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Abstract

The Bartlett-type adjustment is a higher-order asymptotic method for improving the chi-squared
approximation to the null distributions of various test statistics, which ensures that the resulting test
has size a+o(IN 1), where 0 < o < 1 is the significance level and N is the sample size. We continue our
recent works on the third-order average local power properties of several Bartlett-type adjusted tests.
Strengthening the results in the 90s, the third-order optimality of the adjusted Rao test in a sense has
been established even if both the interest parameter and the nuisance parameter are multi-dimensional.

We briefly discuss adjusted profile likelihood inference for handling the nuisance parameter.

AMS subject classifications: 62E20, 62F03, 62F05.
Keywords: Asymptotic expansion, Bartlett-type adjustment, local alternative, local power of test,

nuisance parameter.

1. Introduction

We continue our recent works [10, 11, 12, 13] on higher-order asymptotic theory of several statistics
for testing a composite hypothesis about a subvector of parameters. Here, the N ~i/2_term is referred
to as being the (i + 1)th-order, where N is the sample size. A detailed historical review for comparing
higher-order local powers, starting from the second-order local power analyses [22], is omitted here to
save space; see Kakizawa [13] and the references cited therein.

In the absence of nuisance parameter, Mukerjee [17, 19] established that Rao’s (score) test under the
third-order conditions of size and local unbiasedness has the third-order optimality in terms of average
local power criterion. Mukerjee [21] additionally showed that Rao’s test even in the original form (not
being adjusted for local unbiasedness and only the size condition is being retained) has the third-order
optimality, where we observe that ‘the test in the original form’ is nothing but the size-adjusted test with
substitution of Cornish-Fisher’s type expansion for the percentile. On the other hand, not much work
has yet been reported on the third-order local power properties in the presence of nuisance parameter,
except that Mukerjee [16, 18] attempted to discuss the third-order optimality of Rao’s (adjusted) test
under the assumption of the global parameter orthogonality for the situation where both the interest
parameter and the nuisance parameter are scalar. He mentioned that the same argument is applicable
even when the nuisance parameter is multi-dimensional.

The present paper addresses the comments in the review paper [19] that

if both the interest parameter and the nuisance parameter be multi-dimensional, then, as noted in Cox
and Reid, one may not in general be able to achieve an orthogonal parameterization. Anyway, it is

strongly believed that the results discussed here should have their counterparts even in such a situation.
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As a companion paper to Kakizawa [13], we are primarily concerned with the third-order local power
properties of several Bartlett-type adjusted tests. The Bartlett-type adjustment dates back to different
three methods proposed by Chandra and Mukerjee [2], Cordeiro and Ferrari [3], and Taniguchi [25] in
alphabetical order. It is a higher-order asymptotic method for improving the chi-squared approximation
to the null distributions of various test statistics, which ensures that the resulting test has size a+o(N 1),
as in the size-adjusted test based on Cornish-Fisher’s type expansion for the percentile, where 0 < o < 1
is the significance level. Rao and Mukerjee [23, 24] have compared the third-order point-by-point local
powers of three Bartlett-type adjustments [2, 3, 25] for the simple hypothesis on a scalar parameter.
In recent years, there have been renewed interests [9, 10, 11] due to the existence of infinitely many
Bartlett-type adjustments for the multi-parameter hypothesis testing.

By constructions (see Definitions 1 and 2 in Section 2), it will be convenient for us to define two types
separately. One is the generalized Bartlett-type adjustment (for short GB). The other is the generalized
Cordeiro-Ferrari Bartlett-type adjustment (for short GCF). We denote by TGBW) and 7GCF(V ) the GB
and GCF adjustments for a likelihood-based test statistic TN) € Tjy 3 under consideration (see (3) below).
Kakizawa [13] derived the third-order average local power of the GB-adjusted test T GB(N) > Xzzn,ou where
X1271,a is the upper a-point of the central chi-squared distribution with p; degrees of freedom, and then
established that even if both the interest parameter and the nuisance parameter are multi-dimensional, the
GB-adjusted Rao test has the third-order optimality. So, Mukerjee’s conjectual statement, as mentioned
before, may be solved in a sense. However, we know that Rao’s test statistic has many variants; e.g.
R™) and MR™W) (see (2) below), for which the adjusted tests REBIY) > Xp,.o and MREBOY) > X o
have the identical average local power up to the third-order. That is, the GB adjustment smooths out
the distinctive features between R™) and MR(®Y)| and hence it may be more interesting to compare them
(announced at the end of Section 4 of [13]). This is the reason why we need to have further discussion,
on the basis of the GCF adjustment.

The contribution of the present paper is three fold. First, our results allow both the interest parameter
and the nuisance parameter to be multi-dimensional, for which there is no assumption regarding the
global parameter orthogonality. Second, we elucidate that the adjusted Rao tests RECF(N) > Xf,ha and
MRGCFWN) X1271,a are, generally, discriminated in terms of the third-order average local power, and
that the former test RECF(N) > xf,l,a has the third-order optimality in a large class of the GB and
GCF-adjusted tests. Third, we briefly discuss adjusted profile likelihood inference (e.g. [4, 6]), which
represents an important tool for handling the nuisance parameter.

Although we focus on the iid case for notational simplicity, we arrive at the same conclusions even
in a non-iid case where some regularity conditions are met for the log-likelihood derivatives according
to the situations under consideration. We retain throughout this paper the notation and conventions
of Kakizawa [13] (see also [10, 11]). The rest of this paper is organized as follows. Section 2 contains
the notation to be used throughout this paper. Section 3 derives an asymptotic expansion formula for
the (average) local power of the GCF-adjusted test TCCF(N) > X;Zal,a- Section 4 describes main results.

Concluding remarks are given in Section 5.



