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a b s t r a c t

Tests of the hypothesis of conditional independence in J × K × L contingency tables are
considered. An expression to approximate the null distribution of the test statistics is
derived. Using this expression, transformed statistics are obtained which converge to a
chi-square limiting distribution faster than the original statistics do. Simulations are used
to compare the transformed statistics with the original ones, and transformed statistics
are proposed based on a Bartlett-type adjustment. Through this work and earlier ones, we
cover testing hierarchical loglinear models in three-way tables except for a model having
three interaction terms.
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1. Introduction

In order to motivate this paper, consider the data in Table 1, arising from an investigation conducted at The Danish
National Institute for Social Research in Copenhagen [6]. In this table, 223 employedmen in the age group 18–67 years were
cross-classified according to whether they live in a house or apartment (Mode: Rent, Own) and whether or not (Response:
Yes, No) they had done any work in the preceding 12 months which, in earlier times, they would have paid a craftsman to
do. One of the purposes of the investigation, for which the data were collected in 1978–79, was to estimate the extent of tax
evasion in the construction industry.

In the table, there are many possible relations between the factors: (A1) Response, Age, and Mode are all independent;
(B1) Response is independent of the pair (Age, Mode); (B2) Age is independent of the pair (Response, Mode); (B3) Mode
is independent of the pair (Response, Age); (C1) Given any Mode, Response and Age are independent; (C2) Given any Age,
Response and Mode are independent; (C3) Given any Response, Age and Mode are independent.

To test hypothesis (C1) in the data from Table 1, say, the following procedure would usually be carried out. First, the
value of the log likelihood ratio test statistic G2 would be computed; the statistic is a special case of Eq. (6). Here, the
observed value of G2 is 9.637. Since G2 is asymptotically distributed as χ2

4 , (C1) is rejected at the asymptotic 5% level given
that χ2

4 (0.05) = 9.488; the asymptotic p-value for G2 is 0.047.
Of course, such a conclusion is only valid on the basis of the assumption that the distribution of the test statistic G2 is

suitably approximated by a chi-square distributionwith appropriate degrees of freedom. If the asymptotically approximated
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Table 1
A three-way table from Edwards and Kreiner [6].

Mode Rent Own

Response Age < 30 31–45 46–67 < 30 31–45 46–67

Yes 29 3 7 23 52 49
No 44 13 16 9 31 51

critical point χ2
ν (α) and approximate p-value based on χ2

ν are inaccurate, there is a risk that the results of the approximated
test stated above will lead to the opposite conclusion of the test given by an exact critical point. We illustrate the application
of our proposed method with the above data in Section 8.

In this paper, we consider approximations of the distribution of test statistics based on an asymptotic expansion that
is more accurate than the asymptotic approximation. To this end, we develop approximations based on an asymptotic
expansion of the law of test statistics whose distribution is, like G2, discrete.

For goodness-of-fit tests for a multinomial distribution, Yarnold [24] obtained an asymptotic expansion for the null dis-
tribution of Pearson’s X2 statistic. The expansion consists of continuous and discontinuous terms. Yarnold [24] numerically
examined the accuracy of (i) the chi-square approximation; (ii) an Edgeworth approximation for the null distribution of X2;
and (iii) an approximationbasedonEdgeworth expansion anddiscontinuous terms.Heproposed theuse of an approximation
based on an Edgeworth expansion and discontinuous terms. In a fashion similar to the X2 statistic, approximations based on
asymptotic expansions for null distributions of the log likelihood ratio test statistic and the Freeman–Tukey statistic were
obtained by Siotani and Fujikoshi [17]. An approximation of power divergence statistics was obtained by Read [14] and an
approximation ofφ-divergence statisticswas obtained byMenéndez et al. [12]. The numerical accuracy of the approximation
was shown by Yarnold [24] for the X2 statistic and by Read [15] for power divergence statistics.

From the numerical results obtained by Yarnold [24], we notice that the chi-square approximation rarely performs better
than the Edgeworth approximation. Thus, an Edgeworth approximation appears to be an effective approximation of the
null distribution of the above statistics when the discontinuous term in the asymptotic expansion cannot be expressed
in a simple form. When it can, Yarnold’s recommendation applies. Under alternatives, it is very difficult to represent the
discontinuous term in a simple form, both for the earliermentioned statistics and formore general multinomialmodels such
as contingency tables. Amathematical explanation is provided in Taneichi et al. [21] and Taneichi and Sekiya [19]. Edgeworth
approximations of the distributions of specific multinomial goodness-of-fit statistics under alternative hypotheses were
investigated in [16,20,21]. Taneichi and Sekiya [19] discussed approximations for the distribution of statistics used to test for
independence in r×s contingency tables. Based on numerical investigations, it was found that omission of the discontinuous
term does not lead to a serious error.

