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a b s t r a c t

Westudy theGaussian and robust covariance estimation, assuming the true covariancema-
trix to be a Kronecker product of two lower dimensional square matrices. In both settings
we define the estimators as solutions to the constrained maximum likelihood programs.
In the robust case, we consider Tyler’s estimator defined as the maximum likelihood esti-
mator of a certain distribution on a sphere. We develop tight sufficient conditions for the
existence and uniqueness of the estimates and show that in the Gaussian scenario with the
unknown mean, p/q + q/p + 2 samples are almost surely enough to guarantee the exis-
tence and uniqueness, where p and q are the dimensions of the Kronecker product factors.
In the robust case with the known mean, the corresponding sufficient number of samples
is max[p/q, q/p] + 1.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Covariance estimation is a fundamental problem in multivariate statistical analysis. It arises in diverse applications such
as signal processing, where knowledge of the covariance matrix is unavoidable in constructing optimal detectors [28],
genomics, where it is widely used to measure correlations between gene expression values [24,43,60], and functional
MRI [14]. Most of themodern algorithms analyzing social networks are based on Gaussian Graphical Models [29], where the
independences between the graph nodes are completely determined by the sparsity structure of the inverse covariance
matrix [7]. In empirical finance, knowledge of the covariance matrix of stock returns is a fundamental question with
implications for portfolio selection and for tests of asset pricing models such as the CAPM [5,30]. Application of structured
covariancematrices instead of Bayesian classifiers based on Gaussianmixture densities or kernel densities proved to be very
efficient for many pattern recognition tasks, among them speech recognition, machine translation and object recognition in
images [12]. In geometric functional analysis and computational geometry [2], the exact estimation of covariance matrix is
necessary to efficiently compute volume of a body in high dimension. The classical problems of clustering and Discriminant
Analysis are entirely based on precise knowledge of covariance matrices of the involved populations [19], etc.

In many modern applications, data sets are very large with both large number of samples n and large dimension p,
often with p ≫ n, leading to the amount of unknown parameters greatly exceeding the number of observations. This
high-dimensional regime naturally calls for exploiting or assuming additional structural properties of the data to reduce
the number of estimated degrees of freedom. Usually, the specific structures are chosen to be linear or affine. The most
popular examples include such models as Toeplitz [1,4,8,21,27,40,45,46,50,58], group symmetric [44,48], sparse [7,39,42],
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low rank [16,26,31] andmany others. Non-linear structures are also quite common in engineering applications. Among them
are the Kronecker product model [13,15,51,54], linear and sparse inverse covariance structures such as graphical models
[20,63] and others.

In this paper we focus on the Kronecker Product (KP) structure, which has recently become an extremely popular
model for a variety of applications, such as MIMO wireless communications [53], geostatistics [11], genomics [61], multi-
task learning [9], face recognition [64], recommendation systems [3], collaborative filtering [62] and many others. The KP
model assumes a pq × pq covariance matrix 20 to be a KP of two lower dimensional square matrices, which is denoted by
20 = P ⊗ Q, where P and Q are p × p and q × q dimensional positive definite matrices, respectively. Given 20, its factors
P and Q can only be determined up to a positive scalar. This natural ambiguity is usually treated by fixing scaling of one of
the factors as we do below.

Consider the Gaussian setting and assume we are given n independent and identically distributed (i.i.d.) pq dimensional
real vector measurements xi ∼ x, i = 1, . . . , n, where

x ∼ N (µ,2). (1)

Assume the mean µ is known, while the covariance 2 is to be estimated. If the number of samples is no less than the
ambient dimension, n > pq, the Maximum Likelihood Estimator (MLE) of the covariance parameter almost surely exists and
coincides with the Sample Covariance Matrix (SCM)

S =
1
n

n
i=1

(xi − µ)(xi − µ)⊤. (2)

When the prior knowledge suggests that the true covariance matrix 20 is of the KP structure, it is usually more convenient
to cut x into q columns of height p each to obtain a so-called matrix normal random variable X [13,15,23]. Following [23],
we denote this law by

X ∼ MN (M, P ⊗ Q), (3)

where M is obtained from µ by the same reshaping procedure. Assume we are given n i.i.d. matrix samples Xi ∼ X, i =

1, . . . , n as in (3) andwant to estimate the covariancematrix factors P andQ. Here, theMLE solution is no longer given by an
explicit formula as in (2), moreover, the resulting optimization program is non-convex due to the constraint. Luckily, there
exists an alternating optimization approach, which is usually adopted [15,32,33,54]. This algorithm is often referred to as
the Flip-Flop (FF) due to the symmetric updates of the estimates of P and Q it produces. Below we show that the obtained
constrained program becomes convex under a specific change of metric over the set of positive definite matrices, the so-
called geodesicmetric [56,57], naturally explaining the convergence of the FF and significantly helping to further explore the
optimization at hand. We refer to this iterative algorithm as the Gaussian FF (GFF) to distinguish it from another FF scheme
introduced later.

In many real world applications the underlying multivariate distribution is actually non-Gaussian and robust covariance
estimation methods are required. This occurs whenever the distribution of the measurements is heavy-tailed or a small
proportion of the samples exhibits outlier behavior [25,34]. Probably the most common extension of the Gaussian family
of distributions allowing for treating heavy-tailed populations is the class of elliptically shaped distributions [17]. Elliptical
populations served as the basis for defining a family of the so-called covariance M-estimators [34], of which we focus on
Tyler’s estimator [52]. Given n samples xi ∈ Rpq, i = 1, . . . , n, Tyler’s covariancematrix estimator is defined as the solution
to the fixed point equation

T =
pq
n

n
i=1

xix⊤

i

x⊤

i T−1xi
. (4)

When xi are i.i.d. Generalized Elliptically (GE) distributed [17], their shape matrix 2 is positive definite and n > pq, Tyler’s
estimator exists with probability one and is a consistent estimator of2 up to a positive scaling factor. The GE family includes
as particular cases the generalized Gaussian, the compound Gaussian, the elliptical distributions and many others [17].
Therefore, Tyler’s estimator has been successfully used to replace the SCM in many applications sensitive to outliers or
heavy-tailed noise, such as anomaly detection in wireless sensor networks [10], antenna array processing [35], and radar
detection [1,6,36,37].

It was recently demonstrated that Tyler’s estimator can be viewed as anMLE of a certain spherical distribution [22,47,56].
In spite of the fact that the obtained MLE program is not convex, it was later shown to become convex under the geodesic
metric changewementioned above [56,57]. Both these fundamental discoveries paved away to the creation of a very useful
natural optimization framework characterizing Tyler’s estimator, which made possible definition of structured analogs of
Tyler’s estimator under geodesically convex constraints [48,50,59]. The present article extensively uses this new framework
to study the existence and uniqueness of the KP constrained Tyler’s MLE and the convergence properties of the Robust
Flip-Flop (RFF) analog of the GFF algorithm obtained from it. Another very popular in engineering applications example of a
linear geodesically convex structure is the so-called group symmetry [44]. Interestingly, a very recent paper [48] utilized the
aforementioned optimizationmethodology to thoroughly investigate the group symmetric Tyler’s estimator (STyler) and its
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performance benefits. It is important to note that multiple geodesically convex constraints can be efficiently superimposed
when the underlying physics suggests such prior knowledge, e.g quite often in practice the KP structure is followed by group
symmetries, leading to a further decrease in the number of estimated degrees of freedom.

In both Gaussian and robust cases, one of the central questions in high-dimensional environment is:What is theminimal
number of samples guaranteeing the existence and uniqueness of the corresponding covariance MLE? As we have already
mentioned, in the unconstrained Gaussian MLE it is known that n = pq samples are enough to guarantee the existence
and uniqueness almost surely when the mean is known, and n = pq + 1 when the mean is unknown. This number is, of
course, enough in the constrained case as well, however, one would expect that this threshold can be reduced due to the
decrease in the estimated number of parameters. Different necessary and sufficient conditions on the number of samples in
the Gaussian KP scenario were proposed by a large number of works, see Dutilleul [15], Lu and Zimmerman [32], Roś et al.
[41], Srivastava et al. [49], Werner et al. [54] and references therein. In particular, in Dutilleul [15] it was claimed that the
number of samples needed to guarantee both the existence and uniqueness of the GFF solution in the unknown mean case,
equals max [p/q, q/p] + 1. Later, Srivastava et al. [49] showed that, in fact, max[p, q] + 1 matrix valued measurements are
required to guarantee the uniqueness, assuming the estimator exists. In Roś et al. [41] the authors showed by a few simple
counterexamples that both results from Dutilleul [15] and Srivastava et al. [49] are not correct. Instead, they claimed that
‘‘As yet, there do not seem to be existence results for the case n ∈ [max [p/q, q/p] + 1, pq]’’, therefore, leaving this question
open.

Unlike theGaussian setting, in the robust scenario themean is usually assumed to be known. To the best of our knowledge,
in this case the question of the minimal number of samples needed to ensure existence and uniqueness was not properly
addressed thus far, except for the trivial necessary condition n > max [p/q, q/p] stemming from the definition of RFF, as
shown below.

The main goal of this paper is to present tight thresholds for the necessary and sufficient conditions guaranteeing
existence and uniqueness in both Gaussian and robust cases. Namely, we show that in the Gaussian setting, when the mean
is not known, if n < max [p/q, q/p] + 1, the estimator, even if it exists, is not unique with probability one and, when
n > p/q + q/p + 1, the solution exists and is unique almost surely. We also provide a discussion explaining that between
these bounds the probabilities of existence and non-existence of a unique solution are positive. In the robust case with the
mean known, the threshold ismax [p/q, q/p]. More specifically, if n is less than this number, no unique solution exists, while
if n is greater than this value, the estimator almost surely exists and is unique.