2. Bartlett-type adjustments
2.1. Notation

We denote by PQ(N) the @-distribution of X;,..., Xy, which are iid random vectors (taking values of
R%x) according to a density f(x,0), 8 € ©® C RP. For any sequence {Y (M)} ~N>1 of random variables
having the form YV = gn(X1,...,Xy), we use the pointwise notation YN = oéN) (¢, B) under P(,(N),
if PQ(N)[|Y(N)| > d(logN)?] = o(N~9) as N — oo for some d > 0, ¢ > 0, and 8 > 0. In what
follows, we assume the same regularity conditions as in Kakizawa [13]. Suppose that the parameter
0 = (01,...,0p) is composed of two parts, a parameter of interest 0y = (01, .. ,0p,) and a nuisance
parameter 8(g) = (Op,+1,- -, 0p14p,)'s 0 = (8(1),0(3)) € © = Oy x Oy (say), where p = p1 + pa.
We write £LV)(0) = SN log f(X;,0). We want to test a composite hypothesis 01y = 0(1)0 against
01) # 0(1)0, where 6(1)q € ©(y) is specified while 6,) € ©(y) remains unspecified. Let @1(\/][\9 € O be the
(unrestricted) maximum likelihood estimator (MLE) of 6, and let 6&;\;1)\@ € ©(y) be the restricted MLE

of 83y under the constraint 61y = 6(1)p. We write

A(N)
s O S(V) g 010
O\, = ( o) ) ;o Our = Agll\)fl)WL , and 6 = ( 9%) €06,
(2)ML (2)ML 2)

with 012) being the irrelevant true value of the nuisance parameter 6 ;). For any (nonrandom/random)

scalar or vector or matrix function Q(-), we use the notation Q, Q, and Q instead of Q(@f\ﬁ)), Q(?)&VL)),

and Q(0"), respectively.
The Rth partial derivative of the log density log f(x,0) with respect to 6 is denoted by

0 0
ejl“'jR(X70) = W to 89]‘
R

log f(x,0)

for R € N; j1,...,jr € {1,...,p}. We introduce Ip = j; --- jgr for notational simplicity and denote the
cumulants of the ¢;,(X,0)’s with respect to X ~ f(-,0) by

VIR, IR, (6) = Cum@[ele (X,0),... 7€IR,, (X, 0)]

(descending order Ry > --- > R, > 1 on the size R; = |Ig,| is assumed, since VI, Iy (0) is symmetric

-----

under permutation of {Ig,,...,Ir, }). We assume that
Vi (0)=0, Vj1j2(0) + V1 jo 0)=0, Vjij23s () + <3>Vj1j27]'3 (6) + Vj1,52,53 (6) =0,
Vjjzjsja(0) + () Vj15ags,ia(0) + (3)Vj1ja jaja (0) + (6)Vj1js,5,ja (0) + Vi o, js,5a (0) = 0
for all @ € ©, where (n) before a term with indices is a sum of n similar terms obtained by index

permutation. These Bartlett identities for the cumulants enable us to eliminate v}, ;,(0), v}, j,5,(0), and

Vjijajsja(6) in subsequent calculations. We write

1 N
17z 2 i (X3, 0), R=1
(V) (6) = i=1
J1JR 1

N
N1/2 Z{Ejl“'jR(Xi7 0) —vji.jr(0)}, R=23.
i=1



According to the partition 8 = (6 (1) 0(2)) we stack the element ZJ(N)(H) and v} ;(0) = —v;,(0) as

(V)
(V) g1 (2@ e _ [ van(8) vraz(0)
1Z(0)]j=1,...0 = ( 200 d kO keqr,..py = Vo (0) v (0) )

They are the p x 1 score vector Z(™)(8) and the p x p Fisher information matrix v(8) = Vary[L (X, 8)],
respectively, where L(X,0) = [(;(X,0)];=1,. . Here, there is no assumption regarding the global
parameter orthogonality v/(12)(-) = Oy, p,, where Oy, p, is the p; X py zero matrix.

We employ standard summation convention that if an index occurs twice in a product of two or more
terms, then this means the summation over all values which this index may assume. Unless otherwise
stated, we use the letters {j, k} as indices of @ that run from 1 to p, the letters {a, b} as indices of 6 ;) that
run from 1 to p1, and the letters {r, s} as indices of 6 (2) that run from p; +1 to p. We denote by Vj’k(é’)
the (4, k)th element of »~1(0), where we assume that () is nonsingular. Let [v (22)(0)],"’56{1,1“7“_4)} be
the inverse of the matrix v/(32)(8) = [115(0)], sefpi+1,...p}- We denote by V(H.Q)(O) the (a,b)th element of

(11 2) (0), where

V(11-2)(9) = [V(11-2)a,a’(9)]a,a'e{1,...,p1} =Vm) (0) — V(12)(9)V(_212) (9)’/(21) (0).
Further, we denote by G;,(0) the (j,a)th element of

I
0) = _ P1 ’
g(9) ( —u(212)(0)y(21)(0) )
where I, is the p1 x p; identity matrix. We note v(11.9)(8) = G'(8)v(0)G(6) and

!/ — O 1,P1 O 1,P2
GO 000 =0 - (G 20t ) <o) (o) 0

2.2. A class of test statistics

To cover the likelihood ratio (LR) test statistic, two variants of Rao’s and Wald’s test statistics as well

as Terrell’s gradient test statistic [26];

_ _ - (V)
LR = 2(ZN) — L0 grad™) = (Z{})) N8y, — 01y0),
Ny y ~(N) ~(N)
RV — (Zgn )P 2>ZEl>), W = N (@ — 01)0) D) (O — Oay) - @)

L2 (V) W)
MR = (205 2y . MW = N(O(yu — 010) Par2) (O, — o)

Kakizawa [10, 11, 13] considered a class 7x 3 of test statistics for testing the null hypothesis 1) = (1)
against 61y # 0(1), as follows: Every test statistic TN = Tn(X1,...,XnN;031)) € Tnz admits a

stochastic expansion of the form

1
TWN) = TS(TJX) N2 (SJTV)( +&,8) for some fixed 3,€ > 0, (3)
where
3 2
(N) A B A ) ~1 7(N) ~(N) -1 7(N)

T34 —(Z(1) )/ (111 2)H(1) N1/2 (Cbg1bzb3 H[ (111 -2) (1)] Cbglng k1k22k1k2 H[ (111 -2) (1)] )

i=1 i=1
4

2 -
Nngagg ~7(N) NngaGg
{ b1b2b3b4 H (11 2) (1) b + (Db1b2b3 klkszlkz + Db1b2b3 kik2ks klkzka) H (11 2) (1)

= N N N
+Dbg1bgg,k1k2,k3k4zl(€1k)2Z/E’sk)zlA [ (1112) El))] } (4)

1=1



(hereafter, [v]; sometimes stands for the ith element v; of any vector v),

Cglaggagg( ) j1]2]3( )g]1,a1( )gj27a2(')gj3,a3(') > Caglgz,klkg(') = lejz,klkz(‘)gjhal(')gjz,az(') .