In a multidimensional contingency table, Taneichi et al. [22] derived approximation of the distribution of statistics for
testing hypothesis (A1) based on an asymptotic expansion. In an r × s × t contingency table, Kobe et al. [10] derived
approximations of statistics for testing hypotheses (B1)–(B3) based on an asymptotic expansion. In this paper, we derive
an approximation of the distribution of statistics for testing hypotheses (C1)–(C3) based on an asymptotic expansion. Using
the continuous term of expansion (multivariate Edgeworth expansion), we construct transformed statistics that are more
reliable than the original statistics.

2. Notation, test statistics and outline of paper

We consider a three-way J × K × L contingency table. For any j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, and ℓ ∈ {1, . . . , L}, let Xjkℓ
be frequency of cell (j, k, ℓ), and assume that the sum n of all frequencies is fixed. A generic J × K × L contingency table is
shown in Table 2. Assume that the random vector

X = (X111, . . . , X11L, . . . , X1K1, . . . , X1KL, . . . , XJ11, . . . , XJ1L, . . . , XJK1, . . . , XJKL)⊤

is distributed according to a multinomial distribution MJKL(n, p), where

p = (p111, . . . , p11L, . . . , p1K1, . . . , p1KL, . . . , pJ11, . . . , pJ1L, . . . , pJK1, . . . , pJKL)⊤,

with pjkℓ ∈ (0, 1) for all j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, and ℓ ∈ {1, . . . , L}. Let the marginal probabilities of rows, columns
and layers be

pj·· =

K∑
k=1

L∑
ℓ=1

pjkℓ, p·k· =

J∑
j=1

L∑
ℓ=1

pjkℓ, p··ℓ =

J∑
j=1

K∑
k=1

pjkℓ, pjk· =

L∑
ℓ=1

pjkℓ, pj·ℓ =

K∑
k=1

pjkℓ, p·kℓ =

J∑
j=1

pjkℓ,

respectively. When Pr(layer = ℓ) > 0, the probability of row j and column k given that the layer is ℓ is

Pr(row = j, column = k | layer = ℓ) = Pr(row = j, column = k, layer = ℓ)/Pr(layer = ℓ) = pjkℓ/p··ℓ. (1)
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Table 2
A generic J × K × L contingency table.

Table of 1st layer · · · Table of Lth layer Total

X111 · · · X1K1 · · · X11L · · · X1KL X1··

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.

Xj11 · · · XjK1 · · · Xj1L · · · XjKL Xj··

.

.

.
.
.
. · · ·

.

.

.
.
.
.

.

.

.

XJ11 · · · XJK1 · · · XJ1L · · · XJKL XJ··

Total X·11 · · · X·K1 · · · X·1L · · · X·KL n

When Pr(layer = ℓ) > 0 for all ℓ ∈ {1, . . . , L}, conditional independence of rows and columns for each layer means that for
all j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, and ℓ ∈ {1, . . . , L},

Pr(row = j, column = k | layer = ℓ) = Pr(row = j | layer = ℓ) × Pr(column = k | layer = ℓ) =
pj·ℓ
p··ℓ

×
p·kℓ

p··ℓ

. (2)

From Eqs. (1)–(2), when p··ℓ > 0 for all ℓ ∈ {1, . . . , L}, the null hypothesis that rows and columns are independent given the
layers is

H(1)
0 : ∀j∈{1,...,J}∀k∈{1,...,K }∀ℓ∈{1,...,L} pjkℓ = pj·ℓp·kℓ/p··ℓ (3)

Similarly, the null hypothesis that rows and layers are independent given columns is

H(2)
0 : ∀j∈{1,...,J}∀k∈{1,...,K }∀ℓ∈{1,...,L} pjkℓ = pjk·p·kℓ/p·k·, (4)

and the null hypothesis that columns and layers are independent given rows is

H(3)
0 : ∀j∈{1,...,J}∀k∈{1,...,K }∀ℓ∈{1,...,L} pjkℓ = pjk·pj·ℓ/pj··. (5)

The unrestrictedmaximum likelihood estimator of pjkℓ is p̃jkℓ = Xjkℓ/n. Maximum likelihood estimators of pjkℓ underH
(m)
0

with m ∈ {1, 2, 3} are

p̂(1)jkℓ = Xj·ℓX·kℓ/(nX··ℓ), p̂(2)jkℓ = Xjk·X·kℓ/(nX·k·), p̂(3)jkℓ = Xjk·Xj·ℓ/(nXj··),

respectively, where

Xj·· =

K∑
k=1

L∑
ℓ=1

Xjkℓ, X·k· =

J∑
j=1

L∑
ℓ=1

Xjkℓ, X··ℓ =

J∑
j=1

K∑
k=1

Xjkℓ, Xjk· =

L∑
ℓ=1

Xjkℓ, Xj·ℓ =

K∑
k=1

Xjkℓ, X·kℓ =

J∑
j=1

Xjkℓ.

