that the extent of improvement which j offers over p
increases with increasing A. Therefore, the performance of p relative to p is
an increasing function of both distribution smoothness and data sparseness.
This conclusion is not unexpected, but it is particularly satisfying to be able
to verify it rigorously within the confines of a mathematical model. The
precise way in which 4, and hence the performance of p relative to p,
depends on distribution smoothness and data sparseness was not expected,
and seems difficult to explain intuitively.

We now state versions of Theorems 2.1 and 2.2 for the case where the
isotropic model (2.5) is used to define the p;’s. For the sake of brevity our
proof will be given in the case of quadratic f, and so we state the results
only for that context. Theorem 2.4, the analogue of Theorem 2.2 in the case
of isotropy, is particularly interesting. Note that we do not any longer need
to isolate scparate cases depending on the behaviour of mdé?, and that the
definition of / is different from what it was for Theorem 2.2, but that the
form of the result is unchanged.

Recall that D(0)y=Y E(p,— p)~

THEOREM 2.3. Let the p's be given by (2.5). Assume that f(x)=
ag+a,x + a,x? is a positive semi-definite quadratic function with f(0)>0,
and that 0 <3 <1 and m — x. Then

{Z E(p,— p,)z} (C2"m " 8tas+n te MY T=14 R(0), (2.15)
where R,(0) satisfies (2.9) for anv sequence & =e(n)=o(m 7).

THEOREM 24. Let [ and the p's be as in Theorem 2.3. Assume that
0<d< 1 and m—oc; define p = (ay+3d,8%) *az and A=2"""m(pnd®)
and suppose that either 3 —0, or 7 — iy with 0 <A< o, or A— oc. Let x,
and g be as in Theorem 2.2, and in the case 2 — o, assume in addition that

m T log(2mnét) — 0.

Then with 0, defined by (2.11), result (2.13) holds.

Remark 2.7. The constant C in (2.15) is identical to that in (2.5). If

0 —J,, where 0<d,< 1, then C is asymptotic to a constant multiple of
') IH.
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Remark 2.8. Comparing Theorems 2.2 and 2.4 we see that the principal
difference between the isotropic and anisotropic cases is that 4 is of a larger
order of magnitude in the former case. In view of (2.13), this means that
p can offer greater improvement over j in the case of isotropy than it can
for anisotropic distributions. Of course, the larger size of 4 is due to the
fact that bias is small under isotropy.

3. PROPERTIES OF SQUARED-ERROR CROSS-VALIDATION

Section 2 concentrated on mean summed squared error as a measure of
the performance of the kernel estimator j. In the present section we show
that to first order, summed squared error provides an asymptotically
equivalent description. That is, “loss” and “risk” are equivalent, to first
order. We also show that the cross-validatory criterion is first-order
equivalent to summed squared error, up to terms which do not depend
on the smoothing parameter #. This indicates that minimising the cross-
validation criterion is asymptotically equivalent to minimising summed
squared error, and also to minimising mean summed squared error.

For the sake of brevity we establish these relationships in a pointwise
sense for @’s. For example, we prove that if

SSE:Z (ﬁl—pi’:

denotes summed squared error, then

sup E(SSE— MSSE)(MSSE) 2-0 (3.1)

Os <

provided £ = o(m '*). Substantially longer proofs may be used to establish

related results, such as

sup |SSE— MSSE|(MSSE) ' -0

0<<e

in probability. Also for the sake of brevity, we treat only the case where f
1s positive semi-definite quadratic.

THEOREM 3.1. Let f(x)=a,+a,x+a,x* be a positive semi-definite
quadratic function with f(0) >0, and define the cell probabilities p; by either
(2.5) or (2.6), with m— o and 0 <8< 1. Let ¢ =¢(n) denote a sequence of
positive numbers satisfving e =o0(m 7). Then (3.1) holds.

