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We consider a simple general construct, that of marginal replacement in a multi-
variate distribution, that provides, in particular, an interesting way of producing
distributions that have a skew marginal from spherically symmetric starting points.
Particular examples include a new multivariate beta distribution and a new multi-
variate ¢/skew ¢ distribution, along with Azzalini and colleagues’ multivariate skew
normal distribution.  © 2001 Elsevier Science (USA)
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1. INTRODUCTION

This paper is concerned with a very simple approach to modifying given
multivariate densities to produce new multivariate densities with one or
more specified marginals. Partition a p-dimensional vector, p>2, into
(x,y) where x is d-dimensional, 1 <d < p, and y is (p—d)-dimensional.
Let the corresponding continuous random variables X and Y follow the
p-variate distribution with density function f(x, y) and let this distribution
have X-marginal f,(x). Suppose it is desired to obtain a new p-variate
density f;(x,y) with specified X-marginal g(x), say. An example of this
might be producing a distribution with a skew marginal from a symmetric
multivariate starting point; this is the motivation for the current work,
described below.

Clearly, we can write f(X,y)= f(y|x) fx(x) using obvious notation
for the conditional density. Then, modulo support considerations,
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f1(x,y) = f(y|x) g(x) is obviously another multivariate density, but with
the X-marginal we desire. Going straight to f; without reference to f by
specifying marginal and conditional densities in this way is a standard
technique. The point here is that even when it is not especially natural to
think in terms of conditional distributions, but rather in terms of bivariate
or multivariate distributions with variables on an equal footing, this
marginal replacement scheme is still available, most usefully written in the
multiplicative form

Fi(x,y) =g(x) f(x,¥)/ fx(X). (D

The only condition on this approach is that the support of g be contained
in, or equal to, the support of fy. Indeed, f; then has support contained in,
or equal to, respectively, the support of f. This approach seems to be quite
often utilised for discrete distributions but not for continuous distributions
as here.

As well as giving the desired X-marginal, this approach has the benefit
of retaining the same conditional distributions of Y given X =x as the
original distribution, both characteristics by construction. Properties of
distributions that depend on conditional distributions only will thus be
unaffected by the change. In the bivariate case, an example is that the local
dependence function [5, 8] is invariant. The Y-marginal of f, of course,
differs from that of f.

This approach contrasts with, and is largely complementary to, the
obvious alternative approach, at least when d = 1, of transforming the X
variable using X; = G7'(Fyx(X)), where G and F, are the distribution
functions associated with g and fy, respectively. This, too, results in
marginal density g(x), but the conditional distribution of Y | X is changed;
the marginal distribution of Y, however, is unaffected. Approach (1) is,
however, often easier to apply, being involved with density functions only
rather than distribution functions. It also extends immediately to d > 1,
while transformation, although readily available for independent compo-
nents of X, is not so easily extendable for general f; and g. Transforma-
tion, on the other hand, does allow an expansion in the support of X, and
it also sometimes more readily admits of meaningful interpretation.

In Section 2, formula (1) is applied to the task of introducing a uni-
variate skew marginal to a spherically symmetric distribution. Various
properties associated with the spherically symmetric distribution are
retained; these include its local dependence function which is discussed
there. New multivariate distributions based on the beta, Section 3, and
t/skew t [9, 10], Section 4, are the particular proposals given in the
following two sections. A further new distribution, with an extreme value
marginal distribution introduced to a multivariate ¢ distribution, is described in
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the brief Section 5 to emphasise the generality of our approach. We provide
formulae for general p, but are usually most interested in the case p = 2.
This is because, with the symmetric marginals of the spherically symmetric
distribution being the same as one another, it is unclear to what extent they
are of practical interest for fitting to data when p > 2; a bivariate distribu-
tion with one skew and one symmetric marginal is, however, of potentially
more practical interest.

In Section 6, we look briefly at one existing distribution of this type, the
popular multivariate skew-normal distribution of Azzalini and colleagues
[2, 3], and make some further remarks. One particular point, of course, is
that by rotating f;, each co-ordinate marginal can be made skew; another
is that general location and scale parameters can readily be introduced.
Indeed, the whole of the current paper can be seen as an interpretation of
the way in which the multivariate skew-normal distribution arises, and
hence its extension to introducing skew marginals into other symmetric
distributions, and ultimately much further.