The φ-divergence statistics for testing H(m)
0 with m ∈ {1, 2, 3} are

C (m)
φ = 2n

J∑
j=1

K∑
k=1

L∑
ℓ=1

p̂(m)
jkℓ φ(p̃jkℓ/p̂

(m)
jkℓ ),

where φ(t) is a convex function for t > 0 which satisfies φ(1) = φ′(1) = 0 and φ′′(1) = 1; see [13,25]. Let φa be

φa(t) =

⎧⎨⎩{ta+1
− t + a(1 − t)}/{a(a + 1)} if a /∈ {0,−1},

t ln t + 1 − t if a = 0,
− ln t − 1 + t if a = −1.

Then for eachm ∈ {1, 2, 3}, C (m)
φa

reduces to

Ra
(m) ≡ C (m)

φa
= 2n

J∑
j=1

K∑
k=1

L∑
ℓ=1

Ia(p̃jkℓ, p̂
(m)
jkℓ ), (6)

where

Ia(e, f ) =

{e{(e/f )a − 1}/{a(a + 1)} if a /∈ {0,−1},
e ln(e/f ) if a = 0,
f ln(f /e) if a = −1.

The statistics Ra
(1), R

a
(2), R

a
(3) are based on power divergence [5], while R0

(1), R
0
(2), R

0
(3) are the log likelihood ratio statistics, and

R1
(1), R

1
(2), R

1
(3) are Pearson’s X2 statistics. The statistics R2/3

(1) , R
2/3
(2) , R

2/3
(3) were recommended in [5] for goodness-of-fit testing.

UnderH(1)
0 ,H

(2)
0 ,H

(3)
0 given by Eqs. (3)–(5), it is known that the statistics C (1)

φ , C
(2)
φ , C

(3)
φ have a chi-square limiting distribution
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with (J − 1)(K − 1)L, (J − 1)(L − 1)K and (K − 1)(L − 1)J degrees of freedom, respectively. The limiting distributions of test
statistics for contingency tables can be found in [13].

In this paper, we use an asymptotic expansion to approximate the distribution of C (m)
φ underH(m)

0 form ∈ {1, 2, 3}. Using
this approximation, we also construct transformed statistics and propose one of them when C (m)

φ is Ra
(m).

In Section 3, we derive a local Edgeworth approximation of the probability of X under H(m)
0 . In Section 4, we consider

an asymptotic approximation for the distribution of C (m)
φ under H(m)

0 based on an asymptotic expansion. The approximation
consists of continuous and discontinuous terms. In Section 5, we illustrate Bartlett’s adjustment, a Bartlett-type adjustment,
and an improved transformation. Next, by using the continuous term of the asymptotic approximation derived in Section 4,
we obtain some new transformed statistics that increase the speed of convergence to a chi-square limiting distribution.
In Section 6, the speeds of convergence to a chi-square limiting distribution of transformed statistics made by Bartlett
adjustment, by Bartlett-type adjustment and by improved transformation are compared numerically with the speed of
convergence of the original statistics C (m)

φ when C (m)
φ is Ra

(m), i.e., statistics based on power divergence. Their powers are
also compared numerically.

In Section 7, p-values of unconditional methods for a three-way contingency table are determined and the pros and
cons of our method and competitors are considered. In Section 8, the proposed statistics are applied to the data from
Section 1. In Section 9, we consider the correspondence between an independence model and a loglinear model in a three-
way contingency table.

3. Local Edgeworth expansion

We consider the null hypothesis of conditional independence. In this case, the structure of H(m)
0 and statistics Ra

(m) and
C (m)
φ for testing the hypothesisH(m)

0 are essentially the same for eachm ∈ {1, 2, 3}. Therefore, it is sufficient to consider only
H(1)

0 , Ra
(1) and C (1)

φ . Hereafter, we write H0, Ra and Cφ as H(1)
0 , Ra

(1) and C (1)
φ , respectively.

In this section, we derive a local Edgeworth approximation for the probability of X under the null hypothesis H0. Let X
be distributed according to MJKL(n, p0), where

p0 = (q111, . . . , q11L, . . . , q1K1, . . . , q1KL, . . . , qJ11, . . . , qJ1L, . . . , qJK1, . . . , qJKL)⊤

and qjkℓ = pj·ℓp·kℓ/p··ℓ for all j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, and ℓ ∈ {1, . . . , L}. For j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, and
ℓ ∈ {1, . . . , L}, let

Ujkℓ = (Xjkℓ − nqjkℓ)/
√
n. (7)

Then U = (U111, . . . , U11L, . . . , U1K1, . . . , U1KL, . . . , UJ11, . . . , UJ1L, . . . , UJK1, . . . , UJK ,L−1)⊤ is a lattice random vector that
takes values in the set