The rest of the text is organized as follows. After we introduce notations, we define the Gaussian setting and formulate
the problem. Thenwe discuss the state of the art results concerning the necessary and sufficient conditions for the existence
and uniqueness. Section 4 presents our main result, shows the main idea of the proof and demonstrates it on a simple two
dimensional example. Then we treat the robust scenario and provide our main contribution there. Finally, Sections 6 and 7
contain all the proofs for the Gaussian and robust cases, correspondingly.

1.1. Notations

We deal with real Euclidean spaces denoted by Rp, whose elements are columns written as lower case bolds x. The
standard scalar products over such spaces are denoted by (·, ·) and the corresponding norms by ∥·∥. By Mp×q we denote
the Euclidean space of real p × q matrices, written as upper case bolds X. S(Rp) stands for the linear space of symmetric
p × p matrices and P (Rp) ⊂ S(Rp)- for the open cone of positive definite matrices inside it. Note that S(Rp) inherits from
Mp×p the natural structure of a Euclidean space with the Frobenius norm. I denotes the identity matrix of an appropriate
dimension. For two spaces Rp and Rq, Rp

⊗ Rq denotes their tensor product space and for two matrices P ∈ P (Rp), Q ∈

P (Rq), P ⊗ Q denotes their Kronecker product. The spectral norm of a matrix P ∈ P (Rp) is denoted by ∥P∥2 and its
determinant by |P|. Given a set X , its boundary is denoted by ∂X . For two sets X and Y , X×Y denotes their Cartesian (direct)
product. Given a subset X of a linear space, ⟨X⟩ denotes its span and |X |- its cardinality.We use the standard abbreviation a.s.
to denote the almost sure convergence when the measure can be inferred from the context. The symbol ∼ replaces saying
‘‘is distributed identically to’’.

2. Gaussian setting and problem formulation

Assume we are given n i.i.d. Gaussian matrix samples

X1, . . . ,Xn ∼ X, X ∼ MN (M, P ⊗ Q), (5)

where Xi ∈ Mp×q, P ∈ P (Rp) and Q ∈ P (Rq). Denote X = {X1, . . . ,Xn}, then, up to an additive constant and scaling, the
negative log-likelihood reads as

fN (M, P ⊗ Q; X) =
1
n

n
i=1

Tr

P−1(Xi − M)Q−1(Xi − M)⊤


+ ln |P ⊗ Q|, (6)

and is defined over the set Mp×q × MN , with

MN = {P ⊗ Q | P ∈ P (Rp), Q ∈ P (Rq)} ⊂ P (Mp×q). (7)
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Here, the matrix P ⊗ Q is identified with the positive operator P ⊗ Q : Mp×q → Mp×q acting by the rule X → PXQ. The
scalar product on Mp×q is given by (A, B) = Tr


AB⊤


. Note that MN can be identified with the set

MN
∼= {(P,Q) | ∥P∥2 = 1} ⊂ P (Rp)× P (Rq), (8)

where the specific normalization can be chosen arbitrarily.

Remark 1. Below we assume the following notational convention: when the set MN is viewed as a subspace of P (Mp×q)

as in (7), the arguments of the negative log-likelihood are written asfN (M, P⊗Q; X), however, when MN is identified with
a subset of P (Rp)× P (Rq) defined by (8), we write the arguments asfN (M, P,Q; X), withfN (M, P,Q; X) =fN (M ⊗ P,Q; X). (9)

Below we use the same rule for other similar functions and the specific representation of the underlying set can be inferred
from the way arguments are written.

Identification (8) allows us to consider elements P⊗Q ∈ MN (under proper normalization P⊗Q = (P/∥P∥2)⊗(∥P∥2Q)
if needed) as pairs (P,Q). In addition, it endows MN with a smooth manifold structure makingfN a smooth function over
it. The covariance MLE under the KP constraint can now be written as a solution to the following program

min
M∈Mp×q,
(P,Q)∈MN

fN (M, P,Q; X). (10)

As in the unconstrained Gaussian case, this program decouples intominimizationw.r.t. (with respect to) the unknownmean
M, yielding

M =
1
n

n
i=1

Xi, (11)

and minimization w.r.t. to P and Q. Note that ln |P ⊗ Q| = q ln |P| + p ln |Q|, and denote Yi = Xi − M, then the first-order
optimal conditions for P and Q read as

P =
1
qn

n
i=1

YiQ−1Y⊤

i ,

Q =
1
pn

n
i=1

Y⊤

i P
−1Yi.

(12)

There does not exist a closed form analytic solution to (12), therefore, it is usually solved numerically via the so-called Flip-
Flop (FF) iterative scheme [15], which we call the Gaussian FF (GFF). The GFF algorithm works as follows. Starting from an
initial guess (P0,Q0) ∈ MN for (P,Q), we plug it into the right-hand side of (12) and get a new pair (P1,Q1). After we
normalize this pair to make it formally belong to MN , we apply the procedure to (P1,Q1) instead (P0,Q0) and so on as
shown in diagram (17),

Pj+1 =
1
qn

n
i=1

YiQ−1
j Y⊤

i ,

Qj+1 =
1
pn

n
i=1

Y⊤

i P
−1
j Yi,

Pj+1 =
1

∥Pj+1∥2

Pj+1,

Qj+1 = ∥Pj+1∥2Qj+1.

(13)

The consecutive pairs (Pj,Qj) serve as approximations to the true solution, therefore, the convergence of this sequence to
the minimum offN (M, P,Q; X) on MN (if it exists) constitutes one of the central topics of our paper. We start from listing
the existing results on the questions at hand.

3. Existence, uniqueness and convergence: State of the art

Having derived the G-CARMEL (Gaussian KRonecker product MLE) solution and obtained an iterative scheme for its
calculation, our next goal is to determine the necessary and sufficient conditions for its existence and uniqueness and for the
convergence of the GFF procedure. The only parameter under our control is the required number of i.i.d. normal samples,
therefore, below we focus on the question: How many measurements one needs to guarantee existence, uniqueness and
convergence almost surely?
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• Existence. We start from the sufficient conditions. It was claimed in Dutilleul [15] that max[p/q, q/p] + 1 samples are
needed for the existence and uniqueness of the MLE solution in the Gaussian case. However, it was later shown by a
counterexample [41] that the uniqueness does not follow from this condition. In addition, the authors of Roś et al. [41]
write that ‘‘Moreover, it is not knownwhether it [this condition] guaranties existence, because it is not sufficient to show
that all updates of the FF algorithm have full rank as is done in Dutilleul [15]. It could still happen that the sequence of
updates converges (after infinitely many steps) to a Kronecker product that does not have a full rank with the likelihood
converging to its supremum’’. It is also claimed in Roś et al. [41] that no less than pq + 1 samples are required to ensure
the existence a.s. This number of measurements coincides with the one needed in the unconstrained case and does not
exploit the KP structure. Finally, the authors of Roś et al. [41] conclude that nothing can be said regarding the existence,
if the number of samples lies inside the interval n ∈ [max[p/q, q/p + 1, pq]].
The necessary conditions were also treated in Dutilleul [15], where the author claims that if the estimator exists, then
n > max [p/q, q/p] + 1. This is clearly true, since if the number of samples is less than this threshold, at least one of the
right-hand sides in (12) is rank deficient and cannot be invertible.

• Uniqueness. As summarized in Roś et al. [41], the author of Dutilleul [15] claims that the G-CARMEL is unique whenever
n > max [p/q, q/p] + 1. Later, the authors of Srivastava et al. [49] stated that indeed n > max[p, q] + 1 is needed to
ensure the uniqueness. Here again, Roś et al. [41] succeeded to find counterexamples showing that both these bounds
do not guarantee uniqueness. Moreover, the paper [41] describes the exact parts of the proofs which seem to contain
mistakes, however, the correct lower bounds on the number of required samples are not provided. In fact, to the best of
our knowledge, tight sufficient conditions for the uniqueness have not been reported so far.

• Convergence of the Gaussian flip-flop algorithm. The last question regarding the G-CARMEL on which we focus, is the
convergence of the GFF iterative scheme. In Dutilleul [15] the author establishes the convergence of the GFF technique
empirically. He claims that if the limiting points of the sequences {Qj} and {Pj} (in his notations) do not depend on the
initial point, and an additional condition on the second derivatives of the objective is satisfied at the limiting points, then
these limits provide the G-CARMEL solution. If such limiting points are not uniquely determined, but rather depend on
the initial guesses, they must provide local extrema of the likelihood function. Unfortunately, this empirical approach
can hardly be applied in practice and does not provide a strict criterion for the convergence of the GFF.
The authors of Lu and Zimmerman [32,33] claim that when the number of samples is n > pq+1, the GFF is guarantied to
converge, however they doubt if it really converges to theMLE, since the ‘‘parameter space of (p, q)-separable covariance
matrices is not convex’’. They emphasize that for somevalues ofn the algorithmcan converge tomanydifferent estimates,
depending on the starting value. Finally, they conjecture that for n large enough ‘‘the limit point of the GFF can safely be
regarded as the unique MLE’’ without proving this statement.
In Werner et al. [54] theoretical asymptotic properties of the GFF algorithm are considered and the algorithm’s
performance for small sample sizes is investigated with a simulation study.

The main contributions of the Gaussian part of our paper consist in

• proving tight sufficient and necessary conditions for the a.s. existence and uniqueness of the G-CARMEL estimate,
• showing that the sufficient conditions also imply convergence of the GFF iterations to the unique solution starting from

any initial guess.