2. A SKEW MARGINAL INTRODUCED TO
A SPHERICALLY SYMMETRIC DISTRIBUTION

Let f be a spherically symmetric distribution i.e. one with density of the
form g(x'x+y'y) for some function g defined on [0, c0). See Fang, Kotz
and Ng [4] for an excellent review of spherically symmetric distributions
which can be consulted for any of the results about such distributions used
here.

By construction (1), we can introduce as X marginal any density with the
same support, or smaller, as the X marginal of f. Moreover, conditionally
on X =x, Y simply has the same symmetric conditional distribution that it
has under f. The symmetric nature of these conditional distributions
means that the marginal distribution of Y is also symmetric.

All spherically symmetric distributions have zero correlations. The
diagonal nature of the covariance matrix of the underlying spherically
symmetric distribution is retained in f,. This is because, for any one-
dimensional elements ¥ of Y and X of X, E(Y | X)) remains zero and hence
E(Y) and E(XY) are zero also. Note that the variances will, in general,
change but uncorrelatedness remains.

It is well known that the only spherically symmetric distribution for
which random variables are independent as well as uncorrelated is the
standard normal. It may not be generally appreciated that the uncorrela-
tedness of other spherically symmetric distributions disguises what can be a
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considerable dependence between random variables. A good way of seeing
this is to concentrate on any bivariate marginal, and to look at its local
dependence function y(x, y) =0 log f(x, y)/0x 0y (Holland and Wang [ 5],
Jones [8]). Since f(x, y) = g(x*+ y?*), we immediately find that

P(x, y) = 4xy(log g)" (x> + »?).

Thus, if g is log-convex or log-concave, as is the case for many standard
spherically symmetric distributions, y exhibits a dependence with one par-
ticular sign in the positive and negative quadrants and precisely the nega-
tive of that dependence in the other two quadrants. In fact, g log-convex
results in negative association between |X| and |Y|, see Section 3 for an
example, while g log-concave gives positive association between |X| and
|Y|, Section 4. Note that in the bivariate case g can be interpreted as the
density of the squared modulus R?> = X?4+Y?2.

This local dependence structure is maintained for distributions of the
form (1) based on spherically symmetric distributions.

3. ANEW MULTIVARIATE BETA DISTRIBUTION,
WITH A SINGLE SKEW MARGINAL

There are surprisingly few multivariate distributions with beta marginals
[7, Chapter 40] in the literature. The Dirichlet is one such, but it is restric-
tive in terms of relationships between beta marginals; it also has the
simplex as its sample space. Distributions more fully in the cube include the
case of independence, and of the general, but in this case clumsy, method
of marginal transformation of copulae e.g. [6]. Spherically symmetric beta
distributions have support the interior of the sphere, and it is an extension
of this distribution, which has the same support, that we consider here.

The p-variate spherically symmetric beta distribution with parameter
b> (p—1)/2 has density

I'(b+1/2)
ro—(p-1/2)="

/2(1_x%_..._x;)b_(P"'l)/z, O<x%+...+xi<1’

e.g. [6, p. 128] or [4, Section 3.4] where the distribution is called the
symmetric multivariate Pearson Type II distribution.
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Each marginal density is the univariate symmetric beta with parameter b
which has density

1

W(l—x%)bil, —1 <x < 1, (2)

where B(a, b) denotes the beta function. Note that it is convenient to use
the beta distribution on support [ —1,1]; many readers will be more
familiar with the beta distribution on [0, 1], for which simply make the
linear transformations (X; +1)/2.

To obtain an asymmetric univariate beta density with parameters a > 0
and ¢ >0, say, simply multiply (2) by (14+x;)*?(1—x,)°"® and renor-
malise accordingly to obtain the resulting density.