S = {u = (u111, . . . , u11L, . . . , u1K1, . . . , u1KL, . . . , uJ11, . . . , uJ1L, . . . , uJK1, . . . , uJK ,L−1)⊤ : u = (x̃− np̃0)/
√
n, x̃ ∈ S0},

where

p̃0 = (IN−1 ON−1)p0, (8)

with IN−1 an (N − 1) × (N − 1) identity matrix, ON−1 an (N − 1)-dimensional zero vector,

N = JKL, (9)

and

S0 =

{
x̃ = (x111, . . . , x11L, . . . , x1K1, . . . , x1KL, . . . , xJ11, . . . , xJ1L, . . . , xJK1, . . . , xJK ,L−1)⊤ :

the xjkℓs are nonnegative integers and
J∑

j=1

K∑
k=1

L∑
ℓ=1

xjkℓ ≤ n + xJKL

}
.

The following theorem, proved in Appendix A.1, gives a local Edgeworth expansion.

Theorem 1. Let u = (x̃ − np̃0)/
√
n for each x̃ ∈ S0. Then

Pr(U = u|H0) = n−(N−1)/2f (u){1 + h1(u)/
√
n + h2(u)/n + h3(u)/(n

√
n) + O(n−2)},

where

f (u) = (2π )−(N−1)/2
|Ω|

−1/2 exp(−u⊤Ω−1u/2), (10)

Ω = diag(q111, . . . , qJK ,L−1) − p̃0p̃⊤

0 , (11)
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h1(u) = −M1
1/2 + M3

2/6, (12)

h2(u) = {h1(u)}2/2 + (1 − M0
1 )/12 + M2

2/4 − M4
3/12, (13)

h3(u) = −{h1(u)}3/3 + h1(u)h2(u) + M1
2/12 − M3

3/6 + M5
4/20, (14)

where p̃0 is given by (8), uJKL = −(u111 + · · · + uJK ,L−1) and

Ma
b =

J∑
j=1

K∑
k=1

L∑
ℓ=1

ua
jkℓ/q

b
jkℓ.

4. An approximation based on asymptotic expansion

We consider an approximation for the distribution of Cφ underH0, viz. Pr(Cφ ≤ x|H0) ≈ W1 +W2, whereW1 comes from
amultivariate Edgeworth expansion andW2 is a discontinuous term accounting for the discontinuity, which corresponds to
an approximation for the distribution of Pearson’s X2 goodness-of-fit statistic for a multinomial distribution based on the
asymptotic expansion given in [24]. This type of approximation for the distribution of test statistics for independence in a
two-way table is discussed in [19]. The following result, proved in Appendix A.2, details how the termW1 can be evaluated.

Theorem 2. If we assume that φ is six-times differentiable and φ(6) is continuous at t = 1, then

W1 = Pr(χ2
M ≤ x) +

1
n

3∑
j=0

v
φ

j Pr(χ2
M+2j ≤ x) + O(n−2), (15)

where

v
φ

0 = γ0, v
φ

1 = (γ1 + γ2) + 2φ′′′(1)γ2 + φ(4)(1)γ3 + {φ′′′(1)}2γ4,

v
φ

2 = 2(−γ2 + γ3) − 2φ′′′(1)(γ2 + γ4) − φ(4)(1)γ3 − 2{φ′′′(1)}2γ4, v
φ

3 = γ4{1 + φ′′′(1)}2,
γ0 = −Γ1/12 − Γ2/12 + (Γ3 + Γ4)/12, γ1 = JKΓ1/4 + Γ2/4 − (KΓ3 + JΓ4)/4,

γ2 = J2K 2Γ1/8 + Γ2/8 − (K 2Γ3 + J2Γ4)/8,
γ3 = (−JK/2 − 1/8 + J/4 + K/4)Γ1 − Γ2/8 + (KΓ3 + JΓ4)/4 − (Γ3 + Γ4)/8,

γ4 = (J2K 2/8 + 3JK/4 + 1/3 − J/2 − K/2)Γ1 + 5Γ2/24 − (K 2Γ3 + J2Γ4)/8 − (KΓ3 + JΓ4)/4 + (Γ3 + Γ4)/6,

Γ1 =

L∑
ℓ=1

1/p··ℓ, Γ2 =

J∑
j=1

K∑
k=1

L∑
ℓ=1

1/qjkℓ, Γ3 =

J∑
j=1

L∑
ℓ=1

1/pj·ℓ, Γ4 =

K∑
k=1

L∑
ℓ=1

1/p·kℓ,

M = (J − 1)(K − 1)L, and χ2
ν denotes a chi-square random variable with ν degrees of freedom.