4. Main results and arguments

In this sectionwe state ourmain result in the normal case, give the intuition behind the proof argument and demonstrate
our technique on a simple example in a low dimension.

4.1. The main statement

Theorem 1. Assume X = {X1, . . .Xn} are independently sampled from a continuous distribution over Mp×q and consider the
problem of minimizingfN (M, P,Q; X) over Mp×q × MN , then

1. if n < max [p/q, q/p] + 1, there is no unique minimum,
2. if n > p/q + q/p + 1, there is a unique minimum a.s.,
3. if n > p/q + q/p + 1, the GFF converges starting from any point of MN to this unique minimum a.s.

Proof. This is a direct corollary of Theorem 4 from Section 6.7. �

Remark 2. The statement of the theorem is valid for any continuous distribution and is not limited to the Gaussian ones.
Indeed, the claimdoes not assume any specific statisticalmodel and does not provide statistical guaranties (e.g. consistency),
but rather treats the questions of the existence and uniqueness of the minimum.

Remark 3. Note the gap between items (1) and (2) containing one (when p ≠ q) or two (when p = q) integer points which
cannot be eliminated. We discuss this phenomenon below in more detail.
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4.2. Sketch of the proof

In this section we discuss the main building blocks of the proof of Theorem 1 leaving the technical details to Section 6.

• Reduction to the centered case. LetgN (P ⊗ Q; X) =fN (0, P ⊗ Q; X), (14)

then minimization of gN over MN does not require optimization w.r.t. the mean parameter. The general case with the
unknown expectation can be reduced to it through the following observation. Given a family X = {X1, . . . ,Xn} ⊂ Mp×q
of n random p × q matrices, there always exists another family Y = {Y1, . . . , Yn−1} ⊂ Mp×q of n − 1 random matrices,
such thatgN (P ⊗ Q; Y ) =fN (M, P ⊗ Q; X). (15)

Lemma 11 from Section 6 shows why this is true and justifies our transition to the zero mean case. In the remainder of
this section we treat the zero mean setting.

• Necessary conditions. Since we require the solution to be composed of invertible matrices P and Q, (12) must hold at
the extremum point. Note that its right-hand side is not invertible for n < max[p/q, q/p], therefore, returning to the
non-centered case and compensating for this by adding one sample, yields item (1) of Theorem 1.

• Sufficient conditions. To derive the sufficient conditions, in Section 6 we change the parametrization ofgN by

gN (P ⊗ Q; X) =gN (P−1
⊗ Q−1

; X) =
1
n

n
i=1

(PXiQ,Xi)− ln |P ⊗ Q| , (16)

and introduce a specific metric over P (Rp
× Rq), w.r.t. which the set MN and the function gN (P⊗Q; X) are convex. The

desired solution exists and is unique if and only if gN tends to+∞ on the boundary as shown in Lemma 4, inwhich case it
is also strictly convex. Theorem3 then demonstrates that this happens a.s. w.r.t. the distribution of X when n > p/q+q/p.
In the next section we demonstrate the reasoning behind these claims by exploiting the p = q = 2 case in more detail.

• Convergence of the GFF. Suppose we are given a pair of matrices (P0,Q0) ∈ MN and use (13) to generate the sequence

P0

  @@
@@

@@
@@

P1

  @@
@@

@@
@@

P2

  AA
AA

AA
AA

A
. . .

Q0

>>~~~~~~~~
Q1

>>~~~~~~~~
Q2

>>}}}}}}}}}
. . .

(17)

Here, the successive iterates Pj,Qj+1, Pj+2, . . . are obtained by minimizing gN w.r.t. Q when Pj is fixed and similarly by
minimizing w.r.t. Pwhen Qj is fixed, etc. As we have mentioned in the previous paragraph, gN is a.s. strictly convex and
tends to +∞ on the boundary when n > p/q + q/p. This guarantees a decrease of the target function on each iteration
and the convergence of the sequence (Pj,Qj+1) to the unique minimum, hence, (Pj,Qj) converges as well.

Let us now illustrate the main arguments by a simple low dimensional example.

4.3. p = q = 2 case study

Assume Rp
= Rq

= R2, X = {X1, . . . ,Xn} ⊂ M2×2 consists of n matrices and we deal with the case of zero mean. We
are going to show a bit more than we have announced in the previous section, namely, we will prove that

1. If n = 1, the set of minima is non-empty and forms a submanifold of dimension 3 with probability one. In particular, a
minimum exists but is not unique.

2. If n = 2, there exists a polynomial D(X1,X2) such that
• if D(X1,X2) > 0, there is no unique minimum of gN over MN ,
• if D(X1,X2) < 0, there is a unique minimum of gN over MN ,
both happening with positive probabilities.

3. If n > 2, there is a unique minimum of gN over MN .

As explained in Section 6.2, the set MN ⊂ P (R2
× R2) is convex w.r.t. to a specific metric change. In addition, Lemma 4

demonstrates that the solution to the optimization at hand exists and is unique if and only if gN tends to +∞ on the
boundary, which we use below.
1. n = 1 case. Here, both equations in (12) (after replacing P and Q by their inverses) become identical to

P−1
=

1
2
X1QX⊤

1 . (18)

This equation defines a submanifold Mm ⊂ MN isomorphic to P (R2) containing Q-s, and, therefore, having dimension 3. A
straightforward computation shows that the value of gN is constant onMm. Since gN is convex, all points ofMm areminima.
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2. n = 2 case. It turns out that the critical question defining the behavior of the solution here is whether there exists a vector
t ∈ R2 such thatX1t andX2t are parallel. If the answer is negative, theminimumexists and is unique, otherwise, if it exists, it
is not unique. As Lemma 4 item (4) shows below, such vector t does not exist if and only if gN tends to+∞ on the boundary
of MN . Next we explain the reasoning in more detail and explicitly construct such t.

Consider a sequence MN ∋ {

Pj,Qj


} → ∂MN , meaning that either Pj tend to a singular matrix or the norms of Qj are

unbounded (or both). Belowwe suppress the j indexing of the sequences to simplify notations. In otherwordswe distinguish
between two cases: (a) either ∥P∥2 and ∥Q∥2 are bounded or (b) we may assume that in some appropriately chosen bases
{s1, s2} and {t1, t2} for P and Q, respectively, we have

P =


α 0
0 1


Q =


µ 0
0 η


, (19)

where α 6 1 and we assume (after swapping the eigenbasis of Q, if necessary) that µ → +∞ not slower than η (if η is
bounded this is vacuously true).

In the first case, when the spectral norms are bounded, the trace term of gN is bounded. Since in this scenario at least one
of the matrices must tend to a singular one, ln |P ⊗ Q| → −∞, implying gN → +∞. In the second case we have sequence
(19) and note that the logarithmic term of gN has a summand tending to −∞ with the rate not greater than lnµ. Assume
X1t1 andX2t1 are not parallel for all t1, then at least one ofXi-s has a non-zero (2, 1) element. Suppose this isX1 =


x11 x12
x21 x22


with x21 ≠ 0, then the scalar products part of gN is not less than 1

2 |x21|
2µ. Hence, this part of gN tends to +∞ faster than

the negative part and totally gN → +∞ on the sequence at hand.
Now suppose that there does exist a vector t ∈ R2 such that X1t and X2t are collinear. Normalize t and form an

orthonormal basis {t, t′} in the space ofQ. After this, normalizeX1t, whichwe denote by s, and complete it to an orthonormal
basis {s, s′} in the space of P. In these bases each Xi reads as (here we omit index i in matrix elements for simplicity)

Xi =


x11 x12
0 x22


. (20)

Now define a new sequence in the chosen bases

P =

 1
µ

0

0 1

 , Q =


µ 0
0 1


, (21)

with µ → +∞. Then P ⊗ Q tends to the boundary of MN ,

ln |P ⊗ Q| = 2 ln |P| + 2 ln |Q| = 2 ln |PQ| = 0, (22)

and for each Xi,

(PXiQ,Xi) = x212 + x221 + x222
1
µ
. (23)

Hence, gN is bounded on the sequence {(P,Q)} and we are done with this case.
Next we derive a condition on X1 and X2 telling whether such a mutual t exists, which will suggest us the probability of

such event. Let in the original bases X1, X2 and t read as

X1 =


x y
u v


, X2 =


a b
c d


, t =


α
β


. (24)

We look for all triples (X1,X2, t) such that X1t and X2t are collinear, which is equivalent toαx + βy αa + βb
αu + βv αc + βd

 = 0. (25)

The latter can be written asx a
u c

α2
+

x b
u d

+ y a
v c

αβ +

y b
v d

β2
= 0. (26)

Calculate the discriminant of this quadratic

D(X1,X2) =

x b
u d

+ y a
v c

2

− 4
x a
u c

 y b
v d

 . (27)

Note that D(X1,X2) is a non-zero polynomial and there is t ∈ R2 with the required properties if and only if D > 0. If the
density of the distribution of (X1,X2) is a.s. non-zero, then clearly D > 0 and D < 0 both hold with non-zero probabilities.
3. n > 2 case. Here a similar computation shows that we a.s. cannot find a vector t such that Xit are collinear, therefore, the
above arguments imply the existence and uniqueness of the minimum.
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4.4. Remarks

To summarize, the answer to the existence anduniqueness question canbe completely described in termsof the following
indicator variable:

ζ (X) = ess inf
u∈R2\0

dim


Xi∈X

Xi⟨u⟩


. (28)

When n = 1, ζ (X) = 1 a.s., in the case n > 2, ζ (X) = 2 a.s., and these two situations correspond to the uniqueness and
non-uniqueness. When n = 2, we have

ζ (X) =


1, if D > 0,
2, if D < 0, (29)

where both events happenwith non-zero probabilities, i.e. ζ (X) is not a constant a.s. This intuitively explains the one sample
gap between the necessary and sufficient conditions in Theorem 1.