We adopt similar definitions for DY 999 (.), Dfliag&kl,“kv(), Dg1gz,k1k2,k3k4<')’ and so on. Notice
that 3,&, C-functions; Cj, j,j;(-)’s and Cj, j, g1k, (+)’s, and D-functions; Dy, jyjsia(1)'S; Djyjojskrky (),
and Dj, j, kikokaks(-)’s may vary from one test statistic to another, where these C(or D)-functions
are of class C?(@) (or C!(®)). Without loss of generality, we assume that Cj,jyjs(*), Cjriskiks(*)s
Djijoizia(4)s Diigoja ko ()s a0d Dy gy kiko kaks (-) are symmetric under permutation of {j1, j2, js,ja} and
that Dy j, kika ksk (1) = Dijyja kska krks ()

Note that all test statistics in (2) are members in U.cg 7y 3, where 7y 5 is a subclass of 7 3 consisting

of those members in 7y 3 for which C’glag%klkz(-), aj,az € {1,...,p1}, k1,ke € {1,...,p} have the form

C
5 taka () = 5 (G101 (VGaian () + Gt a (Va9 (5)
with ¢ being a constant. Especially, we have
1
CRao = CmodifiedRao = 0, CLR = 5 CWald = Cmodified Wald = Cgradient = 1 (6)

for the LR, Rao’s, Wald’s, and Terrell’s gradient test statistics.

2.8. GB and GCF adjustments

From now on, unless otherwise stated, the term with superscript C' (or C'D) indicates that it depends
on the C (or C, D)-functions of TN) € Ty 3. We define
GGG 3)
C+a1a2a3(') = Cglgzt%(') + 5 3 Cc?152,k1k2( )Vk1k2gs('> » Q1,02,03 € {1’ e 7p1} .
It is esay to see (e.g. [10, 12]) that the expressions for the C"-functions for the LR, Rao’s, Wald’s, and

Terrell’s gradient test statistics are respectively given by

G666 1 4960 1
LRc+a1a2a3<') = 76 Vgg,17527g3(') ) gradientC a1a2a3( ) - 75 <3>Vg1ag2 ( ) + 31/(%1,32,53( )}7
G696, _ GG ¢ 1
Raoc+a1a2a3( ) = 07 Waldc+a1a2a3( ) - _6 {<3> aglagz,ag3( ) + 3”51,52,23(')}? (7)
GGG 1 G 1
modified Raoc+a1a2a3(’) = _6{2<3>Uaglc€2,ag,3() + 3 ag,'l,gg,gg( )}7 modlﬁedWaldO a1a2a3( ) = 6 <3>Vaglagg,gg() °

The meaning of the notation of the C*, D*-functions (the definition of DT -function is similar to that of

C-function) will be apparent from (4) by rewritting

~(N) ~(IN) ~ 7 (N)
ZJ1 JR = (% -

G 5-1 V) ~ G  5-1 _
jiein ™ Vjreinbae P12 200) Jori) F Vb P19 20) Jogs . B=2,3.

We are ready to describe the Bartlett-type adjustments [10, 11] for these likelihood-based test statistics.

Definition 1 (GB [10], including the extensions of [2, 25] to the multi-parameter setting as special cases)
With

¢, ()= == (595 () 4607999 ()}, anazase{L,....pi},

aiazas 6 a1,a2,a3 aiazas



we say that

3 4
GB(N N 7N) AGB =1 Z(N)
TEPN) =) + N1/2 Fblbzbs H{ (111 -2) (1) }b + {(F51b2b354 + Abll)2bsb4) H[ (11 2) (1) ]

1=1 =1

3 2
NGB 7(N) ~ 7N) 5—1  Z(N)
+Ab1b2b3yk1k22k1k2 H[ (11 2) (1) ]b + Fblb2 H[V(lll-Q)Z(l) ]bz} (8)

1=1 =1

is the generalized Bartlett-type adjustment of TWN) In g3, if

N _
PVITEB™) < 4] = Pr[x?, < 2] +o(N 1) 9)
(F(%%Q )’s, I‘S’I%ZMM() Ag%2a3a4( -)’s, and Aalaz% k‘lk2( )’s are assumed to be of class CI(G)), with
ASE .a,()'s and Aalawg kiky (1)'s being specified in advance (see [10]).

Definition 2 (GCF [11], including [3] as a special case) We say that

TGCF(N) _ (N>+ S Ty bRH (112;(1) (10)
R 2,4,6

is the generalized Cordeiro-Ferrari Bartlett-type adjustment of 7") e TN, if
N _
PSP ™) < ) = P2, < a] +o(N7Y), (11)
where functions I'y, ..., (-)’s are assumed to be of class C}(©).

The name ‘GCF’ and the idea behind the form of (10) stem from the original proposal in Cordeiro and

Ferrari [3];
2 5% s s
TCF(N) _ |1 = 2 3 T2y 2 2L UpN) N ey
[ {p1(p1 +2)(p1 +4) ( pi(p1 +2) P1 }] A
where
ggg ggg
B0) = o2 [ (08 5.60) + 60 558 WAL (04 5,50 + 60555 Ol O

Gggg b1,b b3,b. bs,b Ggg
+2{vf §.6.() +6CTh 0T (Vs (viits s (O, £, () + 60T o ()} |
and the closed-form expressions for S¢P(-) and B$P(-) are found in Kakizawa [11] ([3] contains the

formulas for the Rao test statistic R(V)).