It is easily seen that vφ0 + · · · + v
φ

3 = 0. By applying φa as φ in Theorem 2, we obtain the following corollary for the
statistics based on power divergence.

Corollary 1. When the statistic is Ra given by (6),

W1 = Pr(χ2
M ≤ x) +

1
n

3∑
j=0

v
(a)
j Pr(χ2

M+2j ≤ x) + O(n−2),

where for j ∈ {0, . . . , 3}, v(a)j is defined as vφj in the case of φ′′′(1) = a − 1 and φ(4)(1) = (a − 1)(a − 2), respectively.

Weconsider the evaluation of the discontinuous termW2. As already defined in Section 2, u and p̃0 are (N−1)-dimensional
column vectors whose elements have three indices. To represent the elements of vectors concisely, we represent vectors u
and p̃0 as u∗ and p∗ by renumbering elements by one index, i.e., u∗

= (u∗

1, . . . , u
∗

N−1)
⊤

= u and p∗
= (p∗

1, . . . , p
∗

N−1)
⊤

= p̃0.
Let Bφ(x) = {u : Cφ(u) ≤ x|H0}. The set Bφ(x) is a bounded extended convex set. For arbitrarym ∈ {1, . . . ,N − 1},

Bφ(x) = {u∗
= (u∗

1, . . . , u
∗

N−1)
⊤

: ηm(ũ∗

m) ≤ u∗

m ≤ θm(ũ∗

m), ũ∗

m = (u∗

1, . . . , u
∗

m−1, u
∗

m+1, . . . , u
∗

N−1)
⊤

∈ Bm}, (16)

where for m ∈ {1, . . . ,N − 1}, Bm ⊂ RN−2, and ηm and θm are real-valued continuous functions on RN−2. Then, the
discontinuous termW2 is defined as

W2 = −n−1/2
N−1∑
m=1

n−(N−1−m)/2
∑

u∗
m+1∈Lm+1

· · ·

∑
u∗
N−1∈LN−1

∫
∞

−∞

· · ·

∫
∞

−∞

χBm (ũ
∗

m){S1(
√
nu∗

m + np∗

m)f (u
∗)}θm(ũ∗

m)
ηm(ũ∗

m)du
∗

1 · · · du∗

m−1,
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where, form ∈ {1, . . . ,N − 1}, j ∈ {1, . . . , J}, k ∈ {1, . . . , K } and ℓ ∈ {1, . . . , L},

{F (u∗)}θm(ũ∗
m)

ηm(ũ∗
m) = F{u∗

1, . . . , u
∗

m−1, θm(ũ
∗

m), u
∗

m+1, . . . , u
∗

N−1} − F{u∗

1, . . . , u
∗

m−1, ηm(ũ
∗

m), u
∗

m+1, . . . , u
∗

N−1},

Lm = {u∗

m : u∗

m = (nm − np∗

m)/
√
n, nm is an integer}, p∗

m = qjkℓ, m = (j− 1)KL+ (k− 1)L+ ℓ, S1(t) = t − [t] − 1/2,
and χB is the indicator function of the set B. With regard to the evaluation ofW2, we have the following result.

Theorem 3. If we assume that φ is four-times differentiable and φ(4) is continuous at t = 1, then

W2 =

⎧⎨⎩(2π )N−1

⎛⎝ J∏
j=1

K∏
k=1

L∏
ℓ=1

qjkℓ

⎞⎠ q−1
JKL

⎫⎬⎭
−1/2

(A + B) − C + O(n−3/2),

where A, B and C are

A = n−(N−1)/2
∑

u∗
1∈Mφ1

· · ·

∑
u∗
N−1∈MφN−1

exp{−(u∗)⊤Ω−1u∗/2},

B =
1

√
n

∫
· · ·

∫
Bφ (x)