In arbitrary dimension the ideas described above generalize as following. In order to guarantee the desired asymptotic
behavior of the target function, our aim would be to avoid the following situation: there is a random subspace U ⊆ Rq such
that the dimension of

n
i=1 XiU is less than min[n dimU, p] with non-zero probability. As the proof of Theorem 1 shows,

when the number of samples satisfies the required condition, such event will a.s. not happen.
Let us focus on the gap between the necessary and sufficient conditions appearing in the statement of Theorem 1

I =


max


p
q
,
q
p


+ 1,

p
q

+
q
p

+ 1

. (30)

This interval contains 2 points in case p = q and only 1 point otherwise. The same argument as in the example above (note
that in the example we considered the known mean case, therefore the n = 1 case considered there would correspond to
n = 2 here) shows that when p = q and n = max [p/q, q/p]+1 = 2 ∈ I, there aremultipleminima. Therefore, there is only
one untreated integer point p/q + q/p + 1 left inside the interval I. However, we do not investigate deeply the behavior of
this remaining value due to the following reason. As the two dimensional example above suggests (this corresponds to the
case n = 2 case in the example), in this case uniqueness and non-uniqueness happen with non-zero probabilities, making
the analysis hard. Since there is only one untreated point left and the treatment involves quite non-trivial calculations,
the game does not worth the candle. We believe that in general dimensions this missing point of the interval exhibits the
same behavior, and both events ‘‘existence and uniqueness’’ and ‘‘existence and non-uniqueness’’ happen with non-zero
probabilities.

5. Robust Kronecker product covariance estimation

5.1. Tyler’s estimator

As we have already explained in the Introduction, when robust covariance estimation is considered, the most popular
tool used by practitioners is the so-called family of covariance M-estimators introduced by Maronna [34]. We focus on a
distribution-free member of this class introduced by Tyler and named after him [52]. Tyler’s covariance estimator, given by
formula (4), can be equivalently defined as a covariance parameter MLE of a certain spherical distribution [22,47] as follows.

Definition 1. Assume 20 ∈ P (Rp), then

p(x) =
Γ (p/2)
2
√
π

p
1

√
|20|(xH2−1

0 x)p/2
(31)

is a probability density function of a vector x ∈ Rp lying on a unit sphere. This distribution is usually referred to as the Real
Angular Central Elliptical (RACE) distribution [22], andwe denote it as x ∼ U(20). Thematrix20 is referred to as the shape
matrix of the distribution.

RACE distribution is closely related to the class of Generalized Elliptical (GE) populations, which includes Gaussian,
compound Gaussian, elliptical, skew-elliptical, RACE and other distributions [18]. An important property of the GE family
is that the shape matrix of a population does not change when the vector is divided by its Euclidean norm [17,18]. After
normalization any GE vector becomes RACE distributed. This allows us to treat all these distributions together using Tyler’s
estimator, which is the MLE of the shape matrix parameter in RACE populations and is unbiased when a specific scaling is
fixed [22,47].

5.2. Robust setting and problem formulation

In order to proceed to the KP structured robust covariance estimation, we introduce the following setting. Assumewe are
given n i.i.d. centered real p × q matrix measurements X = {X1, . . . ,Xn} and our goal is to determine what is the minimal
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number of samples n needed to ensure the existence and uniqueness of Tyler’s estimator under the KP constraint. We use
the MLE formulation of Tyler’s estimator and consider the corresponding optimization program. Specifically, we search for
positive definite P and Qminimizing the target

fE (P ⊗ Q; X) =
1
pq

ln |P ⊗ Q| +
1
n

n
i=1

ln

Tr

P−1XiQ−1X⊤

i


, (32)

which is a robust version of the G-CARMEL estimator and is named R-CARMEL.
The targetfE is naturally defined over MN introduced in (7) and Remark 1 applies here as well, therefore, we use the

same notational convention. In addition,fE is scale invariantfE (λP ⊗ Q; X) = fE (P ⊗ Q; X), hence, we rather considerfE
over

ME = MN /{P ⊗ Q ∼ λP ⊗ Q, λ > 0}. (33)

The inducedmap MN → ME is surjective and has no critical points. The composition P (V )×P (U) → MN → ME admits
a section, thus, we may treat ME as

ME
∼= {(P,Q) | ∥P∥2 = ∥Q∥2 = 1} ⊂ P (Rp)× P (Rq), (34)

which provides ME with a smooth manifold structure. The reason we still use MN is the metric it possesses, whereas we
cannot provide ME with a similar metric. Below we demonstrate that the same changes of parametrization and metric as
we utilized in the Gaussian case, makefE convex and significantly simplify the treatment. On the other hand, we need ME

when we talk about the uniqueness of the extremum, since there is no uniqueness of the minimum offE over MN due to
the scaling ambiguity.

Minimization offE w.r.t. P and Q yields a critical point defined by the following system
P =

1
qn

n
i=1

XiQ−1X⊤

i

Tr

P−1XiQ−1X⊤

i

 ,
Q =

1
pn

n
i=1

X⊤

i P
−1Xi

Tr

P−1XiQ−1X⊤

i

 . (35)

Similarly to the Gaussian case, there does not exist a closed form solution to this system, and an iterative solution is required
which we call the Robust Flip-Flop (RFF). It is also a descent algorithm and converges starting from any initial point due to a
similar reasoning. If one wants to remain inside the set ME on each iteration, he has to normalize the iterates on every step

Pj+1 =
1
qn

n
i=1

XiQ−1
j X⊤

i

Tr

P−1
j XiQ−1

j X⊤

i

 ,
Qj+1 =

1
pn

n
i=1

X⊤

i P
−1
j Xi

Tr

P−1
j XiQ−1

j X⊤

i

 ,
Pj+1 =

Pj+1

∥Pj+1∥2
,

Qj+1 =

Qj+1

∥Qj+1∥2
.

(36)

The above reasoning regarding the scaling invariance of the solution explains that when the solution exists and is unique,
such normalization does not affect the convergence.

5.3. The main statement

In the robust setting described above, a more intuitive result concerning the R-CARMEL estimate and the RFF can be
obtained.

Theorem 2. Assume X = {X1, . . .Xn} are independently sampled from a continuous distribution over Mp×q and consider the
problem of minimizingfE (P,Q; X) over ME , then

1. if n < max[p/q, q/p], there is no unique minimum,
2. if n > max[p/q, q/p], there is a unique minimum a.s.,
3. if n > max[p/q, q/p], the normalized RFF scheme (36) converges starting from any point of ME to this unique minimum a.s.

Proof. The proof can be found in Section 7. �
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A few points are in place here.

Remark 4. Note that unlike the Gaussian case treated before, here it is natural to assume the mean to be known to get a
tractable MLE program. This explains the reduction of the necessary number of samples by one in item (1) of Theorem 2
compared to Theorem 1.

Remark 5. It is also worth noting that in the robust case the gap between items (1) and (2) consists of one point only, which
distinguishes this case from the Gaussian scenario. The robust result clearly provides a sharper threshold between themode
of existence and uniqueness of the MLE and the mode where it does not at all exist.

6. Proof of Theorem 1

This section treats the Gaussian setting and utilizes a few useful concepts and techniques from commutative algebra.
Therefore, for the reader’s convenience we transition to a more general treatment of linear spaces, their tensor products,
operators over themand a fewmore related notions. For this purpose, the next section introduces some additional notations.

6.1. Additional notations

Abstract vector spaces are denoted by capitals V and are assumed to be real Euclidean spaces, their dual spaces are
denoted by V ∗. Scalar products are denoted by (·, ·) and the corresponding norms by ∥ · ∥. Spectral norms of operator are
denoted by ∥·∥2. For an operatorA, its adjoint is denoted byA∗. Note that the scalar product induces a canonical isomorphism
V ∼= V ∗. If we identifyV with the space of columnsRp in some orthonormal basis, thenV ∗ maybe identifiedwith the space of
rowsRp. Then the dual basis inV ∗ is also orthonormal and the isomorphismbetweenV andV ∗ is given by the transposemap.
For a self-adjoint operator A, we naturally define its real powers and continuous functions of it via continuous functional
calculus.

We may naturally identify V ⊗ V ∗ with EndR(V ) via (v ⊗ ξ)(u) = ξ(u)v, then the scalar product on V ⊗ V ∗ induces a
scalar product on EndR(V ) such that for any operators A and B, (A, B) = Tr (AB∗). If we identify V with Rp, then EndR(V ) is
identified with Mp×p(R),A∗ becomes A⊤, and (A, B) = Tr


AB⊤


. Given two Euclidean spaces V and U , the scalar products

on V and U induce one on their tensor product V ⊗ U .
For any topological space X , we denote its one-point compactification by Ẋ , i.e. Ẋ = X ⊔ {∞} with the base of

neighborhoods of ∞ consisting of the sets X \ K ⊔ {∞} for all compact K ⊆ X . For a non-compact topological space X , we
denote {∞} by ∂X . As an exception, for the real line R, Ṙ will be a two point compactification, i.e. Ṙ = {−∞} ⊔ R ⊔ {+∞}

endowed with the usual topology making it homeomorphic to the closed unit interval. Given two sequences ωn and τn, we
write ωn ≍ τn if ωn/τn → 1 as n → ∞, while we will usually suppress the n index.

