
Accepted Manuscript

Third-order local power properties of tests for a composite hypothesis,
II

Yoshihide Kakizawa

PII: S0047-259X(15)00115-3
DOI: http://dx.doi.org/10.1016/j.jmva.2015.04.011
Reference: YJMVA 3926

To appear in: Journal of Multivariate Analysis

Received date: 5 November 2012

Please cite this article as: Y. Kakizawa, Third-order local power properties of tests for a
composite hypothesis, II, Journal of Multivariate Analysis (2015),
http://dx.doi.org/10.1016/j.jmva.2015.04.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jmva.2015.04.011


Third-order local power properties of tests
for a composite hypothesis, II

Yoshihide KAKIZAWA

Faculty of Economics, Hokkaido University, Nishi 7, Kita 9, Kita-ku, Sapporo 060–0809, Japan

Abstract

The Bartlett-type adjustment is a higher-order asymptotic method for improving the chi-squared
approximation to the null distributions of various test statistics, which ensures that the resulting test
has size α+o(N−1), where 0 < α < 1 is the significance level and N is the sample size. We continue our
recent works on the third-order average local power properties of several Bartlett-type adjusted tests.
Strengthening the results in the 90s, the third-order optimality of the adjusted Rao test in a sense has
been established even if both the interest parameter and the nuisance parameter are multi-dimensional.
We briefly discuss adjusted profile likelihood inference for handling the nuisance parameter.

AMS subject classifications: 62E20, 62F03, 62F05.
Keywords: Asymptotic expansion, Bartlett-type adjustment, local alternative, local power of test,
nuisance parameter.

1. Introduction

We continue our recent works [10, 11, 12, 13] on higher-order asymptotic theory of several statistics

for testing a composite hypothesis about a subvector of parameters. Here, the N−i/2-term is referred

to as being the (i + 1)th-order, where N is the sample size. A detailed historical review for comparing

higher-order local powers, starting from the second-order local power analyses [22], is omitted here to

save space; see Kakizawa [13] and the references cited therein.

In the absence of nuisance parameter, Mukerjee [17, 19] established that Rao’s (score) test under the

third-order conditions of size and local unbiasedness has the third-order optimality in terms of average

local power criterion. Mukerjee [21] additionally showed that Rao’s test even in the original form (not

being adjusted for local unbiasedness and only the size condition is being retained) has the third-order

optimality, where we observe that ‘the test in the original form’ is nothing but the size-adjusted test with

substitution of Cornish-Fisher’s type expansion for the percentile. On the other hand, not much work

has yet been reported on the third-order local power properties in the presence of nuisance parameter,

except that Mukerjee [16, 18] attempted to discuss the third-order optimality of Rao’s (adjusted) test

under the assumption of the global parameter orthogonality for the situation where both the interest

parameter and the nuisance parameter are scalar. He mentioned that the same argument is applicable

even when the nuisance parameter is multi-dimensional.

The present paper addresses the comments in the review paper [19] that

if both the interest parameter and the nuisance parameter be multi-dimensional, then, as noted in Cox

and Reid, one may not in general be able to achieve an orthogonal parameterization. Anyway, it is

strongly believed that the results discussed here should have their counterparts even in such a situation.
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As a companion paper to Kakizawa [13], we are primarily concerned with the third-order local power

properties of several Bartlett-type adjusted tests. The Bartlett-type adjustment dates back to different

three methods proposed by Chandra and Mukerjee [2], Cordeiro and Ferrari [3], and Taniguchi [25] in

alphabetical order. It is a higher-order asymptotic method for improving the chi-squared approximation

to the null distributions of various test statistics, which ensures that the resulting test has size α+o(N−1),

as in the size-adjusted test based on Cornish-Fisher’s type expansion for the percentile, where 0 < α < 1

is the significance level. Rao and Mukerjee [23, 24] have compared the third-order point-by-point local

powers of three Bartlett-type adjustments [2, 3, 25] for the simple hypothesis on a scalar parameter.

In recent years, there have been renewed interests [9, 10, 11] due to the existence of infinitely many

Bartlett-type adjustments for the multi-parameter hypothesis testing.

By constructions (see Definitions 1 and 2 in Section 2), it will be convenient for us to define two types

separately. One is the generalized Bartlett-type adjustment (for short GB). The other is the generalized

Cordeiro-Ferrari Bartlett-type adjustment (for short GCF). We denote by TGB(N) and TGCF(N) the GB

and GCF adjustments for a likelihood-based test statistic T (N) ∈ TN,3 under consideration (see (3) below).

Kakizawa [13] derived the third-order average local power of the GB-adjusted test TGB(N) > χ2
p1,α, where

χ2
p1,α is the upper α-point of the central chi-squared distribution with p1 degrees of freedom, and then

established that even if both the interest parameter and the nuisance parameter are multi-dimensional, the

GB-adjusted Rao test has the third-order optimality. So, Mukerjee’s conjectual statement, as mentioned

before, may be solved in a sense. However, we know that Rao’s test statistic has many variants; e.g.

R(N) and MR(N) (see (2) below), for which the adjusted tests RGB(N) > χ2
p1,α and MRGB(N) > χ2

p1,α

have the identical average local power up to the third-order. That is, the GB adjustment smooths out

the distinctive features between R(N) and MR(N), and hence it may be more interesting to compare them

(announced at the end of Section 4 of [13]). This is the reason why we need to have further discussion,

on the basis of the GCF adjustment.

The contribution of the present paper is three fold. First, our results allow both the interest parameter

and the nuisance parameter to be multi-dimensional, for which there is no assumption regarding the

global parameter orthogonality. Second, we elucidate that the adjusted Rao tests RGCF(N) > χ2
p1,α and

MRGCF(N) > χ2
p1,α are, generally, discriminated in terms of the third-order average local power, and

that the former test RGCF(N) > χ2
p1,α has the third-order optimality in a large class of the GB and

GCF-adjusted tests. Third, we briefly discuss adjusted profile likelihood inference (e.g. [4, 6]), which

represents an important tool for handling the nuisance parameter.

Although we focus on the iid case for notational simplicity, we arrive at the same conclusions even

in a non-iid case where some regularity conditions are met for the log-likelihood derivatives according

to the situations under consideration. We retain throughout this paper the notation and conventions

of Kakizawa [13] (see also [10, 11]). The rest of this paper is organized as follows. Section 2 contains

the notation to be used throughout this paper. Section 3 derives an asymptotic expansion formula for

the (average) local power of the GCF-adjusted test TGCF(N) > χ2
p1,α. Section 4 describes main results.

Concluding remarks are given in Section 5.



2. Bartlett-type adjustments

2.1. Notation

We denote by P
(N)
θ the θ-distribution of X1, . . . ,XN , which are iid random vectors (taking values of

RdX ) according to a density f(x,θ), θ ∈ Θ ⊂ Rp. For any sequence {Y (N)}N≥1 of random variables

having the form Y (N) = gN (X1, . . . ,XN ), we use the pointwise notation Y (N) = o(N)
θ (q, β) under P

(N)
θ ,

if P
(N)
θ [|Y (N)| > d(log N)β] = o(N−q) as N → ∞ for some d > 0, q ≥ 0, and β ≥ 0. In what

follows, we assume the same regularity conditions as in Kakizawa [13]. Suppose that the parameter

θ = (θ1, . . . , θp)′ is composed of two parts, a parameter of interest θ(1) = (θ1, . . . , θp1)
′ and a nuisance

parameter θ(2) = (θp1+1, . . . , θp1+p2)
′; θ = (θ′(1),θ

′
(2))

′ ∈ Θ = Θ(1) × Θ(2) (say), where p = p1 + p2.