S1(
√
nu∗

N−1 + np∗

N−1)(u
∗

N−1/p
∗

N−1 − u∗

N/p
∗

N ) exp{−(u∗)⊤Ω−1u∗/2}du∗

1 · · · du∗

N−1

+
1
n

∑
u∗
N−1∈MφN−1

∫
· · ·

∫
BN−1

S1(
√
nu∗

N−2 + np∗

N−2)(u
∗

N−2/p
∗

N−2 − u∗

N/p
∗

N ) exp{−(u∗)⊤Ω−1u∗/2}du∗

1 · · · du∗

N−2,

C = Pr(χ2
M ≤ x) +

1
n

3∑
j=0

eφj Pr(χ2
M+2j ≤ x) + O(n−3/2),

eφ0 = −(JKL)2/8 − JKL2/2 − L2/8 + JKL/4 + L/4 + (J2K + JK 2)L2/4

− (J2 + K 2)L2/8 + (J + K )L2/4 − (J + K )L/4 + (−J2K 2/8 + JK/4 − 5/8 + J/4 + K/4)Γ1

+ (K 2Γ3 + J2Γ4)/8 − (KΓ3 + JΓ4)/2 + 3(Γ3 + Γ4)/8,

eφ1 = (JKL)2/4 + JKL2 + L2/4 − (J2K + JK 2)L2/2 + (J2 + K 2)L2/4

− (J + K )L2/2 + (J2K 2/4 + JK/2 + 5/4 − J − K )Γ1

− (K 2Γ3 + J2Γ4)/4 + (KΓ3 + JΓ4)/2 − (Γ3 + Γ4)/4 + φ(4)(1)γ3 + {φ′′′(1)}2γ4,

eφ2 = −(JKL)2/8 − JKL2/2 − L2/8 − JKL/4 − L/4 + (J2K + JK 2)L2/4 − (J2 + K 2)L2/8

+ (J + K )L2/4 + (J + K )L/4 + (−J2K 2/8 − 3JK/4 − 5/8 + 3J/4 + 3K/4)Γ1

+ (K 2Γ3 + J2Γ4)/8 − (Γ3 + Γ4)/8 − φ(4)(1)γ3 − 2{φ′′′(1)}2γ4,

eφ3 = {φ′′′(1)}2γ4.

γ3, γ4,Γ1,Γ3, and Γ4 are defined in Theorem 2, andΩ and N are given by (11) and (9), respectively.

We can prove Theorem 3 essentially in a fashion similar to the proof of Theorem 5 in Taneichi and Sekiya [19]. The
W2 term is very complicated and difficult to handle in practice. Furthermore, as stated in the Introduction, as concerns
the approximation of the distribution of test statistics based on an asymptotic expansion including the test statistic for
independence in an r × s contingency table, the results of our numerical investigation suggest that an approximation based
on the W1 term, which means omitting the discrete term, does not lead to a serious error and already performs better than
an approximation based on the asymptotic distribution. Therefore, in the next section, using the continuous term of the
asymptotic expansion, we construct transformed statistics that converged to a chi-square limiting distribution faster than
the original statistics do.

5. Some transformed statistics based on the continuous term of the asymptotic expansion

In order to improve small-sample accuracy of the chi-square approximation of the distribution of a test statistic, a Bartlett-
type transformation and a transformation that is called improved transformation were considered.

We consider a nonnegative random variable T that has an asymptotic expansion

Pr(T ≤ x) = Pr(χ2
ν ≤ x) +

1
n

h∑
j=0

aj Pr(χ2
ν+2j ≤ x) + O(n−2), (17)

where h is a positive integer, and a0, . . . , ah do not depend on n (> 0) and satisfy a0 + · · · + ah = 0.
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When h = 1 in (17), the Bartlett adjustment TB [2,3,11] is defined as

TB(T ; a0, f , n) = {1 + 2a0/(nf )}T . (18)

When h = 3 in (17), improved transformation TI [7–9] and Bartlett-type adjustment TCF [4] are defined as

TI (T ; a0, a2, a3, f , n) = (nα + β)2 ln

[
1 +

1
(nα)2

{
T +

1
nα

(T 2
+ γ T 3) +

1
(nα)2

(
1
3
T 3

+
3γ
4

T 4
+

9γ 2

20
T 5

)}]
, (19)

where α = −f (f + 2)/{2(a2 + a3)}, β = −(f + 2)a0/{2(a2 + a3)} and γ = a3/{(f + 4)(a2 + a3)}, and

TCF (T ; a0, a1, a2, f , n) =

{
1 +

2a0
nf

+
2(a0 + a1)
nf (f + 2)

T +
2(a0 + a1 + a2)
nf (f + 2)(f + 4)

T 2
}
T , (20)

respectively. Then, one has, for all ξ ∈ {B, I, CF},

Pr(Tξ ≤ x) = Pr(χ2
f ≤ x) + O(n−2), (21)

respectively.
We can apply (18)–(20) to improve the approximation (15). For the statistic Cφ based on φ that satisfies

φ′′′(1) = −1 and φ(4)(1) = 2, (22)

we propose transformed statistic CB
φ = TB(Cφ; v

φ

0 ,M, n), since v
φ

1 = −v
φ

0 , and v
φ

2 = v
φ

3 = 0 hold in (15). For the other
statistics, we propose C I

φ = TI (Cφ; v
φ

0 , v
φ

2 , v
φ

3 ,M, n) and CCF
φ = TCF (Cφ; v

φ

0 , v
φ

1 , v
φ

2 ,M, n). However, when φ satisfies condition
(22), we note that CB

φ = CCF
φ .