In this section we shall treat the negative log-likelihoods as functions of the inverse matrices P−1 and Q−1 (as we already
did while discussing the example in Section 4.3). We do so to simplify calculations and note that this change does not affect
existence and uniqueness of the extrema in the problem at hand. Therefore, we denote

fN (M, P ⊗ Q; X) =fN (M, P−1
⊗ Q−1

; X) =
1
n

n
i=1

Tr

P(Xi − M)Q(Xi − M)⊤


− ln |P ⊗ Q|, (37)

gN (P ⊗ Q; X) = fN (0, P ⊗ Q; X) =
1
n

n
i=1

Tr

PXiQX⊤

i


− ln |P ⊗ Q|. (38)

6.2. Metric over P (V )

We endow the cone of the positive definite operators over V ,P (V ), with a Riemannian metric, whose geodesic
connecting any two points P,R ∈ P (V ) is given by

γt(P,R) = P
1
2


P−

1
2 RP−

1
2

t
P

1
2 , 0 6 t 6 1. (39)

Due to the limited space, we omit a discussion of thismetric and its properties. Formore details on the relation of thismetric
to the MLE problems considered here, consult [38,55–57] and references therein. If we allow t to run over R, then we call
the obtained curve an extended geodesic curve.

Fact 1. A direct computation shows that the Riemannian metric we have just introduced is invariant under inversion. In addition,
we note that the log-determinant function is a linear function of t on the geodesic curves γt(P,R).
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Lemma 1. Let V be a vector space, x ∈ V , S ∈ P (V ) and

ϕx(t) = (Stx, x), t ∈ R, (40)

then its second derivative reads as

ϕ′′

x (t) = (ln2(S) Stx, x) =

ln(S) S t
2 x
2 > 0, (41)

in particular, ϕx(t) is convex. In addition, the following are equivalent:

1. ϕ′′
x (t) = 0 for some t ∈ R,

2. ϕ′′
x (t) ≡ 0 for all t ∈ R,

3. Sx = x.

Therefore, if ϕx is linear in an open neighborhood of some t0, then ϕx is constant on the whole R.

Proof. Since (St)′ = ln(S) St and ln(S) commutes with any power of S, we get (41) and the convexity follows.
Note that (2) implies (1) and, therefore, it is enough to show (1) → (3) → (2). If Sx = x, then for any real t, Stx = x.

Hence, ϕx is constant on R and we get (3) → (2). Now let ϕ′′
x (t) = 0, then ln(S) S

t
2 x = 0. Since S is invertible, so is S

t
2 , and

ln(S)x = 0 or, equivalently, x is an eigenvector of S with the eigenvalue 1. Finally, the last claim follows from the fact that

ϕx(t) =

S t
2 x
2 > 0 and the only linear nonnegative function is a constant function. �

Lemma 2. Let V be a vector space, v ∈ V , and P,R ∈ P (V ), then

ωv(t) = (v, γt(P,R)v) (42)

is convex and the following are equivalent:

1. ωv is linear on some open subset of R,
2. ωv is constant on the whole R,
3. Pv = Rv.

Proof. It is an immediate corollary of Lemma 1 if we set S = P−
1
2 RP−

1
2 and x = P

1
2 v. �

6.3. Convexity of MN and gN

Let V and U be vector spaces, then their tensor product naturally induces a map

⊗: P (V )× P (U) → P (V ⊗ U), (43)

sending a pair (P,Q) to the product P ⊗ Q. We denote the image of this map by MN . The identification

MN
∼= {(P,Q) | ∥P∥2 = 1} ⊂ P (V )× P (U) (44)

provides MN with a structure of a smooth manifold. Intuitively, this amounts to saying that fixing the norm of the first
component of the KP resolves the scaling ambiguity and provides a bijective correspondence between the factors and their
products. Note that the normalization in (44) is chosen arbitrarily, and the specific choice does not affect the existence and
uniqueness results. In addition, we have

Lemma 3. The manifold MN ⊂ P (V ⊗ U) is convex w.r.t. the geodesic metric defined in Section 6.2.

Proof. Since P ⊗ Q = P ⊗ I · I ⊗ Q and P ⊗ I commutes with I ⊗ Q, we have

γt(P ⊗ Q,R ⊗ T) = γt(P,R)⊗ γt(Q, T), (45)

where the right-hand side is in MN , thus we are done. �

Below we also make use of the following simple

Fact 2. For any distinct P,R ∈ P (V ), γt(P,Q) → ∞ as t → ±∞.

Lemma 4. Let V be a vector space, X ⊂ V – a fixed finite subset, P ∈ P (V ) and

g(P; X) =
1

|X |


x∈X

(Px, x)− ln |P|, (46)



I. Soloveychik, D. Trushin / Journal of Multivariate Analysis 149 (2016) 92–113 103

then
1. g is convex w.r.t. the Riemannian metric (39),
2. g is linear on γt(P,R) for some P,R ∈ P (V ) if and only if Px = Rx for all x ∈ X,
3. if g has two minima P ≠ R in P (V ), then the whole extended geodesic γt(P,R), t ∈ R consists of different minima,
4. let U be another vector space, MN ⊂ P (V ⊗U) as before, and ġN : ṀN → Ṙ extends gN such that ġN (∞; X) = +∞, then

ġN is continuous if and only if gN has a unique minimum.

Proof. (1) ln |P| is linear on geodesics and, thus, convex by Fact 1. Lemma 2 implies that each (Px, x) is convex, therefore,
so is g(P; X).

(2) This follows from the (3) → (2) implication of Lemma 2.
(3) The convexity implies that the restriction of g onto γt(P,R), 0 6 t 6 1, is constant and, therefore, linear. Now the

(1) → (2) implication of Lemma 2 finishes the proof.
(4) Let us show the sufficiency of the condition. Indeed, if ġN is continuous then it achieves a minimum at some interior

point (that is the existence). If such minimum is not unique, then by (3), ġN must be constant on the whole extended
geodesic and cannot be continuous when approaching the boundary, since ġN (∞; X) = +∞.
We proceed to the necessity. Let S0 ∈ MN be the uniqueminimum and ν = gN (S0; X). We denote by TS0MN the tangent

space to our manifold at the point S0, and choose a tangent vector R ∈ TS0MN . Let γt(R) be the geodesic starting at S0 in
direction R,

γ0(R) = S0 and γ ′

0(R) = R. (47)

The explicit formula for γt reads as

γt(R) = C0etC
−1
0 RC−1

0 C0, (48)

where C0 = S
1
2
0 . In particular, γλt(R) = γt(λR) for any λ > 0. Set δt(R) = gN (γt(R); X). We claim that

σ = min
|R|=1

δ′

1(R) > 0. (49)

Indeed, suppose δ′

1(R0) = 0 for some R0, then since δt(R0) is convex and t = 0 is the minimum, δt(R0) is constant for
0 6 t 6 1. Thus, the minimum is not unique, which is a contradiction.

Denote by B0
t the centered open ball of radius t in TS0MN and Bt- its closure, then γ1(B0

t ) is a family of open neighborhoods
of S0 with compact closure Kt = γ1(Bt). Thus, we need to show that

inf
P⊗Q∉Kt

gN (P ⊗ Q; X) → +∞, as t → +∞. (50)

Indeed,

inf
P⊗Q∉Kt

gN (P ⊗ Q; X) = inf
R∈TS0MN ,

∥R∥>t

gN (γ1(R); X) > gN


γ∥R∥


R

∥R∥


; X


> σ(∥R∥ − 1)+ ν > σ(t − 1)+ ν, (51)

where in the last line R ∈ TS0MN is any matrix of norm at least t . �

6.4. The set of ‘‘bad’’ samples

Depending on the set X, gN may happen to be not strictly convex on MN , or equivalently, ġN is not necessarily
continuous. In this section we discuss when this situation occurs and compute the measure of the set of samples making ġN

discontinuous.
For a vector space V of dimension p and natural numbers d, s ∈ N, define

Gd s(V ) = {(v1, . . . , vs) ∈ V s
| dim⟨v1, . . . , vs⟩ = d} ⊆ V s (52)

to be the set of all s-tuples of vectors in V , spanning subspaces of dimension d. Gd s(V ) is a smooth manifold of dimension
(p + s − d)d. Note also that Gd d(V ) ⊆ V d is an open subset, moreover, if we represent V d

= V ⊗ Rd, we get an action of
GLd(R) on V d, which restricts correctly onto Gd d(V ) and is free.

Before giving a precise statement aboutwhatDiagram1displays, let us provide an intuitive explanation of it. The operator
analog of a p × q matrix is an element of Hom(U, V ), thus our n matrix measurements in X together represent an element
of Hom(U, V )n. We next take d linearly independent vectors in a q dimensional U and apply all the elements of our n-tuple
to them — this provides us with dn vectors in a p dimensional V . If we now take all the pairs of such n-tuples of operators
and d-tuples of vectors in U , and consider the described action of the former on the latter, which we call Ψ , we get the first
line of the diagram at hand. Let us now consider all the sets of dn vectors inside V spanning subspaces of dimension r and
take their preimage under Ψ . We get a subset Zd n r of Hom(U, V )n × Gd d(U) depicted in the diagram. Finally, the leftmost
arrow π denotes the projection of this set onto Hom(U, V )n. This informal description is made precise by the following
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Diagram 1. Diagram from Definition 2.