We write L(N)(θ) =
∑N

i=1 log f(Xi,θ). We want to test a composite hypothesis θ(1) = θ(1)0 against

θ(1) 6= θ(1)0, where θ(1)0 ∈ Θ(1) is specified while θ(2) ∈ Θ(2) remains unspecified. Let θ̂
(N)
ML ∈ Θ be the

(unrestricted) maximum likelihood estimator (MLE) of θ, and let θ̃
(N)

(2)ML ∈ Θ(2) be the restricted MLE

of θ(2) under the constraint θ(1) = θ(1)0. We write

θ̃
(N)

ML =

(
θ(1)0

θ̃
(N)
(2)ML

)
, θ̂

(N)

ML =


 θ̂

(N)
(1)ML

θ̂
(N)

(2)ML


 , and θ† =

(
θ(1)0

θ†(2)

)
∈ Θ ,

with θ†(2) being the irrelevant true value of the nuisance parameter θ(2). For any (nonrandom/random)

scalar or vector or matrix function Q(·), we use the notation Q̂, Q̃, and Q instead of Q(θ̂
(N)

ML ), Q(θ̃
(N)

ML ),

and Q(θ†), respectively.

The Rth partial derivative of the log density log f(x,θ) with respect to θ is denoted by

ℓj1···jR
(x,θ) =

∂

∂θj1

· · · ∂

∂θjR

log f(x,θ)

for R ∈ N; j1, . . . , jR ∈ {1, . . . , p}. We introduce IR = j1 · · · jR for notational simplicity and denote the

cumulants of the ℓIR
(X,θ)’s with respect to X ∼ f(·,θ) by

νIR1
,...,IRv

(θ) = Cumθ[ℓIR1
(X,θ), . . . , ℓIRv

(X,θ)]

(descending order R1 ≥ · · · ≥ Rv ≥ 1 on the size Ri = |IRi | is assumed, since νIR1
,...,IRv

(θ) is symmetric

under permutation of {IR1 , . . . , IRv}). We assume that

νj1(θ) = 0 , νj1j2(θ) + νj1,j2(θ) = 0 , νj1j2j3(θ) + 〈3〉νj1j2,j3(θ) + νj1,j2,j3(θ) = 0 ,

νj1j2j3j4(θ) + 〈4〉νj1j2j3,j4(θ) + 〈3〉νj1j2,j3j4(θ) + 〈6〉νj1j2,j3,j4(θ) + νj1,j2,j3,j4(θ) = 0

for all θ ∈ Θ, where 〈n〉 before a term with indices is a sum of n similar terms obtained by index

permutation. These Bartlett identities for the cumulants enable us to eliminate νj1j2(θ), νj1j2j3(θ), and

νj1j2j3j4(θ) in subsequent calculations. We write

Z
(N)
j1···jR

(θ) =





1
N1/2

N∑

i=1

ℓj1(Xi,θ) , R = 1

1
N1/2

N∑

i=1

{ℓj1···jR
(Xi,θ)− νj1···jR

(θ)} , R = 2, 3 .



According to the partition θ = (θ′(1),θ
′
(2))

′, we stack the element Z
(N)
j (θ) and νj,k(θ) = −νjk(θ) as

[Z(N)
j (θ)]j=1,...,p =


 Z(N)

(1) (θ)

Z(N)
(2) (θ)


 and [νj,k(θ)]j,k∈{1,...,p} =

(
ν(11)(θ) ν(12)(θ)
ν(21)(θ) ν(22)(θ)

)
.

They are the p× 1 score vector Z(N)(θ) and the p× p Fisher information matrix ν(θ) = Varθ[L1(X,θ)],

respectively, where L1(X,θ) = [ℓj(X,θ)]j=1,...,p. Here, there is no assumption regarding the global

parameter orthogonality ν(12)(·) ≡ Op1,p2 , where Op1,p2 is the p1 × p2 zero matrix.

We employ standard summation convention that if an index occurs twice in a product of two or more

terms, then this means the summation over all values which this index may assume. Unless otherwise

stated, we use the letters {j, k} as indices of θ that run from 1 to p, the letters {a, b} as indices of θ(1) that

run from 1 to p1, and the letters {r, s} as indices of θ(2) that run from p1 + 1 to p. We denote by νj,k(θ)

the (j, k)th element of ν−1(θ), where we assume that ν(θ) is nonsingular. Let [νr,s
(22)(θ)]r,s∈{p1+1,...,p} be

the inverse of the matrix ν(22)(θ) = [νr,s(θ)]r,s∈{p1+1,...,p}. We denote by νa,b
(11·2)(θ) the (a, b)th element of

ν−1
(11·2)(θ), where

ν(11·2)(θ) = [ν(11·2)a,a′ (θ)]a,a′∈{1,...,p1} = ν(11)(θ)− ν(12)(θ)ν−1
(22)(θ)ν(21)(θ) .

Further, we denote by Gj,a(θ) the (j, a)th element of

G(θ) =

(
Ip1

−ν−1
(22)(θ)ν(21)(θ)

)
,

where Ip1 is the p1 × p1 identity matrix. We note ν(11·2)(θ) = G′(θ)ν(θ)G(θ) and

G(θ)ν−1
(11·2)(θ)G ′(θ) = ν−1(θ)−

(
Op1,p1 Op1,p2

Op2,p1 ν−1
(22)(θ)

)
= B(θ) (say). (1)

2.2. A class of test statistics

To cover the likelihood ratio (LR) test statistic, two variants of Rao’s and Wald’s test statistics as well

as Terrell’s gradient test statistic [26];

LR(N) = 2(L̂(N) − L̃(N)) , grad(N) = (Z̃(N)
(1) )′N1/2(θ̂

(N)
(1)ML − θ(1)0),

R(N) = (Z̃(N)
(1) )′ν̃−1

(11·2)Z̃
(N)
(1) , W(N) = N(θ̂

(N)

(1)ML − θ(1)0)
′ν̂(11·2)(θ̂

(N)

(1)ML − θ(1)0) , (2)

MR(N) = (Z̃(N)
(1) )′ν̂−1

(11·2)Z̃
(N)
(1) , MW(N) = N(θ̂

(N)
(1)ML − θ(1)0)

′ν̃(11·2)(θ̂
(N)
(1)ML − θ(1)0) ,

Kakizawa [10, 11, 13] considered a class TN,3 of test statistics for testing the null hypothesis θ(1) = θ(1)0

against θ(1) 6= θ(1)0, as follows: Every test statistic T (N) = TN (X1, . . . ,XN ;θ(1)0) ∈ TN,3 admits a

stochastic expansion of the form

T (N) = T
(N)
3rd +

1
N3/2

o(N)
θ† (1 + ξ, β) for some fixed β, ξ > 0, (3)

where

T
(N)
3rd = (Z̃(N)

(1) )′ν̃−1
(11·2)Z̃

(N)
(1) +

2
N1/2

(
C̃G G G

b1b2b3

3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ C̃G G
b1b2,k1k2

Z̃
(N)
k1k2

2∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

)

+
2
N

{
D̃G G G G

b1b2b3b4

4∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ (D̃G G G
b1b2b3,k1k2

Z̃
(N)
k1k2

+ D̃G G G
b1b2b3,k1k2k3

Z̃
(N)
k1k2k3

)
3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+D̃G G
b1b2,k1k2,k3k4

Z̃
(N)
k1k2

Z̃
(N)
k3k4

2∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

}
(4)



(hereafter, [v]i sometimes stands for the ith element vi of any vector v),

CG G G
a1a2a3

(·) = Cj1j2j3(·)Gj1,a1(·)Gj2,a2(·)Gj3,a3(·) , CG G
a1a2,k1k2

(·) = Cj1j2,k1k2(·)Gj1,a1(·)Gj2,a2(·) .