Remark 1 By definition, we can rewrite (8) as

TGBWN) — 7* N)+— Z Tb1 bRH (112)~(1)
N = 2,4

where

* 2 ~C 2 N
T =T + N1/2 L5605 H[ (11-2) §1))]

=1

4 3
(N — N
{Ab1b2bsb4 H[ (11 2) El))]b + Ab1b2bs,k1kzzlg1k)2 H[ (111 -2) El))] }

=1 =1



is an adjustment (it is still not Bartlett correctable generally; the second-term of T *(N) was introduced
by [12] in order to assert the second-order point-by-point local power identity) for a given TW) ¢ IN3-
That is, T¢B() is regarded as a double adjustment (7%)SCFW) (we set Ty,...q6(-) = 0 in Definition 2),
where, compared to the original form (3), the CY, DY-functions associated with T*(N ) e TN 3 are given

by CE.8.9.() + TS upay () DEGEL () + AT, (s, and DEEE () + A Vs, while the

other CY9, DY-functions are not changed. This interpretation T6B®V) = (T*)GCF(N ) is important, since

the GB adjustment [10] can be treated as the GCF adjustment [11].

a1 aza3,k1ks (

In order to determine the symmetric arrays [FaGlB an(Nar,aneft,...pp» B = 2,4, Kakizawa [10, 13] gave
necessary and sufficient conditions for (9), and then discussed the third-order local power properties of
the resulting GB-adjusted tests, as mentioned in Introduction. On the other hand, Kakizawa [11] gave
necessary and sufficient conditions (see (A.6)—~(A.8)) on the symmetric arrays [, ..ap ()]a;,...anefl,..pi}>
R =2,4,6, such that (11) holds. In what follows, we will investigate the third-order local power properties

of the resulting GCF-adjusted tests.

3. Asymptotic expansion of TGCF(N) ynder a sequence of local alternatives

) = /[)Ig,,(t;wQ)dt

where g, (-;w?) denotes the density function of the noncentral chi-squared distribution with v degrees of
2

We write

freedom and noncentrality parameter w
By a tedious algebra similar to Kakizawa [10, 11, 12, 13], one obtains the following result. The proof,

outlined in Appendix A, is straightforward but becomes much longer than the derivation of asymptotic

expansion [13] for P(,ETNJF)N V2, 0 [TGBWN) > 7], since, by definition (see (8) or Remark 1), T7GB(V)
(1)
g G g GG g
has the identical C*-functions; C* o7 (-) = —(1/6)v5, ,9 () = LRC V¢ apas (), a1,a2,a3 € {1,...,p1}

(such a structure not only led to the second-order point-by-point local power identity but also made
several coefficients for g B(2 )(h(l)) disappear drastically, as shown in [12, 13]). It may be true that
Proposition 1 is very heavy, depending on the C, D-functions associated with T™) e 7; N3, but averaging
this power function (with respect to h(;) along the sphere h’(l)u(u.g)h(l) = )\, where A > 0, it turns out
that the expression (14) below is independent of the D-functions. The emphasis here is on the patterns

in the coefficients for mq CF(z)(h(l)) (rather than the derivation).

Proposition 1 Let TN) € Ty 3. Suppose that (A.6)—(A.8) hold. Then

2
N _
Py sy o p IO > 02, L] = 1= Gy (0, i hyParah) + X w775 7o O b)) +o(N 1)
V4

(1)’ p2)l - N@/Q

for any hqy = (hy, ..., hy,)" € RPY where

3¢
ng O (hey) = 3 PEFO (b)) g 120G, e by raiohe), €=1,2.
v=1



Here,

GCF(1 1 T, 1 1
Pr W b)) = =5 0+ v, sy — 5 (35S +2459) + 5 (288 + 1, 88).

GCF(1 1 GGG\ by 1 GCF(1 1 GGG
Py O )(h(1)> = 2( vigs +6CT hp v Varo T gV vi99, Ps ( )(h(l)) = 6( vi99 +6C7.5,)

(we used the notation Q....... = Q...q...hq for simplicity) and

Plccwz) (h)
73GCF(z) (h

oL+ 0ff) +

CD(2) e (2)

)
OO + QQ[Q ) + Q2[4] + QQ[G] )

6I <><>bb"/ 11 2) + Qg[g] ) + Q (2) + Qgi((f) )

T
(
(45T ooy b byt Vé)llibg) ?121 o+ QC(Q)) + (Poocoo + ng@)) + Qf[g) )
(
(

(€

)
)
,PGCF(Q)( o)
)
)=

GCF(2 (ha

PGCF(Q) (hoy
GC
Py

15F<><><><>bb’l/(11 2) + QC(Q)) + QC(Q) )

h(l) I\<><><><><><> + QG (2))

where the Q(?%i] s (without superscript C or CD), being independent of the C, D-functions, and the Q, g]) ’

and QU[2 @ s, are homogeneous polynomials of degree 2i in hyy (the details are omitted here).

It is worth noting that the third-order point-by-point local power of the Cordeiro-Ferrari adjustment
[3] is the same as that of the size-adjusted test based on Cornish-Fisher’s type expansion for the percentile
(this statement is consistent with [15] on several tests for the admissibility of a subset of instrumental

variables and [8] on the normal-based GMANOVA tests under a non-Gaussian error). That is, we obtain

2 53 2C’D CD

pN) T s 14 2 22 1
OT+N =2 (0,). 0, V{ {1 N <p1(p1 T2t )" 2 p )y
_ p) CF(N N-!
P9T+N 1/2(}](1) p2)/[T ) > .17] + O( ) (12)
as a special case of Proposition 1 with
CF __ ﬁlCD /
Is, = ~ (hiyvargha)),
bb' 5CD
6F<><>bb/V(11 2T T, (hiyvaryhw),
bib,  bob 350
45F<><>b1b’ bab, V(111 2) (121 2) = plg (hl(l)’/(llﬂ)h(l))’
CF QCD / 2
r =———=—(h oh ,
0000 101(}?1 _|_2) ( (HY(112) (1))
150CE vt = __ 30 (b v arah)?
0o00bb! ¥ (11-2) 101(}91 + 2) ¥ ar2)(y) >
PCF _ B?)C

3
BOOCOO _p1(p1 i 2)(p1 n 4) (hl(l)’/(11~2)h(1)) .

Then, it turns out that unless p; = 1, the third-order point-by-point local power of the adjusted test
TOFWY) > Xzzn,a (equivalently the size-adjusted test based on Cornish-Fisher’s type expansion for the
percentile) generally depends on the C, D-functions associated with TW) ¢ 7Tn,3, which contrasts with
Rao and Mukerjee [24].