Our final result is an analogue of Theorem 3.1 for the difference between
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SSE and the cross-validation criterion, CV. To introduce the latter,
observe that minimising SSE is equivalent to minimising

The first term on the right-hand side is of course known. An approximation
to the second term is given by

H
1 -~
—2n Z Py
Jo= 1
where

Pr=(n—=1) 1 3 0 =y e

k#j

is the version of pj; constructed from the (n—1)-sample obtained by
deleting X,. (Note that the value taken by X, is one of the m-variate
indices i.) Now, 3 p,p, and n 1[3,;‘»(', have the same expected values. This
suggests that

i

CV=Ccvi)=Y p>-2n 'Y p.
i1

be taken as an approximation to SSE’, and that 6 be chosen to minimise
CV. Theorem 3.2 shows that, up to terms which do not depend on 0, CV
provides a good approximation to SSE.

Define

T=Y pp=n 'Y Y plX,=i.

J=1 i

which does not depend on 0.

THEOREM 3.2, Assume the conditions of Theorem 3.1. Then

sup E(SSE—CV—-T)(MSSE) *—0

[NESUEFH

as n— L.,

A substantially longer proof may be used to show that

sup |SSE— CV—T|(MSSE) '—>0

O<ti<s
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in probability, which together with (3.1) may be employed to show that
minimising the cross-validatory criterion, in the range 0<6<e, Iis
asymptotically equivalent to minimising MSSF in the same range.

4. DISCUSSION OF THE ANISOTROPIC MODEL

At first sight, the investigated models give the impression of being rather
restrictive, as they inevitably assign equal probability to all cells with the
cell indices consisting of the same number of 0’s and 1's. In the following
we show that the results obtained under the anisotropic model really
provide us a feeling for the general behaviour of kernel estimators,
although they may seem at first sight to be confined to a subset of “nice”
parameters, likely to suit Aitchison and Aitken’s estimator.

We prove that for any probability distribution on .# we can find a 6 >0
and a function f: R — R *, such that the p,’s defined by (2.4) or (2.6) give
the same MSSE as the original distribution-—for all smoothing parameters
B € [0, 1]. Moreover, these equal-risk cell probabilities are “rougher” than
the original distribution. Thus. we decompose the space of probability dis-
tributions in equivalence classes of equal risk (independent of ), ensuring
that the anisotropic model contains reasonable representatives of each class.

In this section, each distribution on .# is described by the corresponding
cell probability vector p=(p,),. ,. with the cell indices following the
lexicographical order: and the set of all cell probability vectors is given by
L={peR”|p, =0, Y, p;=11}, with the center ¢,,=2 "(1,.., 1)".

Obviously, the equivalence classes of equal risk have to depend on the
special structure of Aitchison and Aitken’s estimator. We use particularly
the eigenvalue decomposition of the corresponding kernel matrix, provided
by Lemma 4.1. The following corollaries describe the equal risk classes,
whereas Theorem 4.1 ensures that the anisotropic model indeed covers an
outstanding representative of each class.

For the sake of brevity we denote by

”

®B;:Bl®'”®3m (4])

i=1

the Kronecker product of matrices or vectors B, .. B, and, letting
J< {1,..,m} denote an index set, we write {® [ , B,=,H} for the
Kronecker product obtained by replacing in (4.1) each of the matrices B,,
jeJ, by H.
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LemMa 4.1. The kernel estimator of Aitchison and Aitken satisfies
p = Ap, where the kernel mutrix

A= ® U0) (4.2)
FE |
is the m-fold Kronecker product of the 2 x 2-matrix U(8)= (1 —20)1 + 0117,
and where 1 is the identity matrix and V= (1, 1Y". The matrix A has (m+ 1)
distinct eigenvalues

A= (120, k=0, ..,m. (4.3)

The (7)-dimensional spuce of eigenvectors belonging to the eigenvalue iy is
spanned by the basis

Py gy =2 m3 {@ 1= h}, (4.4)
j

T Sk

where h= (1. — )T and J(kY< {1, .., m} varies over all subsets of size k.