We adopt similar definitions for DG G G G
a1a2a3a4

(·), DG G G
a1a2a3,k1···kv

(·), DG G
a1a2,k1k2,k3k4

(·), and so on. Notice

that β, ξ, C-functions; Cj1j2j3(·)’s and Cj1j2,k1k2(·)’s, and D-functions; Dj1j2j3j4(·)’s, Dj1j2j3,k1···kv(·)’s,
and Dj1j2,k1k2,k3k4(·)’s may vary from one test statistic to another, where these C(or D)-functions

are of class C2(Θ) (or C1(Θ)). Without loss of generality, we assume that Cj1j2j3(·), Cj1j2,k1k2(·),
Dj1j2j3j4(·), Dj1j2j3,k1···kv(·), and Dj1j2,k1k2,k3k4(·) are symmetric under permutation of {j1, j2, j3, j4} and

that Dj1j2,k1k2,k3k4(·) = Dj1j2,k3k4,k1k2(·).
Note that all test statistics in (2) are members in

⋃
c∈R T c

N,3, where T c
N,3 is a subclass of TN,3 consisting

of those members in TN,3 for which CG G
a1a2,k1k2

(·), a1, a2 ∈ {1, . . . , p1}, k1, k2 ∈ {1, . . . , p} have the form

CG G
a1a2,k1k2

(·) =
c

2
{Gk1,a1(·)Gk2,a2(·) + Gk1,a2(·)Gk2,a1(·)} , (5)

with c being a constant. Especially, we have

cRao = cmodified Rao = 0 , cLR =
1
2

, cWald = cmodified Wald = cgradient = 1 (6)

for the LR, Rao’s, Wald’s, and Terrell’s gradient test statistics.

2.3. GB and GCF adjustments

From now on, unless otherwise stated, the term with superscript C (or CD) indicates that it depends

on the C (or C,D)-functions of T (N) ∈ TN,3. We define

C+G G G
a1a2a3

(·) = CG G G
a1a2a3

(·) +
〈3〉
3

CG G
a1a2,k1k2

(·)ν G
k1k2,a3

(·) , a1, a2, a3 ∈ {1, . . . , p1} .

It is esay to see (e.g. [10, 12]) that the expressions for the C+-functions for the LR, Rao’s, Wald’s, and

Terrell’s gradient test statistics are respectively given by

LRC+G G G
a1a2a3

(·) = −1
6

νG G G
a1,a2,a3

(·) , gradientC
+G G G

a1a2a3
(·) = − 1

12
{〈3〉νG G G

a1a2,a3
(·) + 3νG G G

a1,a2,a3
(·)} ,

RaoC
+G G G

a1a2a3
(·) ≡ 0 , WaldC+G G G

a1a2a3
(·) = −1

6
{〈3〉νG G G

a1a2,a3
(·) + 3νG G G

a1,a2,a3
(·)} , (7)

modified RaoC
+G G G

a1a2a3
(·) = −1

6
{2〈3〉νG G G

a1a2,a3
(·) + 3νG G G

a1,a2,a3
(·)} , modified WaldC+G G G

a1a2a3
(·) =

1
6
〈3〉νG G G

a1a2,a3
(·) .

The meaning of the notation of the C+,D+-functions (the definition of D+-function is similar to that of

C+-function) will be apparent from (4) by rewritting

Z̃
(N)
j1···jR

= (Z̃(N)
j1···jR

− ν̃ G
j1···jR,bR+1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bR+1

) + ν̃ G
j1···jR,bR+1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bR+1

, R = 2, 3 .

We are ready to describe the Bartlett-type adjustments [10, 11] for these likelihood-based test statistics.

Definition 1 (GB [10], including the extensions of [2, 25] to the multi-parameter setting as special cases)

With

ΓC
a1a2a3

(·) = −1
6
{νG G G

a1,a2,a3
(·) + 6C+G G G

a1a2a3
(·)} , a1, a2, a3 ∈ {1, . . . , p1} ,



we say that

TGB(N) = T (N) +
2

N1/2
Γ̃C

b1b2b3

3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+
2
N

{
(Γ̃GB

b1b2b3b4 + ∆̃GB
b1b2b3b4)

4∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+∆̃GB
b1b2b3,k1k2

Z̃
(N)
k1k2

3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ Γ̃GB
b1b2

2∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

}
(8)

is the generalized Bartlett-type adjustment of T (N) ∈ TN,3, if

P
(N)
θ† [TGB(N) ≤ x] = Pr[χ2

p1
≤ x] + o(N−1) (9)

(ΓGB
a1a2

(·)’s, ΓGB
a1a2a3a4

(·)’s, ∆GB
a1a2a3a4

(·)’s, and ∆GB
a1a2a3,k1k2

(·)’s are assumed to be of class C1(Θ)), with

∆GB
a1a2a3a4

(·)’s and ∆GB
a1a2a3,k1k2

(·)’s being specified in advance (see [10]).

Definition 2 (GCF [11], including [3] as a special case) We say that

TGCF(N) = T (N) +
2
N

∑

R=2,4,6

Γ̃b1···bR

R∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

(10)

is the generalized Cordeiro-Ferrari Bartlett-type adjustment of T (N) ∈ TN,3, if

P
(N)
θ† [TGCF(N) ≤ x] = Pr[χ2

p1
≤ x] + o(N−1) , (11)

where functions Γa1···aR
(·)’s are assumed to be of class C1(Θ).

The name ‘GCF’ and the idea behind the form of (10) stem from the original proposal in Cordeiro and

Ferrari [3];

TCF(N) =
[
1− 2

N

{ β̃C
3

p1(p1 + 2)(p1 + 4)
(T (N))2 +

β̃CD
2

p1(p1 + 2)
T (N) +

β̃CD
1

p1

}]
T (N) , T (N) ∈ TN,3 ,

where

βC
3 (·) =

1
24

[
3νb1,b2

(11·2)(·){νG G G
b1,b2,b(·) + 6C+G G G

b1b2b (·)}νb,b′

(11·2)(·){νG G G
b′1,b′2,b′(·) + 6C+G G G

b′1b′2b′(·)}ν
b′1,b′2
(11·2)(·)

+ 2{νG G G
b1,b3,b5

(·) + 6C+G G G
b1b3b5(·)}ν

b1,b2
(11·2)(·)ν

b3,b4
(11·2)(·)ν

b5,b6
(11·2)(·){νG G G

b2,b4,b6
(·) + 6C+G G G

b2b4b6(·)}
]
,

and the closed-form expressions for βCD
1 (·) and βCD

2 (·) are found in Kakizawa [11] ([3] contains the

formulas for the Rao test statistic R(N)).

Remark 1 By definition, we can rewrite (8) as

TGB(N) = T ⋆(N) +
2
N

∑

R=2,4

Γ̃b1···bR

R∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

,

where

T ⋆(N) = T (N) +
2

N1/2
Γ̃C

b1b2b3

3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+
2
N

{
∆̃GB

b1b2b3b4

4∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ ∆̃GB
b1b2b3,k1k2

Z̃
(N)
k1k2

3∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

}



is an adjustment (it is still not Bartlett correctable generally; the second-term of T ⋆(N) was introduced

by [12] in order to assert the second-order point-by-point local power identity) for a given T (N) ∈ TN,3.

That is, TGB(N) is regarded as a double adjustment (T ⋆)GCF(N) (we set Γa1···a6(·) ≡ 0 in Definition 2),

where, compared to the original form (3), the CG,DG-functions associated with T ⋆(N) ∈ TN,3 are given

by CG G G
a1a2a3

(·) + ΓC
a1a2a3

(·), DG G G G
a1a2a3a4

(·) + ∆GB
a1a2a3a4

(·)’s, and DG G G
a1a2a3,k1k2

(·) + ∆GB
a1a2a3,k1k2

(·)’s, while the

other CG,DG-functions are not changed. This interpretation TGB(N) = (T ⋆)GCF(N) is important, since

the GB adjustment [10] can be treated as the GCF adjustment [11].