We now adopt the average criterion [17]. That is, let

Js, m(hq)) dhy)
ave{r(h = 22
be the average of 7(h(;)) along the sphere S\ = {h(;) € R : hl(l)'/(u.z)h(l) = A}, A > 0. Not surprisingly,
we have
3
ave{ng "M (b))} = 3 aye{PI W (h))}gpi420(x5, .05 4) =0 (13)
v=1

(see Lemma B.1). Furthermore, regardless of the infinitely many choices for the symmetric arrays
Casar(Nar,..anefl,..pm}» B =2,4,6 (see [11]), it is shown that

agke{ﬂscm) (b))} = 1}26:13%6{7’50“2) (1))} gp1+20 (X5 05 A) (14)

is independent of the D-functions associated with T!) ¢ T3 (see (C.1)-(C.6) for the details), such that
aye(nS O b))} = 5o (U203 ) + US40, 000} + O0), (15)
Uty =Ufi + U} o and Us, = (Us] — Usi + Uaio) + (Usy — Uz + Uz20) X3,

(we used g, (2;A) = vgy42(7; A) + Aguta(x; A)), where

C _ bibe b3be ~GG Gg ; L kK
U = Varo)Yar 2)Cb162 kb ™Mk bsba (we write M jy jsjs = Viijagsja — VisjakV " Visja k! )s

1
C _ b1:b2 ) bs,ba Gg Gg
U12 - + 2 (11 2) (11 2)< >Cb1b2,k1k2Cb3b4,k3k:4Mklk27k3k4 ’

c _ +6G¢G +6G6GG by GGG
U = [3V(22)( ! b4 t Vg b4)c bibsby T 3C blebV(ll 2)Vb3ba b

+96G b Gg Q 969 g g
+6C bibsbY(11. 2){2’/1;21;4 o T Vg by br (2Vb by b/ b+ Vigou, i)}

41666 GGG G\1 b byb GG g 0 GGG
(C b1babs /by C+b1b2b3/b4)] (111 g)y(fl 3) (We write arazas/k = % C+a1a2a3 (HT))
1
c _ 4666 166G G b1,b2 bs,b4 bs,b6
22— _p1 +4 blbszC b4bsb6<15> ar2)¥a12)¥a12)

Ua,’s are defined as Us,’s with C+§152§3( )’s replaced by —(1/6)1/%52’%3(')’8, and Ug,’s are common for

any T™N) € Ty 5. In the rest of this paper, (15) (and its GB-counterpart (16) below) will be seen to serve

as the basis for the third-order average local power comparison.

Remark 2 ((18)—(22) in [13] as a particular case) Kakizawa [13] obtained the third-order average local
power of the GB-adjusted test TGB(V) > X2,.o» Which was a special case of (13) and (14), especially
(C.1)—(C.6) with ct99 e (-)’s replaced by —(1/6)v9 9 9 (.)’s (see (8) or Remark 1). That is,

aiazas a1,a2,a3

age{WSB(l)(hu))} =0,
A

A
age{WSB(Q) (hay)}y =3~ {Uf a9 +2(xp,.0:0) + (U210 + Uz20X3, 0)9p1 +4(Xp, .03 0)} + O(N?). (16)



4. Main results
4.1.  Comparison between GCF and GB

First of all, we are interested in comparing two methods (GCF and GB). We notice that whenever
v 5860000 =0 ar,az.a5 € {1 pi}, TP (with A =A% =0) is

a1a2a3a4( ) a1a2a3,k1k2(‘)
TGCEWN) (even for the nonzero ASB-functions, they are equivalent in terms of the third-order

nothing but

average local power; see (C.1)—(C.6)). To avoid trivialities, we therefore consider the case

9, 99 ( )+6C+g/g/g/ (1) #0 at least one (a},dy,a}); ay,ab,al €{1,...,p1}.

Then, (15) and (16) immediately yield:
Theorem 2 Let TWN) € Ty 3. Then

m )
/1\12% X %‘Qe{]vlféo N(P9T+N 1/2(n/

1
= p_l {(U261' - U21) + (UQCQ - UZZ)Xpl,a}gp1+4(X;271,a; O) )

GCF(N 2 (V) GB(N 2
[T ( ) > Xpl,a] - P9T+N 1/2 h/(1)7 pz),[T ( ) = Xpl’a]>}

(1)%%2)"
so that this limit is positive (negative) for small o, if UQ% > Upg (UQ% < Up).

Letting C+§1§2§3(-) =0, aj,a,a3 € {1,...,p1} (i.e.,, UG = 0), we have:

Corollary 3 Ifv9 9 9 (1) =0, a1,a,a3 € {1,...,p1}, then

al,a2,a3
: (V) GCF(N) (N) GB(N) 2 _
R J\}TlooN(PmJFN 2000 pz)'[R > Xpral = Pt 12 (0 0 Pz)/[R o Xplvo‘])} =0

On the other hand, if v9, 9, 9, (-) # 0 at least one (a},ah, a}); a,ay,al € {1,...,p1}, then —Usy > 0;

a 02 a3
. : (V) GOF(N) 2 (V) GB(N) — .2
Jim 3 ayeq Him N (P 0N =1/2(by 0 o, [B > Xpral = Fyifn- V2(h, 0 0,y B > XMD}

1
= {(=Un) + (~Un2)X3, o} gpr+4(Xp, 03 0) > 0

for small a. Hence, in general, the RECFWN) _test is locally superior to the REBWV) _test (here, ‘locally’
means that both A >0 and 0 < a < 1 are small).

This finding is a substantial extension of Rao and Mukerjee [23, 24] to the framework of a composite
hypothesis about a subvector of the parameters. Note that the GCF-adjusted test does not always
outperform the GB-adjusted test; for example, assuming that v ¢ 9 () = 0, ay,a0,a3 € {1,...,p1}

al,a2,as
(i.e., Uz = 0), then, the TSBW)_test is locally superior to the T9CF(V)_test, whenever TV) € Ty 3 has
the C-functions such that C+g/ g/ g/ (-) # 0 at least one (a},ah,as); a},db,al € {1,...,p1} (ie., US < 0).