COROLLARY 4.1.  FEach cell probability vector pe £, has a unique
representation

”m

p:‘.m+1 Z Z /fk;Jtl\ihk;/(ki‘ (45)

k=1 Jtk)
with >0 and 3,3 ) Bi yu,= 1. In the double series 3,3 ;... the inner

series is taken over all subsets of |1, ... m} which are of size k.

COROLLARY 4.2.  For each a>0, 7, .. 7, >0 the MSSE of p is constant
within the class

'(/;;1(1‘ e -I'm) = {p S r%’,, | D Saliﬁ_'/‘l‘(‘.s‘ (45) 1\‘il/?
LB = k=1 m}. (4.6)
Jtk)

independently of the smoothing parameter 8.

Remark. Formula (4.2) generalises the Kronecker product representa-
tion of Aitchison and Aitken’s estimator in Brown and Rundall [4]. The
proofs of Lemma 4.1 and the two corollaries are straightforward and are
therefore omitted.

Formula (4.5) suggests that we regard the parameter space ¥, as

m
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consisting of concentric (2" — 1)-dimensional spheres around ¢,,. The sets
of equal risk, given in (4.6), contain cuts of such spheres with hyperplanes
that are perpendicular to the eigenvector spaces defined by (4.4). Motivating
the anisotropic model, we consider in Theorem 4.1 the decomposition of
%, into classes of equal risk

"yl)n = U ’(/l‘?l( %, 71 4o .I'm) m ’(,jn (47 )

LR

and show that each class is appropriately represented by the model.

THEOREM 4.1. (1} For euch x>0, 7, ... 7, >0 and 0 >0 we can find a
Junction f- R — R ™, such that the cell probability vector p defined by (2.4) or
(2.6) is in S0 71y s Yo )

(I1)  The vector p is the roughest distribution in %, (% 71y .o )
maximising the average difference of probabilities of first-order neighbour
cells.

Remark. Theorem 4.1 shows. together with (4.7), that to any cell
probability vector pe.¥, there corresponds a vector belonging to the
anisotropic model, in such a way that Aitchison and Aitken’s kernel
estimator has for all fe [0, 1] the same MSSE under both distributions.
Therefore, restricting our considerations in the previous sections to the
anisotropic model, we nevertheless obtain representative results on the

general behaviour of the kernel estimator for large sparse data sets.

APPENDIX

We replace the constant C in (2.5) and (2.6) by 2 "¢, where ¢ is a new
normalizing constant. Throughout our proofs our estimates of remainder
terms are of the stated orders of magnitude uniformly in values of § such
that 0 < 0 <&, where ¢ =¢(n) converges to zero so fast that me® —0.

Proof of Theorems 3.1 and 3.2

Our proof is in three parts.

Part (i): Bias Contribution
In this part we prove that if (b1} holds,

Y AEp,—p) =2 "m0 f(0) +o(1)] (A1)

i
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as m—- o, and if flx)=a,+a,x+a,x* is a positive semi-definite

quadratic then, for general # and 6,

SEp,—p) =2 "m0 [ar+2mé (1 - a, (1 —m )],

i

Of course, ¢ is defined by

¢ t=2 " Sl = im)).

Assuming (bl), we have ¢ = f(0}+ o(1). Therefore, by (A.1),

2 (Ep,—p)?=2 "m&0°[{f10) 'f(0)}7 +o(1)]

In the case where f'is a quadratic, formula (A.3) reduces to

¢ =2 Y lag+andt(it—tm) ) =ay+ jaamo’,

7

Therefore, by (A.2),

Z (Eﬁl— [7,)2 = 2 m(a“+ %a:m&z) 2 '”(52

i

x 0°[ai +md*{ (1 =0y ay}2(1—=m )]

(A.2)

(A.3)

(A4)

(A.S)

(A.6)

The remainder of this part of the proof is devoted to checking (A.l) and
(A.2). First we state a lemma, whose proof follows by simple combinatorial

identities for series of integers. and by Taylor expansion.