Definition 2. Let V and U be vector spaces of dimensions p and q, respectively, and n, d, r ∈ N be such that d 6 q. Consider
Diagram 1, where Ψ is defined as

Ψ : Hom(U, V )n × Gd d(U) → V dn, (53)
((ϕ1, . . . , ϕn), (u1, . . . ,ud)) → (ϕiuj). (54)

Identify V dn
= V n

⊗ Rd, then Ψ reads as

Ψ ((ϕ1, . . . , ϕn), (u1, . . . ,ud)) = ϕiuj ⊗ ej, (55)

and C ∈ GLd(R) acts by I ⊗ C. Define Zd n r = Ψ−1 (Gr dn(V )) and π to be the restriction of the projection along Gd d(U).

Lemma 5. With the notations of Definition 2, for each (u1, . . . ,ud) ∈ Gd d(U) the map

Ω : Hom(U, V )n → V dn, (56)
(ϕ1, . . . , ϕn) → (ϕiuj) (57)

is surjective.

Proof. Ω is a direct sum of n maps

ω : Hom(U, V ) → V d, (58)
ϕ → (ϕu1, . . . , ϕud). (59)

Now we choose bases in V and U such that V = Rp and U = Rq. Then Hom(U, V ) = Mp×q and V d
= Mp×d. Let

U = [u1, . . . ,ud], then ω reads as

ω : Mp×q(R) → Mp×d(R), (60)

X → XU. (61)

Since d 6 q and the columns of U are linearly independent, U is of full rank. Hence, the map ω is surjective. �

Lemma 6. With the notations of Definition 2,

1. Ψ is surjective and dΨ is surjective at each point,
2. Zd n r is a smooth manifold with

dimZd n r = pqn + qd − (p − r) (dn − r) , (62)

3. a non-empty fiber of π has dimension at least d2.

Proof. (1) To show Ψ is surjective, let (u1, . . . ,ud) ∈ Gd d(U). Now it is enough to show that

Ψ (·, (u1, . . . ,ud)) : Hom(U, V )n → V dn (63)

is surjective, which follows from Lemma 5.We proceed to the surjectivity of dΨ at any point ({ϕi}, {uj}). Since Gd d(U) ⊆

Ud is open, identify the tangent space of Gd d(U) at {uj} with Ud, then

d({ϕi},{uj})Ψ : Hom(U, V )n × Ud
→ V dn, (64)

({ϕ∗

i }, {u
∗

j }) → (ϕ∗

i uj + ϕiu∗

j ). (65)

Taking u∗

j = 0, j = 1, . . . , d, we get ({ϕ∗

i }, {0}) → (ϕ∗

i uj) and the result follows from Lemma 5.
(2) The fact thatZd n r is a smoothmanifold follows from (1) and the Implicit Function Theorem. A direct computation yields

dimZd n r = dimAn d + dimGr dn(V )− dim V dn

= pqn + qd + (p + dn − r)r − pdn = pqn + qd − (p − r)(dn − r). (66)

(3) GLd(R) acts freely on the fibers of π , so the dimension of a fiber is at least dimGLd(R) = d2. �
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Corollary 1. With the notations of Lemma 6, if n > p/q + q/p and r 6 dp/q, then π(Zd n r) is a set of Lebesgue measure zero.

Proof. By Sard’s theorem, it is enough to show that the image of π consists of critical values only. So we need to show that

rk (π) < dimHom(U, V )n. (67)

Since

rk (π) 6 dimπ(Zd n r)− d2, (68)

by Lemma 6 item (3), it is enough to prove that

dimπ(Zd n r)− d2 < dimHom(U, V )n. (69)

By Lemma 6 item (2), the latter is equivalent to

pqn + qd − (p − r)(dn − r) < pqn, (70)

therefore, we need

q − d
p − r

+
r
d
< n, ∀ 1 6 d 6 q and 0 6 r 6 d

p
q
. (71)

Differentiate the left hand-side w.r.t. r to see that it is a strictly increasing function of r , thus, it is enough to demonstrate
the inequality for r = dp/q, which is

q − d
p − d p

q

+
p
q

=
q
p

+
p
q
< n, (72)

and holds by the assumption. �

Corollary 2. Let V and U be vector spaces of dimensions p and q, respectively, and X – a finite mutually continuous family of
random operators from U to V such that

|X | >
p
q

+
q
p
, (73)

then for each random subspace E ⊆ V we have

dim

X∈X

XE

dim E
>

p
q

a.s. (74)

Proof. Note that X is distributed over Hom(U, V )n, thenX

 ∃E ⊆ U :

dim

X∈X

XE

dim E
6

p
q

 =


16d6q
06r6d p

q

π(Zd n r), (75)

and the result follows from Corollary 1. �

Note that in Corollary 2, we do not care whether p > q or q > p. When p > q, the inequality may fail if XE is not big
enough compared to E, and when q > p, it may fail if E belongs to the kernels of all samples X.

6.5. Flags

In the proof of the main theorem (see Theorem 3) we will analyze the behavior of gN (P⊗Q; X)when P⊗Q tends to ∞.
There are many ways P ⊗ Qmay tend to the boundary and in order to classify all possibilities we utilize the flag machinery
introduced next.

Definition 3. Let U be a vector space, then a flag F of length s in U is an ascending sequence of proper subspaces of U

F = {0 = U0 ( U1 ( · · · ( Us | Us ⊆ U}. (76)

A flag is called non-trivial if 0 ( U1 ( U . A subsequence of F is called a subflag. Let V be another vector space and
G = {Vi} be a flag of length s in V . Let ζ : U → V be a linear map with ζUi ⊆ Vi for each i 6 s, then we write ζF ⊆ G. In
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addition, for all 0 6 i, j 6 s define

Π(F ,G)i j = q(dim Vj − dim Vi)− p(dimUj − dimUi). (77)

If r = {r1 > · · · > rs > 0} is a vector of strictly decreasing real numbers, we define

C(F ,G, r) =

s
i=1

riΠ(F ,G)i−1 i, (78)

and note that

Π(F ,G)i j +Π(F ,G)j k = Π(F ,G)i k. (79)

Lemma 7. Let V ,U and G,F be as above. If Π(F ,G)0 i > 0 for i = 1, . . . , s, then there exist subflags F ′
⊆ F , G′

⊆ G, and
a subsequence r′ ⊆ r – all of length s′, such that

Π(F ′,G′)0 1 > 0, Π(F ′,G′)i−1 i > 0, i = 1, . . . , s′, (80)

and C(F ,G, r) > C(F ′,G′, r′). In particular, C(F ,G, r) > 0.

Proof. The proof is by induction on s and the base s = 1 is the hypothesis of the lemma. Now let s > 1 and assume the
claim fails for F and G, then for some t 6 s

Π(F ,G)i−1 i > 0 ∀i < t, and Π(F ,G)t−1 t < 0. (81)

Construct F ′ and G′ from F and G by excluding Ut−1 and Vt−1, respectively, and r′ from r by excluding rt−1, then

C(F ,G, r) =


i≠t−1,t

riΠ(F ,G)i−1 i + rt−1Π(F ,G)t−2 t−1 + rtΠ(F ,G)t−1 t

>


i≠t−1,t

riΠ(F ,G)i−1 i + rt (Π(F ,G)t−2 t−1 +Π(F ,G)t−1 t) = C(F ′,G′, r′). � (82)

6.6. The known mean case

In this section, we prove our main result assuming the mean to be known. For this purpose we need a few auxiliary
results.

Lemma 8. Let λ,µ and γ be positive sequences such that λµ = O(ln γ ) and γ → +∞, then

ln λ−1 > lnµ+ o(ln γ ). (83)

Proof. λµ = α ln γ , with α 6 κ for some constant κ . Taking logarithms yields

ln λ+ lnµ = ln ln γ + lnα, (84)

hence,

ln λ−1
= lnµ− ln ln γ − lnα > lnµ− ln ln γ − ln κ = lnµ+ o(ln γ ). � (85)

Theorem 3. Let V and U be vector spaces of dimensions p and q, respectively, MN ⊂ P (V ⊗ U) as in (43) and X ⊂ V ⊗ U- a
finite mutually continuous family of random vectors such that |X | > p/q + q/p, then gN : MN → R extends to a continuous
function ġN : ṀN → Ṙ via ġN (∞; X) = +∞. In particular, there exists a unique minimum of gN over MN .

Remark 6. Note that the statement allows the members of X to be statistically dependent and does not require identical
distribution. This generality is necessarywhenwe treat the case ofmanually empirically centered samples below andmakes
application of Theorem 3 possible without additional adjustments.

Proof. By Lemma 4 item (4) it is enough to show that gN (P,Q; X) → +∞ as (P,Q) → ∞. Suppose on the contrary, that
there exists a sequence (P,Q) → ∞ (we omit the j indexing in {(Pj,Qj)}j to simply notations) such that gN (P,Q; X) 6 κ
for some constant κ . Rewrite gN as

gN (P,Q; X) =


X∈X

ϕX(P,Q)+ ψ(P,Q) = ϕ(P,Q)+ ψ(P,Q), (86)
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where

ϕX(P,Q) =
1

|X |
(PXQ,X), ψ(P,Q) = − ln |P ⊗ Q|. (87)

Recall that MN can be identified with

MN
∼= {(P,Q) | ∥P∥2 = 1} ⊂ P (V )× P (U). (88)

If ∥Q∥2 is bounded, then the sequence (P,Q) tends to a singular pair (at least one of the matrices tends to a singular limit).
In this case, ϕ(P,Q) ≍ O(1) and ψ(P,Q) → +∞.

Now assume ∥Q∥2 → +∞, the only problem here is that −p ln |Q| may tend to −∞. We should show that we can
compensate for this with the other summands. Let σQ be the spectrum of Q, then it can be partitioned as σQ

= σ
Q
∞ ⊔ σ

Q
m

such that

• for each µ ∈ σ
Q
∞, lnµ ≍ rµ ln ∥Q∥2, where rµ > 0 is constant,

• for each µ ∈ σ
Q
m, lnµ = o(ln ∥Q∥2).