4.2.  Optimality of the GCF-adjusted Rao test in a class of the GCF or GB-adjusted tests

From (15) (or (16)), the optimality of the adjusted Rao test about a subvector of the parameters

can be established. The point is that for the subclass U.cg 7y 3(C 7n,3), the scalar ¢ in (5) and the
C+g g g

arasas (*)’S; given by the formulas (7), play a crucial role to discuss the third-order

CT-functions
optimality in the present set-up, which is contrast to Kakizawa [13] with the identical C*-functions;

Ct999 () =—1/609 99 ()=1rC*999 (), a1,a2,a3 € {1,...,p1}.

aiaza3 a1,a2,a3 aia2a3



Theorem 4 Let T) ¢ Ty 3- Then

.1 . (N) GCF(N) 2 (N)
fim S el Jim N (P00 BT > X0l = Bitlvsg o,

1
= [U1.a(6)9p1+206p,.0:0) + {(=U51) + (~U£)Xp, o} Ip1+4(Xpy a3 0)]

TGCF(N) - X}zjl,a])}

where

2 2
_ biba baba p GG GG | Xpra® biby  bsbs GG GG
Uta(c) = =115V 112 M, b bsbs PG R(EIL(E) (3) MG 3, 5554 -

Remark 3 (Theorem 4 (iii) in [13] as a particular case) Let TWY) € 7; ~.3- Then, (16) implies that

o1 ) (N)
e N (P8,

GB(N 2 (N) GB(N 2

(1)’" P2

1
- Ul,a(c)gp1+2(X1231,a§ O) .
b1
We recall that the coefficients of X%1,agpl+2v(X12,17a; 0), v =1,2 in Theorem 4 are nonnegative, i.e.

bi,be  bs,b
“US >0 and SR B)MEE TS = Ey[{(LiB)] + 2By [r{(LiB)*)] > 0,

where B(8) is defined in (1) and Ly (X, 0) = [(5,;,(X, 0) = j,3,(0)], joe(1,....p}» With

05, (X, 0) = 05,,(X,0) — v, s (O (0)0(X, 0) .

J1j2

Therefore, Theorem 4 demonstrates that the GCF-adjusted Rao test RECF(V) > XzZn,ow with ¢ = 0 and
C+§1§2§3(-) =0, a1,a2,a3 € {1,...,p1}, is, in general, locally optimal in a class of the GCF-adjusted
tests; TCCF(V) > tha for TN ¢ Uecer 7n 3- From (12), this optimality holds even for the size-adjusted
tests based on Cornish-Fisher’s type expansion, which is an extension of Mukerjee [21] to the framework
of a composite hypothesis about a subvector of the parameters.

This kind of result is consistent with Kakizawa [13], i.e., Remark 3 tells us that the GB-adjusted Rao
test REBIY) > X1271,a (or MREBWY) > X]%l’a), with ¢ = 0, is, in general, locally optimal in a class of the
GB-adjusted tests; TGB(N) > Xzzn,a for TV ¢ Ucer 7y 3- However, using the GB-adjustment, it was

impossible to discriminate any test statistic belonging to the subclass 75; s, i.e.

: (N) GB(N) 2 (N) GB(N) 2 —
as‘{\e{]\}gnooN(Pm‘i‘N_l/Q(h,(l)vO;)z ,[Tl > Xpl,a] B P9T+N_1/2(h,(1)70;92 /[Tz = Xp1,a]>} - O
for any Tl(N),TQ(N) € Iy 5 (eg. RV MRWY) ¢ Ty 3 or WM MWW grad®™) e Tn 3 see (6)). Also,

any GB-adjusted test TGB(N) > X%ha for TWN) ¢ Ueer 7; ~,3 has the identical third-order average power
if Mjle’j3j4(~) =0, 71,72,J3,J4 € {1, Ce ,p} (see Theorem 4 (ii) of [13]).
On the other hand, using the GCF-adjustment, even if M j, i,5,(-) = 0, j1,72, 43,74 € {1,...,p}, we

have
.1 . (N) GCF(N) 2 (N) GCF(N) 2
fim e i N CE vz g,y B > X0 ol = Fotlssag g,y R >0, al) ;> 0

for small «, if ((3)/3)19 5 9 (-) + (1/2)9 & o (-) # 0 at least one (af,a5,a3); ay,ay,a3 € {1,...,p1}

ayay,azy a’y,ah,ay
(note that if ((3)/3)vg & J()+ (1/2)vg 5 9.() =0, ar,az2,a3 € {1,...,p1}, then
: (V) GCF(N) 2 _ pWV) GCF(N) 2 _
as\v;e{]\/lg}looN(P0T+N—1/2(hl(l)’0;)2 /[R > Xpha] P9T+N_1/2(h/(l),0;,2 /[MR > Xpha})} = 0,



since MRWY) ¢ 71\0,73 has the C*-functions; —{(<3>/3)u§1§2,§3(~)+(1/2)ygl f{;f{;()}, ai,ag,az € {1,...,p1}).

Combining Theorem 4, Remark 3, and Corollary 3, together with the identity (12), we establish the

following result which considerably strengthens the finding in Kakizawa [13].

Theorem 5 The GCF-adjusted Rao test RECFWN) > X]%l,a (or the size-adjusted Rao test based on
Cornish-Fisher’s type expansion) is, in general, locally optimal in a class of the TGCEWN) _tests (or

the size-adjusted TN)-test based on Cornish-Fisher’s type expansion) and the TSBWN) _tests for any
T(N) € UCGR T]%,S‘

5. Concluding remarks

We notice that an adjusted LR test statistic [20] considered in the N~/2-level does not belong to the
class Ty 2, which is the class Ty 3 (see (3)) with the omission of the O,(N~1)-term. Thus, letting
1 / .
M]() {VTT’ ()+U’I‘T,] }V(ég)()v J= 17‘-‘7p7 (17)

the class 7 3 may be enlarged to the class 7x 3 ar, as follows:

1
Tﬁv) = T:,frd)M + NIz gtv)(l +&,8) for some fixed 8 >0 and & > 0, (18)

where

(N) (V) 2 V9t W)
TSrdM T3rd N1/2 g[ (111 -2) (1)]

+;( MzaglNE)llib;)Mg +u Dy, H Y1 Q)NEl))]bi + Mﬁbgl,klkzzlgjl\;c)z[ o 2)~E1))} ) - (19)
Here, the additional D-functions p/Dj,5,(-) = mDj,j, () and Dy, gk, (+), which may vary from one
test statistic to another, are assumed to be of class C!'(®), such that rDj,j,(") = MDj, ik, (1) = 0 if
M;(-)=0,j=1,...,p. The choice (17) is related with the so-called adjusted profile likelihood inference
(e.g. [4, 6]), as pointed out by Mukerjee [20] (see also [12]). Using the conditional likelihood approach,
Mukerjee [16, 18] and Ghosh and Mukerjee [7] essentially considered (18) and (19) under the global
parameter orthogonality (with p; = 1). Thus, strengthening the results [7, 16, 18], it is hoped that the
finding in the present paper would be extended to the class 7Ty 3 s of test statistics from the adjusted
profile inference. The details on this topic will be reported elsewhere.