LemMa.  Ler C, denote an upper bound to | [, and define
Ry, (i, )=1C, 87 m?0°(1 —=2m "|il)> +mO(1 — 0)).
Then

m

S AL0)= > 0 (1—0y" 7 Y 1kl —im)}

r=0 kitk di=r
=100 =3y} 4+ (1 =2m ) £ {0 = Sm) ) omo
+ R:.IH‘!" 0 )*

where |R, (i, 0) < R (i, 0). If f is a positive semi-definite quadratic, and

C,=/f" then R,,, =R

[T
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In the notation of the lemma, E(j,)=2""¢S,,(i, 6) and
E(p)—pi=2""c[(1=2m"il) f/{6(lil — 3m)} omb + R, (i, 6)].
Hence, writing B for a binomial (m, 1) random variable, we have
Y (Ep;—p)*=2""c’E[(1 —2m 'B)* f'{0(B— 3m)}*](omB)’
+ R, ,.(6), (A7)

where, for constants C, and C, depending only on f,
2™|R;,(0)] < C,[8°mB{(m0)? E(|]1 —2m~'B|*)+ mOE|1 —2m 'B|}
+3*{(m0)* E(1 —2m 'B)*+ (m6)*}]
< C.0%(6°m>2 + 5%m?). (A.8)
If m“?8 — 0 then
E[(1=2m"'B)*f'{3(B~im)}*1=m [ (0)* +o(m ')
Result (A.1) follows from this result, (A.7) and (A.8).

Assume next that f(x)=a,+a,x+a,x>. Then C,=2a,, and by the
lemma,

E(py—p,=2""c(1=2m '|i|){a,—mdé(1 =2m '|i|)a,} émb
+ {(m0) (1 —2m~']i|)* + mO(1 — 0)} 6%a,,

whence it may be proved that

N (Ep;— p.)* =2 "(comB)[m 'at +2{5(1 —0) a, } (1 —m~")].

This establishes (A.2).

Part (ii): Variance Contribution
Here we prove that, if m0* —0 and f, /', f” are bounded, then

2var(ﬁ,-)=n"'e‘z'"9+0{ZE(ﬁ,—p,}. (A9)
From the formula

pi=n 'Y N,O(1—6)"",

r=0

683 44 2-11



338 GRUND AND HALL

where the variables N, ..., N, are distributed as a multinomial with
parameters n, (¢;o, -, 4;n), it follows after some algebra that

Yovar(p)=3 n '{Zq,-,()z'(l—())z'” 2’—(1513,)2}

=n { { Z ("Z) ()Zr(l V{))Zm Zr_Z (E[S,)z}
r=14

r
i

=n "{1+0m0)}e ™ —n 'Y (Ep). (A.10)

Next, observe that

S (53 <2{T 52+ 3 (-

If /" is bounded, and f(0) >0, then p, is bounded by a constant multiple
of m2 ™, which, if 0 =00(n)—0, is of smaller order than ¢ . In this
case, 3 pi=0(max p,)=o0(¢ *"). In the case where f(x)=u,+a,x+
ar X2,

2 2 2 2 g2 2¢3 2 N
Y pi=2 "cHag+ (a7 + 2a0ay) smdT + az(gm’ — fm) o)

i

<2 "CAC( + md® 4+ miot),

where €’ depends only on «, a,, a,. We may deduce from (A.5), and the
fact that the quadratic f{x) is positive semi-definite, that ¢ is bounded by
a constant multiple of (1 + m5%) '. Therefore, ¥ p?=0(2 ")=o(e ™).
Hence for both types of £, 3 pZ = o(e " *""). The desired result (A.9) follows
on substituting this formula into (A.10).