Order the elements of σQ
∞ by their rate of convergence

σQ
∞

= σ
Q
1 ⊔ · · · ⊔ σQ

s , (89)

where

• for each µ ∈ σ
Q
1 , µ ≍ ∥Q∥2,

• for each µ,µ′
∈ σ

Q
i , limµ/µ′ is a non-zero constant,

• for any i, if µi ∈ σ
Q
i , then µi+1 = o(µi).

For a fixed i, let {K̄i} be the sequence of random subspaces of U generated by the eigenvectors corresponding to σ i, and Ki
be the limit of {K̄i} (it exists after passing to an appropriate subsequence, if needed). Now Uk = ⊕j6k Kj form a non-trivial
random flag of length s in U ,

F = {0 = U0 ⊆ U1 ⊆ U2 ⊆ · · · ⊆ Us | Us ⊆ U}. (90)

Let σP be the spectrum of P and set

σP
i = {λ ∈ σP

| λµi = O(ln ∥Q∥2), for µi ∈ σ
Q
i }. (91)

By the definition of σ
Q
i , σP

i does not depend on the choice of µi ∈ σ
Q
i . Let {L̄i} be the sequence of random subspaces of

V generated by the eigenvectors corresponding to σP
i and Li be the limit of {L̄i} (here again, it exists after passing to an

appropriate subsequence). Denote Vk = ⊕j6k Lj and define

G = {0 = V0 ⊆ V1 ⊆ · · · ⊆ Vs | Vs ⊆ V }, (92)

which is a flag of length s in V . We denote the orthogonal projector in V ⊗ U onto Lj ⊗ Ki by πji.
Now there are two possibilities:

• ∃X ∈ X : XF ⊈ G. Let XUi ⊈ Vi, i.e. there is some j such that ln ∥Q∥2 = o(λiµj) and πij(X) ≠ 0, then

ϕ(P,Q) > ϕX(P,Q) =
1

|X |
(PXQ,X) >

1
|X |
λiµj|πij(X)|2, (93)

and ψ(P,Q) = O(ln ∥Q∥2) = o(λiµj), hence, gN (P,Q; X) → +∞.
• ∀X ∈ X : XF ⊆ G. Since ϕ(P,Q) ↛ −∞, we can ignore this summand when considering the asymptotic behavior.

Compute ψ(P,Q) = −q ln |P| − p ln |Q| explicitly,

−q ln |P| = q
s

i=1

(dim Vi − dim Vi−1) ln λ−1
i − q ln det P|V⊥

s
, (94)

−p ln |Q| = −p
s

i=1

(dimUi − dimUi−1) lnµi + o(ln ∥Q∥2), (95)

where λi ∈ σP
i and µi ∈ σ

Q
i . Note that −q ln det P|V⊥

s
↛ −∞, therefore, we may drop this summand. Since

µi ≍ ri ln ∥Q∥2, by Lemma 8 we obtain

− ln |P ⊗ Q| & C(F ,G, r) ln ∥Q∥2 + o(ln ∥Q∥2), (96)
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thus, it is enough to prove that the coefficient C(F ,G, r) is positive. This would follow from Lemma 7 if we prove that
Π(F ,G)0 i > 0 for 1 6 i 6 s. Indeed,

Π(F ,G)0 i = q dim Vi − p dimUi = q dimUi


dim XUi

dimUi
−

p
q


. (97)

Since F is non-trivial, dimUi ≠ 0 for i > 1. |X | > p/q + q/p, thus, due to Corollary 2 the expression in brackets is a.s.
positive. This finishes the proof. �

The proof we have just presentedmay be complicated to grasp due a large amount of new notations and technical details,
therefore, we now explain it in an informal way. Using the same notations, let us describe the main point of using flags.
Choose bases in U and V respecting the subspaces Ki and Lj. In these bases all the samples X ∈ X has s blocks of rows and s
block of columns corresponding to Li and Ki, respectively. Hence, each sample consists of s2 blocks. Nowwe can easily count
the contributions of the blocks to the asymptotic of gN (P,Q; X).

The contributed speed of the (i, j)-th block of any X is λiµj, up to a scalar depending on X. In order to determine the
asymptotic behavior of gN (P,Q; X)written as in (86), we need to compare the negative impact ofψ(P,Q)with the positive
one of ϕ(P,Q). The highest rate negative summand appearing inψ(P,Q) decreases with the rate of at most ln ∥Q∥2 up to a
fixed scalar. If λiµj tends to infinity faster than ln ∥Q∥2, then gN (P,Q; X)would tend to +∞.

The problem occurs if all the blocks corresponding to those λiµj growing faster than ln ∥Q∥2 are zero for all X ∈ X . Let
us note that if the (i, j)-th block is zero for all X, then all the blocks with smaller j and higher i (to the left and down of our
block) have higher speed and, hence, must be zero (otherwise we are in the first situation). This precisely means that all the
samples X ∈ X are block upper triangular, i.e. they map flag F into G.

Nowwe just use these observations together with Lemmas 7 and 8 to explicitly calculate the leading asymptotic term of
ψ(P,Q), which thanks to Corollary 2 grows to +∞ and, therefore, implies the desired.

6.7. The unknown mean case

Let V be a vector space, X = {x1, . . . , xn} ⊂ V and let {ei} ⊂ Rn be the standard basis. Define an element x∗
∈ V ⊗ Rn

as x∗
=
n

i=1 xi ⊗ ei. Then for any P ∈ P (V ),
x∈X

(Px, x) = (P ⊗ I x∗, x∗). (98)

Let now introduce the sample mean

x =
1

|X |


x∈X

x, (99)

and 1 = [1, . . . , 1]⊤ ∈ Rn.

Lemma 9.

S =



1 −
1
n

−
1
n

· · · −
1
n

−
1
n

1 −
1
n

· · ·
...

...
...

. . .
...

−
1
n

−
1
n

· · · 1 −
1
n


∈ Rn×n (100)

is an orthogonal projector onto a subspace of codimension 1.

Proof. The spectrum of S contains one 0 eigenvalue and the rest n − 1 eigenvalues are 1-s. �

Lemma 10. Let V be a vector space, X ⊂ V be a finite mutually continuous set of vectors, and P ∈ P (V )- a random operator,
then there exists a set Z ⊂ V of mutually continuous vectors such that |Z | = |X | − 1 and

1
|X |


x∈X

(P(x −x), x −x) =
1
|Z |


z∈Z

(Pz, z). (101)

Proof. Note that x∗
−x ⊗ 1 = (I ⊗ S) x∗. Let {fi} be another orthonormal basis of Rn such that ker S = ⟨fn⟩. Compute

(I ⊗ S) x∗
=

n−1
i=1

yi ⊗ fi, (102)
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and denote Y = {y1, . . . , yn−1}, then
x∈X

(P(x −x), x −x) = ((P ⊗ S) x∗, x∗) = (P ⊗ I y∗, y∗) =


y∈Y

(Py, y), (103)

where yi are now centered.
Take

zi =


|X | − 1

|X |
yi, i = 1, . . . , n − 1. (104)

The mutual continuity of zi follows from the fact that the function V n
→ V n−1 mapping X to Z is linear and surjective. �

Lemma 11. Let V and U be vector spaces and X ⊂ V ⊗ U- a mutually continuous family of random vectors with |X | >
1 + p/q + q/p, then fN (X, P,Q; X) as a function of P and Q extends to a continuous ḟN : ṀN → Ṙ via ḟN (∞) = +∞, in
particular, fN has a unique minimum over MN .

Proof. Applying Lemma 10, we get a mutually continuous set Z ⊂ V ⊗ U such that |Z | = |X | − 1 and fN (X, P,Q; X) =

gN (P,Q; Z). Now the desired claim follows from Theorem 3. �

Theorem 4. Let V and U be vector spaces, X ⊂ V ⊗ U be a mutually continuous family of random vectors with |X | >
1 + p/q + q/p, and S = V ⊗ U × MN , then fN : S → R extends to a continuous function ḟN : Ṡ → Ṙ via ḟN (∞) = +∞ and,
in particular, there exists a unique minimum of fN over S.

Proof. Note that for a fixed pair (P,Q), the value of M minimizing fN is the sample average, which does not depend on the
values of P and Q. Therefore, the result follows from Lemma 11 and Theorem 3. �

7. Proof of Theorem 2

The proof in this section is quite similar to that given in Soloveychik and Wiesel [48], thus, we made it less verbose than
the proof of the previous section. For more details please consult [48]. Analogously to Definition 3, we introduce the notion
of a descending flag and note that the usage of flags in this section is different from that of Section 6.

Definition 4. Let V be a real linear space, X ⊂ V be a finite subset and F = {V = V0 ) V1 ) · · · Vs ) Vs ⊇ 0} be a
descending flag of length s in V . Define

∆(F , X)i j = dim Vi − dim Vj −
dim V1

|X |


|X ∩ Vi| − |X ∩ Vj|


, (105)

where 0 6 i, j 6 s. In addition, given a decreasing sequence

r = {r1 > · · · > rs} ⊂ R (106)

of length s, define

S(F , X, r) =

s
i=1

ri∆(F , X)i−1 i. (107)

It now follows immediately from the definition that

∆(F , X)i j +∆(F , X)j k = ∆(F , X)i k, i, j, k = 0, . . . , s. (108)

Lemma 12. Let X ⊆ V be a finite subset, F be a flag of length s in V , r be a sequence as in (106), and ∆(F , X)0 i < 0 for all
i = 1, . . . , s. Then there exist a subflag F ′

⊆ F and a subsequence r′ ⊆ r, both of length t 6 s, such that

S(F , X, r) 6 S(F ′, X, r′), ∆(F ′, X)i−1 i 6 0, i = 1, . . . , t. (109)

In particular, S(F , X, r) < 0.