Now, vφ0 , . . . , v
φ

3 include Γ1, . . . ,Γ4, which are functions of unknown parameters p··ℓ, pj·ℓ and p·kℓ with j ∈ {1, . . . , J},
k ∈ {1, . . . , K }, ℓ ∈ {1, . . . , L}. Then, in practical application, we substitute the maximum likelihood estimates p̌··ℓ = x··ℓ/n,
p̌j·ℓ = xj·ℓ/n, and p̌·kℓ = x·kℓ/n for p··ℓ, pj·ℓ, and p·kℓ, respectively, where x··ℓ, xj·ℓ and x·kℓ are observed values of X··ℓ, Xj·ℓ and
X·kℓ, respectively.

In the case of the power divergence statistic Ra
≡ Cφa , R

a
B ≡ CB

φa
is defined when a = 0 (the log likelihood ratio statistic)

while Ra
I ≡ C I

φa
is defined when a ̸= 0, and Ra

CF ≡ CCF
φa

is defined when both a ̸= 0 and a = 0 and R0
CF = R0

B.
The approximation Pr(C ξφ < x) ≈ Pr(χ2

M < x) (ξ = B, I, CF ) is justified by Eq. (21). Therefore, for ξ ∈ {B, I, CF},

Pr(C ξφ ≥ x) ≈ Pr(χ2
M ≥ x) (23)

holds. This means that the p-value of the test statistics C ξφ with ξ ∈ {B, I, CF} is approximated by Pr(χ2
M ≥ x).

6. Numerical comparison of transformed statistics and the original statistics

We consider the statistics Ra based on power divergence as concrete statistics. We investigate the small-sample
performance of the approximation to a chi-square distribution. We compare numerically the performance of transformed
statistics R0

CF = R0
B (a = 0), Ra

I and Ra
CF (a ̸= 0) with that of the original statistics Ra. We evaluate the performance using the

following Monte Carlo procedure.
We generate N1 multinomial contingency tables using multinomial random vectors under H0 and arrange the tables as

xS(q) with q ∈ {1, . . . ,N1}. For each q ∈ {1, . . . ,N1}, let T {xS(q)} be the value of a statistic T at xS(q). Let χ2
M (α) be the upper

α point of the chi-square distribution with M degrees of freedom, and let N2 be the number of elements of the set of q that
satisfies the condition T {xS(q)} > χ2

M (α). Then the performance of the approximation for the distribution can be evaluated
on the basis of the index I(α) = N2/N1 − α. For statistics R0

CF = R0
B, R

a
I (a ̸= 0) and Ra

CF (a ̸= 0), we investigate 2 × 2 × 2,
2 × 2 × 4, 3 × 3 × 3 and 2 × 3 × 4 contingency tables. The following sets of marginal probabilities are considered.

Case I: The marginal probabilities are all equal, i.e., for all j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, ℓ ∈ {1, . . . , L},

pj·ℓ = 1/(JL), p·kℓ = 1/(KL), p··ℓ = 1/L.

Case II: The marginal probabilities are not equal, i.e., for all j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, ℓ ∈ {1, . . . , L},

pj·ℓ =
1
2

{
1
JL

+
4jℓ

J(J + 1)L(L + 1)

}
, p·kℓ =

1
2

{
1
KL

+
4kℓ

K (K + 1)L(L + 1)

}
, p··ℓ =

1
2

{
L + 1 + 2ℓ
L(L + 1)

}
.

We carry out the above Monte Carlo procedure for N1 = 106 and sample size n = sN (s = 4 and 6) for three-way
contingency tables. We consider a statistic when a = 0 (the log likelihood ratio statistic), a statistic when a = 0.2, a statistic
when a = 2/3 and a statistic when a = 1 (Pearson’s X2 statistic).

In our simulation, if p̃jkℓ ≡ xjkℓ/n are 0, Ia(p̃jkℓ, p̂
(m)
jkℓ ) in (6) are 0 for any p̂(m)

jkℓ . For a transformed statistic, if xj·ℓ, x·kℓ, or x··ℓ

are 0, we put xj·ℓ = 10−4, x·kℓ = 10−4, or x··ℓ = 10−4, respectively.
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Fig. 1. Values of I(α) when the original statistic is Ra with a ∈ {0, 0.2, 2/3, 1} for a 2 × 2 × 2 contingency table with sample size n ∈ {32, 48}: ◦ and • are
the values for Ra when α = 0.01 and 0.05, respectively, △ and ▲ are the values for Ra

I when α = 0.01 and 0.05, respectively, and ♢ and ♦ are the values for
Ra
CF when α = 0.01 and 0.05, respectively. The first column is for Case I and the second column is for Case II.

Fig. 2. Values of I(α) when the original statistic is Ra with a ∈ {0, 0.2, 2/3, 1} for a 2 × 2 × 4 contingency table with sample size n ∈ {64, 96}: ◦ and • are
the values for Ra when α = 0.01 and 0.05, respectively, △ and ▲ are the values for Ra

I when α = 0.01 and 0.05, respectively, and ♢ and ♦ are the values for
Ra
CF when α = 0.01 and 0.05, respectively. The first column is for Case I and the second column is for Case II.