Finally, it would be interesting in future to make a small sample comparison. After seminal papers by
Chandra and Mukerjee [2], Cordeiro and Ferrari [3], and Taniguchi [25], many researchers in this area (the
reference lists from past decades are found in [13]) often have reported the Cordeiro-Ferrari Bartlett-type
adjustment, which reveals the finite sample improvements for the Rao and LR tests, where the adjustment
for the LR case is the traditional Bartlett adjustment. Since these researchers’ numerical power analyses
have been done without the third-order asymptotic theory under the contiguous alternative, it is hoped

that our present higher-order average local power analyses would fill up this gap to some extent.
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Appendix A: Outline of the proof of Proposition 1

Recall that (10) admits the stochastic expansion

reeren) — pleasMyet | plass) g L o1 4 min(5/2,6), max(9/2, ) (A1)
(see [10, 11]) with
R—-1
T N N o
Ua2,4,6( ) =z (1() )]a+ 73 UC’(N) + N(UCD(N) + Z Lpyobpya H[ (111 2)Z(1() )}bi), (A.2)
R=2,4,6 i=1

a = 1,...,p1. Note that (A.2) is a certain polynomial in Z?SV) = G'ZzWM), poN) — élz)ZEg), and

L(N) ,L(N N N ' (N ) .
[Zjlg2 )’Zjlgwl]]l Jj2.ja€{l,....p}» Where Zjl( ]L Z](1 )]R le...ijka’k Z,E, ), R =2,3. As in Kakizawa [13],

(A.1) implies

TGCF(N) _ Fz 16(N) a I'2,4,6(N)

+ L o) (1 4+ min(6/2,&),max(9/2,3)), (A.3)

(11 2)U N3/2 Ogt(v)

where

otN) — gt - N—1/2 .
Then, by making use of Chibisov’s lemma applied to (A.3) (see [14]), the non-null distribution of 7GCF W)
admits the third-order asymptotic expansion which is the same as that of U, F246(N) (alg 2)U FHG(N),
obtained via the Bhattacharya and Ghosh argument [1] (see e.g. [11, 13]) by computing the non-null

cumulants of (A.2) up to o(N~1), as follows:

() (pTaae(N)] _ g kgD
‘|’N {Fom + (<3>F<>bb’a1 V(bﬁ.g) + Foooal)
b1,b)  bo,bl b,b
+<<15>F<>blb’1b2b’2a1 (11-2) l/(11-2) + <10>F<><><>bb’a1 V(ll,g) + I‘<><><><><>al)}
+o(N71),
..C .CD
N T N r N Kat,a Kaq,a
Covét(z)v)(U 2,4,6(N) UL 2,4,6( ))_V(ll-Q)al,tn N11/22 + ]1\f2

(2) by
+W {Layaz + (3)lbbraras Y(11.2) + (3)ls0aras)

bib,  babl b
H((15) Loy 1, bty aras¥(11.9)Y(11.3) + (300 Toobtraras?’(i1.9

+(5)Fooo0araz)} +o(N 1),

Cum™) (yFzas@) pr2as(N)y _ “achaz,aa 'gﬁzz,a:a
Umm(N)( a1 y- oy Vag )= N2 N
3 D00y + (30)T Uy + Q0T
N oajazasz Obb’alazagl/(ll.Q) + < > OQQGIGQU«S)}
+o(N71),
CD
K 4!
Cumpiidy (Ua N, Tg o) = —tntants % {Parazasas
+(<10>be’a1a2a3a4y€£-2) + <1O>F<><>a1a2a3a4)} + O(N_l) )
)

(N) (UF246(N) .-,U%A’G(N)): <5!

CumaT(N) <5>F00102a3a4a5 + O(Nil) )

(V) (UL F246(N)

: -1
C'umm(N) = AT Fa1a2a3a4a506 + O(N )

)ty



with the forms

. @2 . 1
/le = ’ial + HCH( ) ) K’Gc/vl,az = ’ia1<7a>2 ) (A 4)
CD(1 CD(3 CD(2 . CD(1 ’
H(iD = Ka; W + Kay @ ) Hff,’@ = acll?ag + a1,a<2> ) aoll?ag,as = a1,a<2,>as-
The null cumulant coefficients x¢ LS, ﬁaClDQQ ’s, F&acl as.az S and /ial as,a3,as 5> together with the expressions in
(A.4) with superscript (i), being homogeneous polynomials of degree i in h = (hy,...,hy)’, are available
from Kakizawa [13].
In this way (the details are omitted here to save space), we have
) 2 2 3¢ .
Pg]‘( [TGCF(N) > :1?] =1- Gpl (z; h/(l)V(ll.Q)h(l)) + Z W Z Qg) (h)gp1+gv($; h/(l)V(n.g)h(l))
(=1 v=1
2 b1,b2 -h
+_ {Fblb2 V(11 2)gp1+2(x h(l)V(11~2)h(1))
by b3b
+ (3T, bbb (111 HV(11-2) +F<><>)9p1+4($ hiyyva1.2)h())
ba b3,
(15rb162b3b4b5bay(11 %) (fl 3) (11- 2) + 6F<><>bb”/(11 2))9p1+6(; hiyva12ha))
bi,b,  ba,
(45T cony oty (11311 3) + Toooo) i (3 By V(112 (1))
+ 15 soo0bly Vé)il.g)gpl-i-lO(m; hiyyva1.2)h())
+ Tooooo0 gpy +12 (25 hl(1)”(11~2)h(1))}
+o(N71), (A.5)
where
(1 1 rr 1
Q) = 50, o S 1§ OHEE 2D 1 00 D)
1 1 996 1 1 1 996
0y () = 5 WIS +6CT g + 1858 O () = L wEEE +6CHTT)
(we used the notation Q....... = Q...;...h;). The remaining coefficients Ql(?)(h)’s have the forms

3
CD 5(2) «
ﬁv +;Qv<2i>7 ’U—1727
=
O (h) =3 A5 +> O, v=3,
i=1

3
Z Q1(12<)21)’ v=4,56,

1=v—3

where the closed-form expressions of Qf()zi)’s, being homogeneous polynomials of degree 2¢ in h, are
available from the author.
On the other hand, Kakizawa [11] showed that (11) holds iff

0= 67 () + oy (i) () (A.6)
0= ﬂQCD() + 3Fb1b2b3b4( ) (ﬁb;)( ) bflbg) () ’ (A7)
0= 35 () + 15T 5505015556 (V{113 V(i1 (Vg () (A-8)

Thus, Proposition 1 is shown by letting h(y) = 0p, in (A5). O



Appendix B: Auxiliary lemma

In deriving the third-order average local power along Sy = {h(l) € R . h’(l)u(n,g)h(l) =L A>0,

we need to evaluate aveg, {P(h())}, where P(-) is a polynomial.