In order to determine the symmetric arrays [ΓGB
a1···aR

(·)]a1 ,...,aR∈{1,...,p1}, R = 2, 4, Kakizawa [10, 13] gave

necessary and sufficient conditions for (9), and then discussed the third-order local power properties of

the resulting GB-adjusted tests, as mentioned in Introduction. On the other hand, Kakizawa [11] gave

necessary and sufficient conditions (see (A.6)–(A.8)) on the symmetric arrays [Γa1···aR
(·)]a1,...,aR∈{1,...,p1},

R = 2, 4, 6, such that (11) holds. In what follows, we will investigate the third-order local power properties

of the resulting GCF-adjusted tests.

3. Asymptotic expansion of TGCF(N) under a sequence of local alternatives

We write

Gν(x;ω2) =
∫ x

0
gν(t;ω2) dt ,

where gν(·;ω2) denotes the density function of the noncentral chi-squared distribution with ν degrees of

freedom and noncentrality parameter ω2.

By a tedious algebra similar to Kakizawa [10, 11, 12, 13], one obtains the following result. The proof,

outlined in Appendix A, is straightforward but becomes much longer than the derivation of asymptotic

expansion [13] for P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GB(N) > x], since, by definition (see (8) or Remark 1), TGB(N)

has the identical C+-functions; C+G G G
a1a2a3

(·) = −(1/6)νG G G
a1 ,a2,a3

(·) = LRC+G G G
a1a2a3

(·), a1, a2, a3 ∈ {1, . . . , p1}
(such a structure not only led to the second-order point-by-point local power identity but also made

several coefficients for π
GB(2)
α (h(1)) disappear drastically, as shown in [12, 13]). It may be true that

Proposition 1 is very heavy, depending on the C,D-functions associated with T (N) ∈ TN,3, but averaging

this power function (with respect to h(1)) along the sphere h′(1)ν(11·2)h(1) = λ, where λ > 0, it turns out

that the expression (14) below is independent of the D-functions. The emphasis here is on the patterns

in the coefficients for π
GCF(2)
α (h(1)) (rather than the derivation).

Proposition 1 Let T (N) ∈ TN,3. Suppose that (A.6)–(A.8) hold. Then

P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GCF(N) > χ2
p1,α] = 1−Gp1(χ

2
p1,α;h′(1)ν(11·2)h(1)) +

2∑

ℓ=1

2
N ℓ/2

πGCF(ℓ)
α (h(1)) + o(N−1)

for any h(1) = (h1, . . . , hp1)
′ ∈ Rp1 , where

πGCF(ℓ)
α (h(1)) =

3ℓ∑

v=1

PGCF(ℓ)
v (h(1))gp1+2v(χ2

p1,α;h′(1)ν(11·2)h(1)) , ℓ = 1, 2 .



Here,

PGCF(1)
1 (h(1)) = −1

2
(ν G

rr′,⋄ + ν G
r,r′,⋄)ν

r,r′

(22) −
1
6

(3νGGG⋄ ⋄,⋄ + 2νG G G⋄,⋄,⋄ ) +
1
2

(2ν G G
⋄⋄,⋄ + ν G G

⋄,⋄,⋄ ) ,

PGCF(1)
2 (h(1)) =

1
2

(νG G G⋄,b,b′ + 6C+GGG
⋄ b b′)ν

b,b′

(11·2) +
1
6

νG G G⋄,⋄,⋄ , PGCF(1)
3 (h(1)) =

1
6

(νG G G⋄,⋄,⋄ + 6C+GGG
⋄ ⋄ ⋄ )

(we used the notation Q···⋄··· = Q···a···ha for simplicity) and

PGCF(2)
1 (h(1)) = QC(2)

1[2] +Q(2)
1[4] +Q(2)

1[6] ,

PGCF(2)
2 (h(1)) = (Γ⋄⋄ +QCD(2)

2[2] ) +QC(2)
2[4] +Q(2)

2[6] ,

PGCF(2)
3 (h(1)) = (6Γ⋄⋄bb′ν

b,b′

(11·2) +QCD(2)
3[2] ) +QC(2)

3[4] +QC(2)
3[6] ,

PGCF(2)
4 (h(1)) = (45Γ⋄⋄b1b′1b2b′2

ν
b1,b′1
(11·2)ν

b2,b′2
(11·2) +QC(2)

4[2] ) + (Γ⋄⋄⋄⋄ +QCD(2)
4[4] ) +QC(2)

4[6] ,

PGCF(2)
5 (h(1)) = (15Γ⋄⋄⋄⋄bb′ν

b,b′

(11·2) +QC(2)
5[4] ) +QC(2)

5[6] ,

PGCF(2)
6 (h(1)) = (Γ⋄⋄⋄⋄⋄⋄ +QC(2)

6[6] ) ,

where the Q(2)
v[2i]’s (without superscript C or CD), being independent of the C,D-functions, and the QC(2)

v[2i] ’s

and QCD(2)
v[2i] ’s, are homogeneous polynomials of degree 2i in h(1) (the details are omitted here).

It is worth noting that the third-order point-by-point local power of the Cordeiro-Ferrari adjustment

[3] is the same as that of the size-adjusted test based on Cornish-Fisher’s type expansion for the percentile

(this statement is consistent with [15] on several tests for the admissibility of a subset of instrumental

variables and [8] on the normal-based GMANOVA tests under a non-Gaussian error). That is, we obtain

P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′

[
T (N) >

{
1 +

2
N

( β̃C
3

p1(p1 + 2)(p1 + 4)
x2 +

β̃CD
2

p1(p1 + 2)
x +

β̃CD
1

p1

)}
x
]

= P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

CF(N) > x] + o(N−1) (12)

as a special case of Proposition 1 with

ΓCF
⋄⋄ = −βCD

1

p1
(h′(1)ν(11·2)h(1)) ,

6ΓCF
⋄⋄bb′ν

bb′
(11·2) = −2βCD

2

p1
(h′(1)ν(11·2)h(1)) ,

45ΓCF
⋄⋄b1b′1b2b′2

ν
b1b′1
(11·2)ν

b2b′2
(11·2) = −3βC

3

p1
(h′(1)ν(11·2)h(1)) ,

ΓCF
⋄⋄⋄⋄ = − βCD

2

p1(p1 + 2)
(h′(1)ν(11·2)h(1))

2 ,

15ΓCF
⋄⋄⋄⋄bb′ν

bb′
(11·2) = − 3βC

3

p1(p1 + 2)
(h′(1)ν(11·2)h(1))

2 ,

ΓCF
⋄⋄⋄⋄⋄⋄ = − βC

3

p1(p1 + 2)(p1 + 4)
(h′(1)ν(11·2)h(1))

3 .

Then, it turns out that unless p1 = 1, the third-order point-by-point local power of the adjusted test

TCF(N) > χ2
p1,α (equivalently the size-adjusted test based on Cornish-Fisher’s type expansion for the

percentile) generally depends on the C,D-functions associated with T (N) ∈ TN,3, which contrasts with

Rao and Mukerjee [24].