We should comment on the necessity of the assumption mf)® - 0, for
results such as (A.9). It may be shown that if m0® does not converge to
zero, then the variance contribution to mean summed squared error is
greater than the asymptotic amount n 'e¢ 2, claimed at (A.9), by at least
a constant factor. If m0* — ov then the variance exceeds n '¢ ™ by a
factor which diverges to + o. This observation makes it clear that the
assumption mf? — 0, which entails conditions such as (2.13), is necessary
and sufficient for our formulae to hold as stated.

Part (iil): Mean Squared Error

Here we combine results from Parts (1) anf (i1) to obtain mean squared
error formulae. Three distinct cases are identified: Case A, where md” — 0;
Case B, where md® -/ and 0 </ < u; and Case C, where md” — o.
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Case A. md*—0. Define D (0)=2 "md0%p,+n 'e *, where
py=/(0)"?f'(0)*. By (A4) and (A.9),

DO)=Y E(p;— p)’=D(0)+o{D\(0)}.

Now, D|(8)=0 when 2m0¢*® =/, where i=2"*'m(p,né*) '. We
identify three different subcases, depending on the behaviour of A In
subcases A.1 and A.2, mf) — 0.

Subcase Al. »—0. Here, minD(0)~D,i0,)~n ', where 0, 6=
(2m) " 'Ai=2"(p né%) .

Subcase A2. i—4,, 0<i, <o, Let x, denote the solution of the

equation xe*=4,. Here, min D(#)~D(0,)~n '"(1+3ix,)e “=n g,
where 8, = (2m) 'x

o

Subcase A3. i-—oc. Here, min D(@)~D,(0,)~n '(24) '(log 4)*,
where 6,=(2m)~'(log 4 —log log 4). The condition mf} — 0 is equivalent
to (2.12).

Case B. f{x)=a,+a,x+da,x* and md*—1I O<l<x. Define
D,(0)=2""0%,+n te ¥ where p,=(ay+3asl) *al+ail)l Let
qg=q(4,) be as in Subcase A2, and let ¢,=0 if i—0, 2m) 'x, if
Ai—4,, (2m) '(logi-—loglog i) if Ai— . Then by (A.6) and (A.9),
min D)~ D,(8y)~n ' if 10, n 'qg if A2, n '(22) '(logi)* if
4— oc. The condition mf> — 0 is equivalent to (2.12).

Case C. f(x)=ao+a,x+a,x* and mé’— . The argument and

conclusions in case B are valid as before, except that p, should be replaced
by p, =16 throughout.

Proof of Theorems 2.3 and 2.4

The proof follows closely the three part argument used to establish
Theorems 2.1 and 2.2, and so is given only in bare outline. We may prove
that

Z (Eﬁ: - P,)2 =2 m(”()+ %03(52) 2 agm ! (5402,
and that (A.9) continues to hold. From these results it may be shown that,
with

Dl(0)=2 m(ao'*‘%agéz) zagm "54924_” e Zm()’

we have D(8)/D,(0)=1+o0(1); and that the equation D{(0)=0 is
equivalent to 2mbe>" =), where A=2""'mi(pné*) ' and p=

2

(a()+ %az(sl) 'a%.
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Proof of Theorem 3.1

We consider only the case where cell probabilities are given by (2.6),
since the isotropic case (2.5) is similar. Our proof is based on the identity

SSE—MSSE=2(1—())2”’{)1 XX Ut =0 Y Y V,}

h<r i=1
—2(1—=8)"n ! Z W, (A1l
j=1

where we use the notation 0, =0(1 —0), Y, , =3, ()‘1“'” e

+

qir= ), P mO)=3 0g,.  w0)=Y ul0),
r=0 I

ki kl=r =

ZIZE( YII\"YI):ZO'lX’ A !11(8) “br /l;/'-/)'*

Un/:: YII/Z—ZfI‘Z/3+l‘(())’ V,=Z,—}1(0),
V(0)=3 p.u(0), W,=% p0\" "= V()