Lemma B.1 Suppose that Qa,...a, s are independent of hyy = (hy, ..., hy,)". Then

1=1

2 A

ave (Qamg H hai) = — Qalwlj?fl’fl;) )

) P

4 )\2

o ai,a2 . a3,a4
aye (Qa1a2a3a4 Hl hai) TS Qarazazas 3V 1.0V (11.9) »

1=

6 /\3

ai,as . a3,a4 . Q5,a
N (Q“1a2a3“4“5% I h‘“) T pilpr +2)(pr + 4) Qarazasasasas (10)V(11)V(1T2)V(112) -

i=1

Proof. We define
—1/2..1/2 ~y ~1/2 ~1/2

Ay = (A1, A,) = A 1/2’/(1/1.2)}1(1) and QU™ = Qu1..qp [V(n(g)]a;al a [V(n(z)]a’vau-
Then,

fs)\ Qa1~~~auha1 U h(lv dh(l) _ )\U/2 fS QalmavAal Ry Aav dA(l)

Jsy dhq) JsdAq)

with §' = {A) € RP: A’(l)A(l) = 1}, where UP1) = (U, ...,U,,)" is distributed uniformly on the unit
sphere surface S in RP* (e.g. [5, chapter 2]). Let (Z1,...,Zy,)" be distributed as N(0,,,I,,). Using the
fact that the distribution of N(0,,,1I,, ) is the same as that of RU®  where R, being distributed as Xp1s
is independent of UV we have E[Z,, --- Z,,] = E[RY|E[U,, - - - Uy,], which completes the proof. O

_ )\U/2Qa1..-avE[Ual . Uav]

Appendix C: avesA{Pz(;}CF(g)(h(l))},S

We finally present the closed-form expressions for (14), as follows:

3

GCF(2 A bibe bab i

a‘s‘&e{lpl ( )(h(l))} = ﬂ Z/(lll-;)y(flé)Cbglbgz,hkzthkQ,l%g + Z A Al’% ) (Cl)
i1

GCF(2) _ GG Y Y gg
as\,;e{PQ (h(1)>} - [_(Cblbg,klkgCb3b4,k3k4Mklk27k3k4 + 2Cb1b3,k1k2Cbzb4,k3k4Mklk2ak3k4)

A
2p1
! Ggg GGG b

+3VTT (l/ g +v g )Cerlbgbg + 30+b1b2bV(11.2)Vl?31€1,%’

(22)\"rr/ by 7,7’ by
+99G b GG g GG g G g G g
H6C 51000V (11.2) 1200000 + Vo bar = (Vs it + Vi i)}
+ggg J,-ggg g bl,bg bg,b4
+6(C " b1babs /vy — C b1b2b3/b4)]V(11~2)V(11~2)

A2
+7
2p1(p1 + 2)
gg

Gg
[Cb1 ba,k1k2 M/ﬁ k2,b3by

b ~+969 GG g GGg Gg g g bi.b2 | bs,bs
+V(11-2)C b0 {3V bs T Vb1 s — (215005 T Viy ba.bg) )] <3>V(11-2)V(11.2)

3
+ Z /\%42722' , (C.2)

i=1



GCF(2) Al s ggg +GGG\ by GGG 166G\ b.b,
ag’f{P:s (hy)} = E{Z V(lll.;)(ybl,bg,b +6C blbgb)]/(ll.Q)(Vb’pb’Tb/ - 6C bﬁb;b/)V(lllé)

1
GG ¢ 4GG G\ biba babs bsbe (GG G +999
5 U5 8+ 6O i ey i (V5 B = 60 i) |
)\2
+7
2p1(p1 +2)

GG GG
[*Cblb%klkz Cb3b4,k3k4Mk1kz,ksk4

g+y g)0+ggg +3ng1l(>j2,g b,b C+ggg

rr’
+V(22)(Vr7"’,b4 7! by )Y bibabs bY(11.2)%  babat!
bV +969 GG g GGg G g g g

30119 C bbb { = (Vim0 T Vi basba) T Vo1, T Yo b b}

+ggg +ggg g b1,b2  b3,bs
+2(C gy bgbs /by — € blb2b3/b4)]<3>V(11-2)V(11~2)

)\3
Gg g GGG _ G g G g
T 61 (1 + 2)(p1 + ) 13V5165.06 T 2Vo1,05,05 ~ 32, b6 T Vi s )

GG g +999 bi,ba  b3,ba  bs,bs
(V5,505 T 6C 1o )(1O)V(11.5)V(11:2) ¥(11.9)

3
+Y N A, (C.3)
i=2
2
GCF(2) . A L bibs ;. GG +GGG\ bl GGG +G6G G\ b,
getPi o)k = S ) {2705 (5.5 + 60 LTV o) W 5,5 — 6C G v

1
GGg +GGG \ biby  babs bsbe (GGG +939¢
+6 (Vb5 T 0C b1b3bs )V (11.2)V(11-2) Y (11-2) Vo babe. — 6C b2b4b6)}
A3
GG g GG g g g g g
+ —(v +v + 2v +v
T2+ 2 ) ol Vo) ¥ Wt Yoo}

GG ¢ +666 bi,b2  b3,bs  bs,bs
(Vo oy T 6C b162b3)<15>1/(11-2) Ya12)V11-2)

—|—/\3A4,6 R (0-4)
3
GCF(2) A
ave{P h =
S\ {Ps (hay)) 72p1(p1 + 2)(p1 + 4)
Ggg Ggg : 5,06
(nghgz,bgg y ; 6c+b162b3)(1/bg4,§5,56 - 60+b4b5b6)<15>V€11il.)§) Vé)fil.)g)yg)nl.);) ’ (05)
GC
aye{Pg " (b))} =0, (C.6)

with A, 2;’s being independent of A > 0, TN) € Ty 3, and Cayar(ay,.ane{l, ..} B =2,4,6.
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