We now adopt the average criterion [17]. That is, let

ave
Sλ

{π(h(1))} =

∫
Sλ

π(h(1)) dh(1)∫
Sλ

dh(1)

be the average of π(h(1)) along the sphere Sλ = {h(1) ∈ Rp1 : h′(1)ν(11·2)h(1) = λ}, λ > 0. Not surprisingly,

we have

ave
Sλ

{πGCF(1)
α (h(1))} =

3∑

v=1

ave
Sλ

{PGCF(1)
v (h(1))}gp1+2v(χ2

p1,α;λ) = 0 (13)

(see Lemma B.1). Furthermore, regardless of the infinitely many choices for the symmetric arrays

[Γa1···aR
(·)]a1,...,aR∈{1,...,p1}, R = 2, 4, 6 (see [11]), it is shown that

ave
Sλ

{πGCF(2)
α (h(1))} =

6∑

v=1

ave
Sλ

{PGCF(2)
v (h(1))}gp1+2v(χ2

p1,α;λ) (14)

is independent of the D-functions associated with T (N) ∈ TN,3 (see (C.1)–(C.6) for the details), such that

ave
Sλ

{πGCF(2)
α (h(1))} =

λ

2p1
{UC

1,αgp1+2(χ2
p1,α; 0) + UC

2,αgp1+4(χ2
p1,α; 0)} + O(λ2) , (15)

UC
1,α = UC

11 + UC
12χ

2
p1,α and UC

2,α = (UC
21 − U21 + U210) + (UC

22 − U22 + U220)χ2
p1,α

(we used xgν(x;λ) = νgν+2(x;λ) + λgν+4(x;λ)), where

UC
11 = νb1,b2

(11·2)ν
b3,b4
(11·2)C

G G
b1b2,k1k2

M G G
k1k2,b3b4

(we write Mj1j2,j3j4 = νj1j2,j3j4 − νj1j2,kν
k,k′νj3j4,k′),

UC
12 = − 1

p1 + 2
νb1,b2
(11·2)ν

b3,b4
(11·2)〈3〉CG G

b1b2,k1k2
CG G

b3b4,k3k4
Mk1k2,k3k4 ,

UC
21 = [3νr,r′

(22)(ν
G

rr′,b4 + ν G
r,r′,b4)C

+G G G
b1b2b3 + 3C+G G G

b1b2bν
b,b′

(11·2)ν
G G G
b3b4,b′

+6C+G G G
b1b3bν

b,b′

(11·2){2νG G G
b2b4,b′ + νG G G

b2,b4,b′ − (2ν G G
b2b4,b′ + ν G G

b2,b4,b′)}

+6(C+G G G
b1b2b3/b4 − C+G G G G

b1b2b3/b4)]ν
b1,b2
(11·2)ν

b3,b4
(11·2) (we write C+G G G

a1a2a3/k =
∂

∂θk
C+G G G

a1a2a3
(θ†)) ,

UC
22 = − 1

p1 + 4
C+G G G

b1b2b3C
+G G G

b4b5b6〈15〉ν
b1,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2) ,

U2v’s are defined as UC
2v’s with C+G G G

a1a2a3
(·)’s replaced by −(1/6)νG G G

a1 ,a2,a3
(·)’s, and U2v0’s are common for

any T (N) ∈ TN,3. In the rest of this paper, (15) (and its GB-counterpart (16) below) will be seen to serve

as the basis for the third-order average local power comparison.

Remark 2 ((18)–(22) in [13] as a particular case) Kakizawa [13] obtained the third-order average local

power of the GB-adjusted test TGB(N) > χ2
p1,α, which was a special case of (13) and (14), especially

(C.1)–(C.6) with C+G G G
a1a2a3

(·)’s replaced by −(1/6)νG G G
a1 ,a2,a3

(·)’s (see (8) or Remark 1). That is,

ave
Sλ

{πGB(1)
α (h(1))} = 0 ,

ave
Sλ

{πGB(2)
α (h(1))} =

λ

2p1
{UC

1,αgp1+2(χ2
p1,α; 0) + (U210 + U220χ

2
p1,α)gp1+4(χ2

p1,α; 0)}+ O(λ2) . (16)



4. Main results

4.1. Comparison between GCF and GB

First of all, we are interested in comparing two methods (GCF and GB). We notice that whenever

νG G G
a1,a2,a3

(·)+6C+G G G
a1a2a3

(·) ≡ 0, a1, a2, a3 ∈ {1, . . . , p1}, TGB(N) (with ∆GB
a1a2a3a4

(·) = ∆GB
a1a2a3,k1k2

(·) ≡ 0) is

nothing but TGCF(N) (even for the nonzero ∆GB-functions, they are equivalent in terms of the third-order

average local power; see (C.1)–(C.6)). To avoid trivialities, we therefore consider the case

νG G G
a′1,a′2,a′3

(·) + 6C+G G G
a′1a′2a′3

(·) 6= 0 at least one (a′1, a
′
2, a

′
3); a′1, a

′
2, a

′
3 ∈ {1, . . . , p1}.

Then, (15) and (16) immediately yield:

Theorem 2 Let T (N) ∈ TN,3. Then

lim
λ→0

1
λ

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GCF(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GB(N) > χ2
p1,α]

)}

=
1
p1
{(UC

21 − U21) + (UC
22 − U22)χ2

p1,α}gp1+4(χ2
p1,α; 0) ,

so that this limit is positive (negative) for small α, if UC
22 > U22 (UC

22 < U22).

Letting C+G G G
a1a2a3

(·) ≡ 0, a1, a2, a3 ∈ {1, . . . , p1} (i.e., UC
22 = 0), we have:

Corollary 3 If νG G G
a1,a2,a3

(·) ≡ 0, a1, a2, a3 ∈ {1, . . . , p1}, then

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GCF(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GB(N) > χ2
p1,α]

)}
= 0 .

On the other hand, if νG G G
a′1,a′2,a′3

(·) 6= 0 at least one (a′1, a
′
2, a

′
3); a′1, a

′
2, a

′
3 ∈ {1, . . . , p1}, then −U22 > 0;

lim
λ→0

1
λ

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GCF(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GB(N) > χ2
p1,α]

)}

=
1
p1
{(−U21) + (−U22)χ2

p1,α}gp1+4(χ2
p1,α; 0) > 0

for small α. Hence, in general, the RGCF(N)-test is locally superior to the RGB(N)-test (here, ‘locally’

means that both λ > 0 and 0 < α < 1 are small).

This finding is a substantial extension of Rao and Mukerjee [23, 24] to the framework of a composite

hypothesis about a subvector of the parameters. Note that the GCF-adjusted test does not always

outperform the GB-adjusted test; for example, assuming that νG G G
a1,a2,a3

(·) ≡ 0, a1, a2, a3 ∈ {1, . . . , p1}
(i.e., U22 = 0), then, the TGB(N)-test is locally superior to the TGCF(N)-test, whenever T (N) ∈ TN,3 has

the C-functions such that C+G G G
a′1a′2a′3

(·) 6= 0 at least one (a′1, a
′
2, a

′
3); a′1, a

′
2, a

′
3 ∈ {1, . . . , p1} (i.e., UC

22 < 0).

4.2. Optimality of the GCF-adjusted Rao test in a class of the GCF or GB-adjusted tests

From (15) (or (16)), the optimality of the adjusted Rao test about a subvector of the parameters

can be established. The point is that for the subclass
⋃

c∈R T c
N,3(⊂ TN,3), the scalar c in (5) and the

C+-functions C+G G G
a1a2a3

(·)’s, given by the formulas (7), play a crucial role to discuss the third-order

optimality in the present set-up, which is contrast to Kakizawa [13] with the identical C+-functions;

C+G G G
a1a2a3

(·) = −(1/6)νG G G
a1 ,a2,a3

(·) = LRC+G G G
a1a2a3

(·), a1, a2, a3 ∈ {1, . . . , p1}.



Theorem 4 Let T (N) ∈ T c
N,3. Then

lim
λ→0

1
λ

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GCF(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GCF(N) > χ2
p1,α]

)}

=
1
p1

[U1,α(c)gp1+2(χ2
p1,α; 0) + {(−UC

21) + (−UC
22)χ

2
p1,α}gp1+4(χ2

p1,α; 0)] ,

where

U1,α(c) = −cνb1,b2
(11·2)ν

b3,b4
(11·2)MG G G G

b1b2,b3b4
+

χ2
p1,αc2

p1 + 2
νb1,b2
(11·2)ν

b3,b4
(11·2)〈3〉MG G G G

b1b2,b3b4
.

Remark 3 (Theorem 4 (iii) in [13] as a particular case) Let T (N) ∈ T c
N,3. Then, (16) implies that

lim
λ→0

1
λ

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GB(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GB(N) > χ2
p1,α]

)}

=
1
p1

U1,α(c)gp1+2(χ2
p1,α; 0) .

We recall that the coefficients of χ2
p1,αgp1+2v(χ2

p1,α; 0), v = 1, 2 in Theorem 4 are nonnegative, i.e.