Part (i): Contribution of .V, and 3, W,
Define

Ty=(1-0"n '"(1—n )Y V,—(1—0y"n 'Y W,

i=1 i=1

We sketch a proof that

2
E(Tf)=0HZ(E/5,-—p,)2+n e 2""’} ] (A.12)

Put
Ali,:()l"" “» A,»,=A,,-,——E(A,,,),
T,=(-n "yn 'Y Y(Ep,—p)A.,
F=1 i

Ty=—(1—=0"n 2 W,

i=1

In this notation, T, =T,,+ T}, and so

E(TY)<2E(T?) +2E(T,).
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It may be show that for constants C,, C, >0,

nE(T3)<C\2 "m® ) (Ep;— p,)?

Part (ii): Contribution of Y. ¥ U, ,
Define

TZZ(I—())zmn 2ZZUmz» TJ:ZZUHI'Z'

JL<.g2 n<n

Observe that
E(T%) :Z Z E( Ule /:) = %n(n —DE U%Z)

N<ja
<4n’E( Yfz)z 4n? Z Z PP (2 0'11 e I”|>-.
Since p,< C;2"m’, then
ET3)=0 {nzfl 2yt Z Y y (Z gl i r'|)‘}

=0 0 i =r

”

”22 Zm’n4z Z Z (29]):‘1(1 +6'I’)2m Zr}

P r=0 il =r

=0{n32’" 4 Z ( )(29 (1 +62)2 2’}

=0 | n27"m*{(20,)* + (1 + 0] )"'"]
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It follows that E(T3)=0(n 2 ")=ol(n 'e *"*)?), whence by (A.l11)
and (A.12),

E(SSE—MSSEY' =0 [{Z (Ep,— p,)i+n '}H}.

Theorem 3.1 follows from this result and (A.9).
The proof of Theorem 3.2 is broadly similar to that of Theorem 3.1, and
so will not be given here.

Proof of Theorem 4.1

We derive only Part (1). Let x>0, y,, ..., 7,,>0 and Jd >0 be arbitrary,
provided %, (2, ¥, ..., V) N Y # & It is sufficient to prove the existence of
a cell probability vector pe %, (%, 7. ... 7,,) such that

li| = |¢'| implies p,=p, forall i ie.#. (A.13)

We prove that (A.13) is valid for all vectors p that are given by (4.5) with
the parameters

172
ﬂk;,,k,=<':> 224 forall JkLk=1,.om  (A14)

and arbitrary d, e {1, —1].

Therefore, let us consider an arbitrary cell i with |i| =v>1 and any of
its first-order neighbours, say, cell i with |i’| =v — 1, that differs from i only
in variable /, so that
=i

i/ forall j#1, and L=1,i/=0. (A.15)

I

Due to the lexicographical ordering of the cells, the unit vector ¢, with |
in cell { and O's else has the representation ¢, = ® /. | ¢;, where ¢, = (1, o’
if i,=0, and ¢,= (0, 1)T else. Thus, we obtain

pt“pn’sz("1~()1’):pT { ® ()[‘TILT(A]- l)T} (Alﬁ)
jo=1 (R}

The special structure of the eigenvectors A, ,,, see (4.4), and (A.15)
provide

m I mi20 13w : .
hz_.ﬂk){® F,«—“-‘(—l,l)‘l}:{z (=1 if leJ(k) (A7)

i 0 else,

where u=1{jljeJ(k) and i,=1}|.
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Combining (A.16), (4.5), (A.14), and (A.17), we obtain

, m m 12 "

k=1

Koty —1\/m—yv
—1)#>. A.18
SR VA IS S AL

Obviously, (A.18) depends on i only via |i|=v. Formula (A.13) follows
immediately.
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