1
W(1+X1)a_l (l—xl)c_l, —1<X1<1.

We therefore propose the multivariate beta distribution with destiny

I'(a+c) I(b)
F(a) F(C‘) F(b—(p—l)/Z) 2a+c—1n,(p71)/2
X (1 +XI)”—17 (1 —Xl)cfb (1 _x%_ . _xi)b—(p+1)/2, (3)

0<xi+4--- +xi <1l,a>0,b>(p—1)/2,c>0. By construction, this has
as X, marginal the Beta(a, c¢) distribution on (—1, 1). Moreover, condition-
ally on X, =x,, each X, simply has a symmetric beta distribution with

parameter b—1/2, rescaled to the interval (—/1—x?,./1—x?), as has
the original spherically symmetric distribution. The marginal distribution
of X;,i=2, ..., p, is also symmetric.

The resulting density shapes in the bivariate case are illustrated in Figs. 1
and 2. In Fig. 1, contour plots of three such densities, each with b=c =15
and with a—b = 2, 7 and 20, respectively, are shown. The X, marginals are,
therefore, Beta(7,5), Beta(12,5) and Beta(25,5), respectively. The condi-
tional distributions of X, | X; are rescaled Beta(5,5)s. Figure 2 is similarly
based on the spherically symmetric beta distribution with parameter 5, but
shows other X, marginal densities: Beta(3,3), Beta(3,7) and Beta(7,7),
respectively.
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FIG. 1. Bivariate beta densities (3) for b=c=>5 and (a) a=7, (b) a=12 and (¢c) a =25,
respectively.

The X, marginal distribution is a (symmetric) scale mixture of Beta(b, b)
distributions which can be well approximated, at least provided neither a
nor ¢ is too small, by a single symmetric beta distribution with the same
variance. Details are not given to save space.

After a little manipulation, the conditional mean of X, given X, =
X, ..., X, = x, can be written as P(1,a—b,c—b,b—(p+1)/2)/P(0,a—b,
c—b,b—(p+1)/2) where

P(Q, R, S,T):f1 (k)@ (1 +Kae)® (1 —kae)S (1— )" du.

This depends on x,, ..., x, only through k= /1—xj—--- —x_ . It is not
difficult to see that E(X,|X,,...,X,) is positive/zero/negative (for all
0<k<1)whenevera>/=/<ec.
As previously mentioned, the diagonal nature of the covariance matrix
of the underlying spherically symmetric beta distribution is retained in (3).
Also, the local dependence function associated with every density in
Figs. 1 and 2 is that associated with the Beta(5,5) distribution, shown in
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FIG. 2. Bivariate beta densities (3) for =5 and (@) a=c=3, (b) a=7, ¢c=3 and
(c) a=c =17, respectively.
Fig. 3. The beta distribution is a case for which g is log-convex for
b > 3/2—and log-concave otherwise—and hence when b =5 there is nega-

tive dependence in the positive and negative quadrants and a matching

positive dependence elsewhere, corresponding to a negative association
between | X, | and |X,|.

4. ANEW MULTIVARIATE ¢ DISTRIBUTION,
WITH A SINGLE SKEW ¢t MARGINAL

The standard multivariate ¢ distribution with parameter v>0 is a
spherically symmetric distribution on the whole of R” with density

I'((v+p)/2) 1 @
T'(v/2) (vo)? (1+v7(xF+ -+ +x2))0H02

e.g. [4, Section 3.3, 7, Chapter 37]. Its univariate marginals are ordinary
symmetric Student’s ¢ distributions with density
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FIG. 3. The local dependence function associated with the Beta(5,5) density and all the
densities in Figs. 1 and 2.

1 1
B(v/2,1/2) v/ (14y~1x})0+0/2 )

Jones [9] introduced a univariate skew ¢ distribution with parameters
a > 0 and ¢ > 0 which has density

1 X a+1/2 X c+1/2
1+ -\

B(a, ) (a+c)1/22“+“1< (a+c+xf)1/2> ( (a+c+xf)1/2>
(6)

this reduces to the ¢ distribution on 2a degrees of freedom when a = ¢. For
much more about this distribution see [10].
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FIG. 4. The bivariate ¢/skew ¢ density (7) witha =4, v=3 and ¢ = 2.

Multiplying (4) by (6) and dividing by (5), as per the recipe in (1), yields
the multivariate distribution at the centre of this section. Let us call it a
t/skew ¢ distribution. This has density

I'((v+p)/2)
I'((v+1)/2) B(a, ¢) (a+c)"/? 2¢+~(yg)»~D/2

(1+V_1X2)(v+1)/2 14 X a+1/2 - X, c+1/2
! (a+c+x3)1? (a+c+x3)1?