−UC
22 ≥ 0 and νb1,b2

(11·2)ν
b3,b4
(11·2)〈3〉MG G G G

b1b2,b3b4
= Eθ† [{tr(L⊥

2 B)}2] + 2Eθ† [tr{(L⊥
2 B)2}] ≥ 0 ,

where B(θ) is defined in (1) and L⊥
2 (X,θ) = [ℓ⊥j1j2(X,θ)− νj1j2(θ)]j1,j2∈{1,...,p}, with

ℓ⊥j1j2(X,θ) = ℓj1j2(X,θ)− νj1j2,k(θ)νk,k′(θ)ℓk′(X,θ) .

Therefore, Theorem 4 demonstrates that the GCF-adjusted Rao test RGCF(N) > χ2
p1,α, with c = 0 and

C+G G G
a1a2a3

(·) ≡ 0, a1, a2, a3 ∈ {1, . . . , p1}, is, in general, locally optimal in a class of the GCF-adjusted

tests; TGCF(N) > χ2
p1,α for T (N) ∈ ⋃c∈R T c

N,3. From (12), this optimality holds even for the size-adjusted

tests based on Cornish-Fisher’s type expansion, which is an extension of Mukerjee [21] to the framework

of a composite hypothesis about a subvector of the parameters.

This kind of result is consistent with Kakizawa [13], i.e., Remark 3 tells us that the GB-adjusted Rao

test RGB(N) > χ2
p1,α (or MRGB(N) > χ2

p1,α), with c = 0, is, in general, locally optimal in a class of the

GB-adjusted tests; TGB(N) > χ2
p1,α for T (N) ∈ ⋃

c∈R T c
N,3. However, using the GB-adjustment, it was

impossible to discriminate any test statistic belonging to the subclass T c
N,3, i.e.

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GB(N)
1 > χ2

p1,α]− P
(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [T

GB(N)
2 > χ2

p1,α]
)}

= 0

for any T
(N)
1 , T

(N)
2 ∈ T c

N,3 (e.g. R(N),MR(N) ∈ T 0
N,3 or W(N),MW(N), grad(N) ∈ T 1

N,3; see (6)). Also,

any GB-adjusted test TGB(N) > χ2
p1,α for T (N) ∈ ⋃c∈R T c

N,3 has the identical third-order average power

if Mj1j2,j3j4(·) ≡ 0, j1, j2, j3, j4 ∈ {1, . . . , p} (see Theorem 4 (ii) of [13]).

On the other hand, using the GCF-adjustment, even if Mj1j2,j3j4(·) ≡ 0, j1, j2, j3, j4 ∈ {1, . . . , p}, we

have

lim
λ→0

1
λ

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GCF(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [MRGCF(N) > χ2

p1,α]
)}

> 0

for small α, if (〈3〉/3)νG G G
a′1a′2,a′3

(·) + (1/2)νG G G
a′1 ,a′2,a′3

(·) 6= 0 at least one (a′1, a
′
2, a

′
3); a′1, a

′
2, a

′
3 ∈ {1, . . . , p1}

(note that if (〈3〉/3)νG G G
a1a2,a3

(·) + (1/2)νG G G
a1 ,a2,a3

(·) ≡ 0, a1, a2, a3 ∈ {1, . . . , p1}, then

ave
Sλ

{
lim

N→∞
N
(
P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [R

GCF(N) > χ2
p1,α]− P

(N)

θ†+N−1/2(h′
(1)

,0′p2
)′ [MRGCF(N) > χ2

p1,α]
)}

= 0 ,



since MR(N) ∈ T 0
N,3 has the C+-functions; −{(〈3〉/3)νG G G

a1a2,a3
(·)+(1/2)νG G G

a1 ,a2,a3
(·)}, a1, a2, a3 ∈ {1, . . . , p1}).

Combining Theorem 4, Remark 3, and Corollary 3, together with the identity (12), we establish the

following result which considerably strengthens the finding in Kakizawa [13].

Theorem 5 The GCF-adjusted Rao test RGCF(N) > χ2
p1,α (or the size-adjusted Rao test based on

Cornish-Fisher’s type expansion) is, in general, locally optimal in a class of the TGCF(N)-tests (or

the size-adjusted T (N)-test based on Cornish-Fisher’s type expansion) and the TGB(N)-tests for any

T (N) ∈ ⋃c∈R T c
N,3.

5. Concluding remarks

We notice that an adjusted LR test statistic [20] considered in the N−1/2-level does not belong to the

class TN,2, which is the class TN,3 (see (3)) with the omission of the Op(N−1)-term. Thus, letting

Mj(·) =
1
2
{νrr′,j(·) + νr,r′,j(·)}νr,r′

(22)(·) , j = 1, . . . , p , (17)

the class TN,3 may be enlarged to the class TN,3,M , as follows:

T
(N)
M = T

(N)
3rd,M +

1
N3/2

o(N)
θ† (1 + ξ, β) for some fixed β > 0 and ξ ≥ 0, (18)

where

T
(N)
3rd,M = T

(N)
3rd +

2
N1/2

M̃G
b1

[ν̃−1
(11·2)Z̃

(N)
(1) ]b1

+
2
N

(1
2

M̃G
b1

ν̃b1,b2
(11·2)M̃

G
b2

+ MD̃G G
b1b2

2∏

i=1

[ν̃−1
(11·2)Z̃

(N)
(1) ]bi

+ MD̃G
b1,k1k2

Z̃
(N)
k1k2

[ν̃−1
(11·2)Z̃

(N)
(1) ]b1

)
. (19)

Here, the additional D-functions MDj1j2(·) = MDj2j1(·) and MDj1,k1k2(·), which may vary from one

test statistic to another, are assumed to be of class C1(Θ), such that MDj1j2(·) = MDj1,k1k2(·) ≡ 0 if

Mj(·) ≡ 0, j = 1, . . . , p. The choice (17) is related with the so-called adjusted profile likelihood inference

(e.g. [4, 6]), as pointed out by Mukerjee [20] (see also [12]). Using the conditional likelihood approach,

Mukerjee [16, 18] and Ghosh and Mukerjee [7] essentially considered (18) and (19) under the global

parameter orthogonality (with p1 = 1). Thus, strengthening the results [7, 16, 18], it is hoped that the

finding in the present paper would be extended to the class TN,3,M of test statistics from the adjusted

profile inference. The details on this topic will be reported elsewhere.

Finally, it would be interesting in future to make a small sample comparison. After seminal papers by

Chandra and Mukerjee [2], Cordeiro and Ferrari [3], and Taniguchi [25], many researchers in this area (the

reference lists from past decades are found in [13]) often have reported the Cordeiro-Ferrari Bartlett-type

adjustment, which reveals the finite sample improvements for the Rao and LR tests, where the adjustment

for the LR case is the traditional Bartlett adjustment. Since these researchers’ numerical power analyses

have been done without the third-order asymptotic theory under the contiguous alternative, it is hoped

that our present higher-order average local power analyses would fill up this gap to some extent.
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Appendix A: Outline of the proof of Proposition 1

Recall that (10) admits the stochastic expansion

TGCF(N) = U
Γ2,4,6(N)
a νa,b

(11·2)U
Γ2,4,6(N)
b +

1
N3/2

o(N)
θ† (1 + min(δ/2, ξ),max(9/2, β)) (A.1)

(see [10, 11]) with

U
Γ2,4,6(N)
a = [Z0(N)

(1) ]a +
1

N1/2
UC(N)

a +
1
N

(
UCD(N)

a +
∑

R=2,4,6

Γb1···bR−1a

R−1∏

i=1

[ν−1
(11·2)Z

0(N)
(1) ]bi

)
, (A.2)

a = 1, . . . , p1. Note that (A.2) is a certain polynomial in Z0(N)
(1) = G′Z(N), ρ0(N) = ν−1

(22)Z
(N)
(2) , and

[Z⊥(N)
j1j2

, Z
⊥(N)
j1j2j3

]j1,j2,j3∈{1,...,p}, where Z
⊥(N)
j1···jR

= Z
(N)
j1···jR

− νj1···jR,kν
k,k′Z

(N)
k′ , R = 2, 3. As in Kakizawa [13],

(A.1) implies

TGCF(N) = U
Γ2,4,6(N)
a νa,b

(11·2)U
Γ2,4,6(N)
b +

1
N3/2

o(N)

θ†(N)(1 + min(δ/2, ξ),max(9/2, β)) , (A.3)

where

θ†(N) = θ† + N−1/2h .