Proof. The proof is by induction on s. For s = 1,

S(F , X, r) = r1∆(F , X)0 1 < 0. (110)

Let now s > 1. If for all i = 1, . . . , s, ∆(F , X)i−1 i 6 0, then we are done since∆(F , X)0 1 < 0. Hence, we may assume that
there is i 6 s such that

∆(F , X)j−1 j 6 0, 1 6 j < i, and ∆(F , X)i−1 i > 0. (111)
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Set F ′ to be F without Vi and r′ to be r without ri, then

S(F , X, r) =


j≠i−1,i

rj∆(F , X)j−1 j + ri−1∆(F , X)i−2 i−1 + ri∆(F , X)i−1 i

6


j≠i−1,i

rj∆(F , X)j−1 j + ri−1(∆(F , X)i−2 i−1 +∆(F , X)i−1 i) = S(F ′, X, r′), (112)

where in the last equality we use (108). Since the length of F ′ is less than that of F and ∆(F ′, X)0 j is either ∆(F , X)0 j−1
or∆(F , X)0 j, thus, being negative, the result follows by induction. �

Let V and U be real vector spaces. For any V ∈ V ⊗ U , denote the subspace

VU∗
= {Vξ | ξ ∈ U∗

} ⊆ V , (113)

where Vξ is the convolution along U .

Lemma 13. Let V and U be vector spaces, and X be a family of i.i.d. continuously distributed random vectors in V ⊗ U, then

dim

X∈X

XU∗
= min(|X | dimU, dim V ), a.s. (114)

Proof. Choose bases in V andU , then the elements of X read asmatrices and the space


X∈X XU∗ is spanned by the columns
of all X ∈ X . Since the elements of X are i.i.d. and continuously distributed, the matrix consisting of all columns of all X-s is
of maximal rank. Since it contains |X | dimU columns and dim V rows, the result follows. �

Corollary 3. Let V and U be vector spaces, K ( V be a proper subspace, and X ⊂ V ⊗ U be a family of i.i.d. continuously
distributed vectors, then

|X ∩ K ⊗ U| 6
dim K
dimU

, a.s. (115)

Proof. Let Y = X ∩ K ⊗ U , then E =


Y∈Y YU∗
⊆ K and Lemma 13 yields

|Y | dimU = dim E 6 dim K . � (116)

Similarly to the Gaussian case, below we change the parametrization

fE (P,Q; X) =fE (P−1,Q−1
; X), (117)

which does not affect the existence and uniqueness results. Let the dimensions of V and U be p and q, correspondingly, and
partition fE (P,Q; X) as

fE (P,Q; X) = −
1
p
ln |P| −

1
q
ln |Q| +

1
n

n
i=1

ln

Tr

PXiQX⊤

i


= fP + fQ + fX . (118)

Consider fE (P,Q; X) over ME defined in (34) and change the scaling by fixing the trace instead of the norm, which in our
new notations means that

Tr

P−1

= Tr

Q−1

= 1. (119)

Lemma 14. Let V and U be p and q dimensional real linear spaces, respectively, then if

|X | >
max(p, q)
min(p, q)

, fE → +∞ as ME ∋ (P,Q) → ∂ME , a.s. (120)

Proof. Assume on the contrary, that there exists a sequence T = (P,Q) ⊂ ME (we omit indices for brevity) tending to ∂ME

and such that fE (T) is bounded. Note that due to (119) at least a part of eigenvalues of P and Q tend to +∞ and the others
are bounded by positive constants from below.

LetP =
p

j=1 λjyjy
⊤

j andQ =
q

i=1 µiziz⊤

i be the spectral decompositions ofP andQ. Passing to a subsequence, if needed,
we may suppose everything to converge here. Below we do not mention explicitly the subsequence argument while it is
assumed to be utilized if necessary. Denote the sets of eigenvalues of P and Q by Λ and M, respectively. Let Λ = ⊔

u+1
i=1 Λi

and ρ be a sequence such that ln λ/ ln ρ → ri whenever λ ∈ Λi and r1 > · · · > ru > ru+1 = 0. In particular, ln λ ≍ ri ln ρ
for λ ∈ Λi (if ri = 0, by this expression we mean that ln λ = o(ln ρ)). Define Ki to be the space generated by the limits of
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eigenvectors corresponding to the values in Λi, hence, V = ⊕
u+1
i=1 Ki. Now set Vi = (⊕i

j=1 Kj)
⊥ for all i = 0, . . . , u. Define a

flag F of length u as

F = {V ⊗ U = V0 ⊗ U ) · · · ) Vu ⊗ U} (121)

and r = {r1, . . . , ru}.
In a similar way, let M = ⊔

v+1
j=1 Mj and ν be such a sequence that lnµ/ ln ν → tj whenever µ ∈ Mj and t1 > · · · > tv >

tv+1 = 0. In particular, lnµ ≍ ti ln ν for µ ∈ Mi. The space generated by the limits of eigenvectors corresponding to Mj will
be denoted by Lj, hence, U = ⊕

v+1
j=1 Lj. Now we set Ui = (⊕i

j=1 Lj)
⊥ for all i = 0, . . . , v. Define a flag G of length v as

G = {V ⊗ U = V ⊗ U0 ) · · · ) V ⊗ Uv} (122)

and t = {t1, . . . , tv}.
Let Eij = Vi−1 ⊗ Uj−1 ⊆ V ⊗ U , then for any λ ∈ Λi, µ ∈ Mj and X ∈ Vi−1 ⊗ Uj−1, the limit of

1
λ
PX

1
µ
Q (123)

exists andwill be denoted by Rij(X). By the definition, Rij is a composition of the orthogonal projection onto Eij and a positive
operator on the image. Let

Xij = X ∩ Vi−1 ⊗ Uj−1 \ X ∩

Vi ⊗ Uj−1 + Vi−1 ⊗ Uj


, (124)

then X = ⊔
u+1
i=1 ⊔

v+1
j=1 Xij.

We now proceed to computing the leading asymptotic terms of the summands in (118),

fP ≍ −
1
p

u+1
i=1


λ∈Λi

ri ln ρ = −
1
p

u
i=1

ri|Λi| ln ρ = −

u
i=1

ri
dim Vi−1 − dim Vi

p
ln ρ. (125)

Similarly,

fQ ≍ −

v
j=1

tj
dimUj−1 − dimUj

q
ln ν. (126)

Let X ∈ Xij, then for any λ ∈ Λi and µ ∈ Mj, we have

ln(PXQ,X) ≍ ln λ+ lnµ+ ln(λ−1PXµ−1Q,X) ≍ ri ln ρ + tj ln ν + ln(Rij(X),X) ≍ ri ln ρ + tj ln ν. (127)

Taking this into account, we compute

fX ≍
1

|X |

u+1
i=1

r+1
j=1


x∈Xij

(ri ln ρ + ti ln ν) =
1

|X |

u+1
i=1

r+1
j=1

|Xij|(ri ln ρ + ti ln ν). (128)

We are interested in the asymptotic of the sum fP + fQ + fX , whose leading term, when non-zero, can be written as

fE = fP + fQ + fX ≍ A ln ρ + B ln ν, (129)

where

A = −

u
i=1

ri
dim Vi−1 − dim Vi

p
+

1
|X |

u+1
i=1

r+1
j=1

|Xij|ri = −

u
i=1

ri

dim Vi−1 − dim Vi

p
−

r+1
j=1

|Xij|

|X |


= −

u
i=1

ri


dim Vi−1 ⊗ U − dim Vi ⊗ U

pq
−

|X ∩ Vi−1 ⊗ U| − |X ∩ Vi ⊗ U|

|X |


= −S(F , X, r). (130)

Similar derivation yields B = S(G, X, t). Thus,

fE ≍ −S(F , X, r) ln ρ − S(G, X, t) ln ν, (131)

where the right-hand side is non-zero since at least one pair of eigenvalues tend to +∞ due to the trace constraint (119).
In addition, this implies that ln ρ and ln ν tend to +∞, and it remains to show the coefficients S(·) are both negative, thus
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guaranteeing that fE → +∞. By Lemma 12, it is enough to check that ∆(F , X)0i < 0 for i = 1, . . . , u and ∆(G, X)0j < 0
for j = 1, . . . , v. We have

∆(F , X)0i =
dim V ⊗ U − dim Vi ⊗ U

pq
−

|X | − |X ∩ Vi ⊗ U|

|X |
=

|X ∩ Vi ⊗ U|

|X |
−

dim Vi

p
, (132)

and we need to show

|X ∩ Vi ⊗ U|

|X |
<

dim Vi

p
. (133)

By Corollary 3, we get

|X ∩ Vi ⊗ U|

|X |
6

dim Vi

q|X |
<

dim Vi

dim V
, (134)

where the last inequality holds because |X | > max[p, q]/min[p, q]. After a similar calculation for B, we see that both A and
B are negative and fE (T; X) → +∞ as T → ∂ME . This contradicts the boundedness assumption on fE (T; X) and completes
the proof. �

Proof of Theorem 2. Since the KP constraint and the target function are convex in the Riemannianmetric introduced above,
the only thing we need to show is that fE → +∞ when we approach ∂ME . Lemma 14 proves that this is a.s. true when

|X | >
max(p, q)
min(p, q)

, (135)

and we are done. �
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