A+v7' (i + - +x3)0FP2

X

()

Here, a, ¢ and v are all positive; this is (4) if a=c=v/2.
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In the bivariate case, then, (7) is a distribution with: (i) a skew ¢ marginal
with parameters a and ¢ in the X, direction; (ii) conditional distributions
for X,|X; which match those of the bivariate ¢ distribution being ¢
distributions on v+1 degrees of freedom scaled by a factor of {(v+1)~"
(x3+v)}'/% (iii) diagonal covariance matrix; and (iv) the local dependence
function of the bivariate ¢ distribution, a special case of which is given as
Fig. 2 of [8]. The ¢ distribution is a case for which g is log-concave and
hence there is positive association between absolute values of random
variables, for any v > 0. The (symmetric) X, marginal of this distribution
can be well approximated by a ¢ distribution with the same variance. The
conditional distribution of X; given X,,...,X, has similar qualitative
properties as that for the beta distribution of Section 3 depending on the
relative values of ¢ and c.

To save space, just one example of distribution (7), when p = 2, is given
in Fig. 4. This has parametersa =4, v=3, ¢ =2.

Jones [9] notes that if B~ Beta(a, c¢) then T=\/a+c B/ \/1—B2~
t(a, c), the skew ¢ distribution with parameters a and ¢ given at (6). There is
also a transformation relationship between the bivariate beta distribution
given at (3) and the bivariate ¢/skew ¢ distribution given at (7) when we
take b=v/2+1. Let (B,, B,) be random variables following the former
distribution. Then

(T.T) <1/a+cB1 B, \/v+Bi(a+c—v) > ®)
b 1) J1-B,J/1-B—B} /1-B]

has distribution (7). The relationship between 7; and B, is immediate.
To obtain the formula for 7;, let B, have the Beta(} (v+1),5(v+1))
distribution independent of B,. Then, using the conditional distributions
already mentioned, B,/ ./1—B?} ~ B, and \/v+1 T,/ \/v+Tf ~ \/v+1 B,/
/1—=B? , and a little manipulation gives the result.

5. ANOTHER NEW MULTIVARIATE DISTRIBUTION,
WITH A SPECIALLY CHOSEN MARGINAL

To emphasise that the construction proposed in this paper is very
general, let us get away from #/skew ¢ and beta marginal distributions.
Suppose again that f is the multivariate ¢ distribution given at (5) and that
we construct f; by introducing a quite different (skew) marginal for X;.
This might be, for example, the standard extreme value distribution with
g(x;) = exp(—x, —e™), which results in
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FIG. 5. The bivariate density (9) with v = 3.

'(v+p)/2) exp(—x; —e 1) (14+y~1x2)C+D/2

W= e P r /D) At e - ©)

This distribution is given in the bivariate case in Fig. 5 for the case v = 3.
We stress that this distribution retains much in common with the
spherically symmetric ¢ distribution and the distribution of Section 4: each
has the same conditional distributions given X, the same local dependence
function and zero correlations. What differs between the distributions are
the marginals (though those other than X, remain symmetric) and the

conditional distribution of X, given X, ..., X,,.
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6. ROTATION, NON-IDENTITY COVARIANCE,
THE MULTIVARIATE SKEW-NORMAL DISTRIBUTION

There is, of course, nothing special about choosing X, to have its
marginal changed above. Any X would do, including d-dimensional ones,
as would changing the marginal distribution along any linear combination
a’X of the original variables. The latter is equivalent to rotating the kinds
of distribution developed in this paper. Notice that any such rotation
would in general result in skew marginal distributions along all the current
coordinate directions.

Non-identity covariance X, say, is easily introduced in the usual manner
by multiplying a random vector X with a distribution of the form (1) for
spherically symmetric f by a matrix V such that V'V = X.