Then, by making use of Chibisov’s lemma applied to (A.3) (see [14]), the non-null distribution of TGCF(N)

admits the third-order asymptotic expansion which is the same as that of U
Γ2,4,6(N)
a νa,b

(11·2)U
Γ2,4,6(N)
b ,

obtained via the Bhattacharya and Ghosh argument [1] (see e.g. [11, 13]) by computing the non-null

cumulants of (A.2) up to o(N−1), as follows:

E
(N)

θ†(N) [U
Γ2,4,6(N)
a1 ] = ν(11·2)a1,⋄ +

κ̇C
a1

N1/2
+

κ̇CD
a1

N

+
1
N
{Γ⋄a1 + (〈3〉Γ⋄bb′a1ν

b,b′

(11·2) + Γ⋄⋄⋄a1)

+(〈15〉Γ⋄b1b′1b2b′2a1
ν

b1,b′1
(11·2)ν

b2,b′2
(11·2) + 〈10〉Γ⋄⋄⋄bb′a1ν

b,b′

(11·2) + Γ⋄⋄⋄⋄⋄a1)}
+o(N−1) ,

Cov
(N)

θ†(N)(U
Γ2,4,6(N)
a1 , U

Γ2,4,6(N)
a2 ) = ν(11·2)a1,a2

+
κ̇C

a1,a2

N1/2
+

κ̇CD
a1,a2

N

+
〈2〉
N

{Γa1a2 + (〈3〉Γbb′a1a2ν
b,b′

(11·2) + 〈3〉Γ⋄⋄a1a2)

+(〈15〉Γb1b′1b2b′2a1a2
ν

b1,b′1
(11·2)ν

b2,b′2
(11·2) + 〈30〉Γ⋄⋄bb′a1a2ν

b,b′

(11·2)

+〈5〉Γ⋄⋄⋄⋄a1a2)}+ o(N−1) ,

Cum
(N)

θ†(N)(U
Γ2,4,6(N)
a1 , . . . , U

Γ2,4,6(N)
a3 ) =

κC
a1,a2,a3

N1/2
+

κ̇CD
a1,a2,a3

N

+
〈3!〉
N

{〈3〉Γ⋄a1a2a3 + (〈30〉Γ⋄bb′a1a2a3
νb,b′

(11·2) + 〈10〉Γ⋄⋄⋄a1a2a3)}
+o(N−1) ,

Cum
(N)

θ†(N)(U
Γ2,4,6(N)
a1 , . . . , U

Γ2,4,6(N)
a4 ) =

κCD
a1,a2,a3,a4

N
+
〈4!〉
N

{Γa1a2a3a4

+(〈10〉Γbb′a1a2a3a4ν
b,b′

(11·2) + 〈10〉Γ⋄⋄a1a2a3a4)}+ o(N−1) ,

Cum
(N)

θ†(N)(U
Γ2,4,6(N)
a1 , . . . , U

Γ2,4,6(N)
a5 ) =

〈5!〉
N

〈5〉Γ⋄a1a2a3a4a5 + o(N−1) ,

Cum
(N)

θ†(N)(U
Γ2,4,6(N)
a1 , . . . , U

Γ2,4,6(N)
a6 ) =

〈6!〉
N

Γa1a2a3a4a5a6 + o(N−1)



with the forms

κ̇C
a1

= κC
a1

+ κ
C〈2〉
a1 , κ̇C

a1,a2
= κ

C〈1〉
a1,a2 ,

κ̇CD
a1

= κ
CD〈1〉
a1 + κ

CD〈3〉
a1 , κ̇CD

a1,a2
= κCD

a1,a2
+ κ

CD〈2〉
a1,a2 , κ̇CD

a1,a2,a3
= κ

CD〈1〉
a1,a2,a3 .

(A.4)

The null cumulant coefficients κC
a1

’s, κCD
a1,a2

’s, κC
a1,a2,a3

’s, and κCD
a1,a2,a3,a4

’s, together with the expressions in

(A.4) with superscript 〈i〉, being homogeneous polynomials of degree i in h = (h1, . . . , hp)′, are available

from Kakizawa [13].

In this way (the details are omitted here to save space), we have

P
(N)

θ†(N) [T
GCF(N) > x] = 1−Gp1(x;h′(1)ν(11·2)h(1)) +

2∑

ℓ=1

2
N ℓ/2

3ℓ∑

v=1

Q̇(ℓ)
v (h)gp1+2v(x;h′(1)ν(11·2)h(1))

+
2
N
{Γb1b2ν

b1,b2
(11·2)gp1+2(x;h′(1)ν(11·2)h(1))

+ (3Γb1b2b3b4ν
b1,b2
(11·2)ν

b3,b4
(11·2) + Γ⋄⋄)gp1+4(x;h′(1)ν(11·2)h(1))

+ (15Γb1b2b3b4b5b6ν
b1,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2) + 6Γ⋄⋄bb′ν

b,b′

(11·2))gp1+6(x;h′(1)ν(11·2)h(1))

+ (45Γ⋄⋄b1b′1b2b′2
ν

b1,b′1
(11·2)ν

b2,b′2
(11·2) + Γ⋄⋄⋄⋄)gp1+8(x;h′(1)ν(11·2)h(1))

+ 15Γ⋄⋄⋄⋄bb′ν
b,b′

(11·2)gp1+10(x;h′(1)ν(11·2)h(1))

+ Γ⋄⋄⋄⋄⋄⋄gp1+12(x;h′(1)ν(11·2)h(1))}
+o(N−1) , (A.5)

where

Q̇(1)
1 (h) = −1

2
(ν G

rr′,⋄ + ν G
r,r′,⋄ )νr,r′

(22) −
1
6

(3νGGG⋄ ⋄,⋄ + 2νG G G⋄,⋄,⋄ ) +
1
2

(2ν G G
•⋄,⋄ + ν G G

•,⋄,⋄ ) ,

Q̇(1)
2 (h) =

1
2

(νG G G⋄,b,b′ + 6C+GGG
⋄ b b′)ν

b,b′

(11·2) +
1
6

νG G G⋄,⋄,⋄ Q̇(1)
3 (h) =

1
6

(νG G G⋄,⋄,⋄ + 6C+GGG
⋄ ⋄ ⋄ )

(we used the notation Q···•··· = Q···j···hj). The remaining coefficients Q̇(2)
v (h)’s have the forms

Q̇(2)
v (h) =





βCD
v +

3∑

i=1

Q̇(2)
v〈2i〉 , v = 1, 2 ,

βC
3 +

3∑

i=1

Q̇(2)
3〈2i〉 , v = 3 ,

3∑

i=v−3

Q̇(2)
v〈2i〉 , v = 4, 5, 6 ,

where the closed-form expressions of Q̇(2)
v〈2i〉’s, being homogeneous polynomials of degree 2i in h, are

available from the author.