An example of an existing distribution which falls within the class of a
skew marginal introduced to a spherically symmetric distribution and
which has been presented with the involvement of general a and X is the
multivariate skew normal distribution of Azzalini and colleagues [2, 3].
Let ¢ and @ denote the normal density and distribution functions, respec-
tively. Then the univariate skew normal distribution, for which [1] is a key
reference, has density

20(1x) ¢(x), (10)

the parameter A controlling the degree of skewness introduced.
Azzalini and Capitanio [2] write the multivariate generalisation of (10)
in the form

20(a'x) 4,(x; X), (11

where ¢,(-; X) denotes the p-dimensional normal distribution with mean
zero and variance X. Note that if a= (1,0, ...,0) and £ =1, the identity,
this is of the form (1) with g(x)/ fx(x) = 2®(x); call this the standardised
multivariate skew normal distribution S say. If £=1,, then (11) gives S
except with rotation such that a'x is identified with x,. If a= (1,0, ...,0),
(11) is like applying construction (1) to the elliptically symmetric general
multivariate normal distribution, and, by rotation to a different version of
the elliptically symmetric multivariate normal distribution, likewise for
general a. Equivalently, starting with 2&(a’x) ¢,(x; I,) and transforming X
to VX also yields (11) only with a replaced by (V™) a. The latter might in
general be the more attractive way of thinking about how general X is
introduced rather than the former. If (1) is based on a distribution centred
at zero, non-zero location u can, of course, be introduced by replacing x by

X—U.
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Because of the independence of the marginals of the standard multi-
variate normal distribution, the marginal replacement scheme underlying
the standard multivariate skew normal distribution is essentially trivial.
And yet the technique and its extension in this paper are quite powerful.
The multivariate skew normal distribution itself is very attractive, with
some special properties described in [2] that are specific to the multivariate
normal base distribution and the particular construction for skewing it.

Azzalini and Capitanio [2] give an example of the fitting of their distri-
bution to data; data modelling and inference can, of course, be pursued for
the novel models in this paper also.

ACKNOWLEDGMENTS

I am grateful to Professor Samuel Kotz for his encouragement on reading a draft of this
paper and to the referee and editor for useful comments.

REFERENCES

1. A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12
(1985), 171-178.

2. A. Azzalini and A. Capitanio, Statistical applications of the multivariate skew-normal
distribution, J. Roy. Statist. Soc. Ser. B 61 (1999), 579-602.

3. A. Azzalini and A. Dalla Valle, The multivariate skew-normal distribution, Biometrika 83
(1996), 715-726.

4. K. T. Fang, S. Kotz, and K. W. Ng, “Symmetric Multivariate and Related Distribu-
tions,” Chapman and Hall, London, 1990.

5. P. W. Holland and Y. J. Wang, Dependence function for continuous bivariate densities,
Commun. Statist. Theory Methods 16 (1987), 863-876.

6. H. Joe, “Multivariate Models and Dependence Concepts,” Chapman and Hall, London,
1997.

7. N. L. Johnson and S. Kotz, “Distributions in Statistics: Continuous Multivariate
Distributions,” Wiley, New York, 1972.

8. M. C. Jones, The local dependence function, Biometrika 83 (1996), 899-904.

9. M. C. Jones, A skew ¢ distribution, in ‘“Probability and Statistical Models with Applica-
tions” (C. A. Charalambides, M. V. Koutras, and N. Balakrishnan, Eds.), pp. 269-278,
Chapman and Hall, London, 2001.

10. M. C. Jones and M. J. Faddy, A skew extension of the ¢ distribution with applications,
manuscript submitted for publication.



	1. INTRODUCTION
	2. A SKEW MARGINAL INTRODUCED TO A SPHERICALLY SYMMETRIC DISTRIBUTION
	3. A NEW MULTIVARIATE BETA DISTRIBUTION, WITH A SINGLE SKEW MARGINAL
	FIG. 1
	FIG. 2

	4. A NEW MULTIVARIATE T DISTRIBUTION, WITH A SINGLE SKEW T MARGINAL
	FIG. 3
	FIG. 4

	5. ANOTHER NEW MULTIVARIATE DISTRIBUTION, WITH A SPECIALLY CHOSEN MARGINAL
	FIG. 5

	6. ROTATION, NON-IDENTITY COVARIANCE, THE MULTIVARIATE SKEW-NORMAL DISTRIBUTION
	ACKNOWLEDGMENTS
	REFERENCES