On the other hand, Kakizawa [11] showed that (11) holds iff

0 ≡ βCD
1 (·) + Γb1b2(·)νb1,b2

(11·2)(·) , (A.6)

0 ≡ βCD
2 (·) + 3Γb1b2b3b4(·)νb1,b2

(11·2)(·)ν
b3,b4
(11·2)(·) , (A.7)

0 ≡ βC
3 (·) + 15Γb1b2b3b4b5b6(·)νb1,b2

(11·2)(·)ν
b3,b4
(11·2)(·)ν

b5,b6
(11·2)(·) . (A.8)

Thus, Proposition 1 is shown by letting h(2) = 0p2 in (A.5). 2



Appendix B: Auxiliary lemma

In deriving the third-order average local power along Sλ = {h(1) ∈ Rp1 : h′(1)ν(11·2)h(1) = λ}, λ > 0,

we need to evaluate aveSλ
{P(h(1))}, where P(·) is a polynomial.

Lemma B.1 Suppose that Qa1···av ’s are independent of h(1) = (h1, . . . , hp1)
′. Then

ave
Sλ

(
Qa1···av

v∏

i=1

hai

)
= 0 , v = 1, 3 ,

ave
Sλ

(
Qa1a2

2∏

i=1

hai

)
=

λ

p1
Qa1a2ν

a1,a2

(11·2) ,

ave
Sλ

(
Qa1a2a3a4

4∏

i=1

hai

)
=

λ2

p1(p1 + 2)
Qa1a2a3a4〈3〉νa1,a2

(11·2)ν
a3,a4

(11·2) ,

ave
Sλ

(
Qa1a2a3a4a5a6

6∏

i=1

hai

)
=

λ3

p1(p1 + 2)(p1 + 4)
Qa1a2a3a4a5a6〈15〉νa1,a2

(11·2)ν
a3,a4

(11·2)ν
a5,a6

(11·2) .

Proof. We define

∆(1) = (∆1, . . . ,∆p1)
′ = λ−1/2ν

1/2
(11·2)h(1) and Qa1···av = Qa′1···a′v [ν−1/2

(11·2)]a′1a1
· · · [ν−1/2

(11·2)]a′vav .

Then,
∫
Sλ

Qa1···avha1 · · · hav dh(1)∫
Sλ

dh(1)
= λv/2

∫
S Qa1···av∆a1 · · ·∆av d∆(1)∫

S d∆(1)
= λv/2Qa1···avE[Ua1 · · ·Uav ]

with S = {∆(1) ∈ Rp1 : ∆′
(1)∆(1) = 1}, where U(p1) = (U1, . . . , Up1)

′ is distributed uniformly on the unit

sphere surface S in Rp1 (e.g. [5, chapter 2]). Let (Z1, . . . , Zp1)
′ be distributed as N(0p1 , Ip1). Using the

fact that the distribution of N(0p1 , Ip1) is the same as that of RU(p1), where R, being distributed as χp1 ,

is independent of U(p1), we have E[Za1 · · ·Zav ] = E[Rv]E[Ua1 · · ·Uav ], which completes the proof. 2

Appendix C: aveSλ
{PGCF(2)

v (h(1))}’s

We finally present the closed-form expressions for (14), as follows:

ave
Sλ

{PGCF(2)
1 (h(1))} =

λ

2p1
νb1,b2
(11·2)ν

b3,b4
(11·2)C

G G
b1b2,k1k2

M G G
k1k2,b3b4

+
3∑

i=1

λiA1,2i , (C.1)

ave
Sλ

{PGCF(2)
2 (h(1))} =

λ

2p1
[−(CG G

b1b2,k1k2
CG G

b3b4,k3k4
Mk1k2,k3k4 + 2CG G

b1b3,k1k2
CG G

b2b4,k3k4
Mk1k2,k3k4)

+3νr,r′

(22)(ν
G

rr′,b4 + ν G
r,r′,b4)C

+G G G
b1b2b3 + 3C+G G G

b1b2bν
b,b′

(11·2)ν
G G G
b3b4,b′

+6C+G G G
b1b3bν

b,b′

(11·2){2νG G G
b2b4,b′ + νG G G

b2,b4,b′ − (2ν G G
b2b4,b′ + ν G G

b2,b4,b′)}
+6(C+G G G

b1b2b3/b4 − C+G G G G
b1b2b3/b4)]ν

b1,b2
(11·2)ν

b3,b4
(11·2)

+
λ2

2p1(p1 + 2)

[CG G
b1b2,k1k2

M G G
k1k2,b3b4

+νb,b′

(11·2)C
+GGG

b b′b4{3νG G G
b1b2,b3

+ 2νG G G
b1,b2,b3

− 3(2ν G G
b1b2,b3

+ ν G G
b1,b2,b3

)}]〈3〉νb1,b2
(11·2)ν

b3,b4
(11·2)

+
3∑

i=1

λiA2,2i , (C.2)



ave
Sλ

{PGCF(2)
3 (h(1))} =

λ

2p1

{1
4

νb1,b2
(11·2)(ν

G G G
b1,b2,b + 6C+G G G

b1b2b )νb,b′

(11·2)(ν
G G G
b′1,b′2,b′ − 6C+G G G

b′1b′2b′)ν
b′1,b′2
(11·2)

+
1
6

(νG G G
b1,b3,b5

+ 6C+G G G
b1b3b5)ν

b1,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2)(ν

G G G
b2,b4,b6

− 6C+G G G
b2b4b6)

}

+
λ2

2p1(p1 + 2)

[−CG G
b1b2,k1k2

CG G
b3b4,k3k4

Mk1k2,k3k4

+νr,r′

(22)(ν
G

rr′,b4 + ν G
r,r′,b4)C

+G G G
b1b2b3 + 3νG G G

b1b2,b νb,b′

(11·2)C
+G G G

b3b4b′

+3νb,b′

(11·2)C
+GGG

b b′b4{−(νG G G
b1b2,b3

+ νG G G
b1,b2,b3

) + 2ν G G
b1b2,b3

+ ν G G
b1,b2,b3

}
+2(C+G G G

b1b2b3/b4 − C+G G G G
b1b2b3/b4)]〈3〉ν

b1,b2
(11·2)ν

b3,b4
(11·2)

+
λ3

36p1(p1 + 2)(p1 + 4)
{3νG G G

b4b5,b6
+ 2νG G G

b4,b5,b6
− 3(2ν G G

b4b5,b6
+ ν G G

b4,b5,b6
)}

(νG G G
b1,b2,b3

+ 6C+G G G
b1b2b3)〈15〉ν

b1 ,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2)

+
3∑

i=2

λiA3,2i , (C.3)

ave
Sλ

{PGCF(2)
4 (h(1))} =

λ2

p1(p1 + 2)

{1
4

νb1,b2
(11·2)(ν

G G G
b1,b2,b + 6C+G G G

b1b2b )νb,b′

(11·2)(ν
G G G
b′1,b′2,b′ − 6C+G G G

b′1b′2b′)ν
b′1,b′2
(11·2)

+
1
6

(νG G G
b1,b3,b5

+ 6C+G G G
b1b3b5)ν

b1,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2)(ν

G G G
b2,b4,b6

− 6C+G G G
b2b4b6)

}

+
λ3

12p1(p1 + 2)(p1 + 4)
{−(νG G G

b4b5,b6
+ νG G G

b4,b5,b6
) + 2ν G G

b4b5,b6
+ ν G G

b4,b5,b6
}

(νG G G
b1,b2,b3

+ 6C+G G G
b1b2b3)〈15〉ν

b1 ,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2)

+λ3A4,6 , (C.4)

ave
Sλ

{PGCF(2)
5 (h(1))} =

λ3

72p1(p1 + 2)(p1 + 4)

(νG G G
b1,b2,b3

+ 6C+G G G
b1b2b3)(ν

G G G
b4,b5,b6

− 6C+G G G
b4b5b6)〈15〉ν

b1 ,b2
(11·2)ν

b3,b4
(11·2)ν

b5,b6
(11·2) , (C.5)

ave
Sλ

{PGCF(2)
6 (h(1))} = 0 , (C.6)

with Av,2i’s being independent of λ > 0, T (N) ∈ TN,3, and [Γa1···aR
(·)]a1 ,...,aR∈{1,...,p1}, R = 2, 4, 6.
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