Fig. 1 shows the values of I(α) in Cases I–II when significance levels are α = 0.01 and 0.05 for a 2 × 2 × 2 contingency
table and the original statistics are R0, R0.2, R2/3 and R1. Figs. 2–4 show those as shown in Fig. 1 for 2× 2× 4, 3× 3× 3 and
2 × 3 × 4 contingency tables, respectively.

From Figs. 1–4, we find that the transformed statistic R0
B = R0

CF always performsmuch better than the original statistic R0.
The transformed statisticsR0.2

I andR0.2
CF also performmuchbetter than the original statisticR0.2. Furthermore, the transformed

statistics R2/3
I and R2/3

CF perform better than R2/3 in most cases, and R2/3
CF performs better than R2/3

I . Moreover, we find that
the transformed statistic R1

CF performs better than Pearson’s X2 statistic R1 in most cases. However, R1
I sometimes does not

perform better than R1.
For the test statistics based on power divergence for conditional independence in a J×K ×L contingency table, in the case

of the usual setting, the transformed statistic Ra
CF generally improves the speed of convergence to a chi-square distribution

very well. For the case of an extreme setting, we consider the following cell probability type models in Tables 3–4. Table 3
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Fig. 3. Values of I(α) when the original statistic is Ra with a ∈ {0, 0.2, 2/3, 1} for a 3 × 3 × 3 contingency table with sample size n ∈ {108, 162}: ◦ and •

are the values for Ra when α = 0.01 and 0.05, respectively, △ and ▲ are the values for Ra
I when α = 0.01 and 0.05, respectively, and ♢ and ♦ are the values

for Ra
CF when α = 0.01 and 0.05, respectively. The first column is for Case I and the second column is for Case II.

Fig. 4. Values of I(α) when the original statistic is Ra with a ∈ {0, 0.2, 2/3, 1} for a 2 × 3 × 4 contingency table with sample size n ∈ {96, 144}: ◦ and •

are the values for Ra when α = 0.01 and 0.05, respectively, △ and ▲ are the values for Ra
I when α = 0.01 and 0.05, respectively, and ♢ and ♦ are the values

for Ra
CF when α = 0.01 and 0.05, respectively. The first column is for Case I and the second column is for Case II.

Table 3
Model (A) in which cell probability includes 0.01.
j ℓ 1 2

k 1 2 1 2

1 p111 = 0.01 p121 = 0.04 p112 = 0.03 p122 = 0.12
2 p211 = 0.04 p221 = 0.16 p212 = 0.12 p222 = 0.48

shows amodel (model (A)) that includes a cell probability of 0.01, and Table 4 shows amodel (model (B)) that includes a cell
probability of 0.99. Table 5 shows the value of I(α) for model (A) for each statistic and significance levels α = 0.01 and 0.05.
Table 6 shows the value of I(α) for model (B) for each statistic and significance levels α = 0.01 and 0.05. From Tables 5–6,
for the extreme model, transformed statistics exhibit a performance that is almost the same as that of the original statistics.
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Table 4
Model (B) in which cell probability includes 0.99.
j ℓ 1 2

k 1 2 1 2

1 p111 = 0.000011 p121 = 0.003300 p112 = 0.00084725 p122 = 0.00084725
2 p211 = 0.003300 p221 = 0.990000 p212 = 0.00084725 p222 = 0.00084725

Table 5
Values of I(α) for Model (A).
n a α = 0.01 α = 0.05

Ra Ra
I Ra

CF Ra Ra
I Ra

CF

32 0 −0.00227 0.17983 −0.00362 0.17595
0.2 −0.00384 0.11240 0.06129 −0.01136 0.13740 0.08947
2/3 −0.00340 −0.00675 0.00332 −0.01146 −0.03358 −0.01093
1 0.00146 −0.00688 0.00471 −0.00537 −0.03291 −0.00125

48 0 −0.00085 0.05975 0.00313 0.04660
0.2 −0.00251 0.03359 0.00157 −0.00603 0.03250 0.00006
2/3 −0.00118 −0.00429 0.00395 −0.00833 −0.02407 −0.00743
1 0.00269 −0.00440 0.00162 −0.00257 −0.02222 0.00311

64 0 0.00005 0.01735 0.00963 0.00376
0.2 −0.00177 0.00851 −0.00410 −0.00193 −0.00101 −0.01670
2/3 −0.00049 −0.00223 0.00305 −0.00522 −0.01666 −0.00412
1 0.00272 −0.00272 0.00147 −0.00081 −0.01423 0.00492

80 0 0.00086 0.00260 0.01223 −0.00855
0.2 −0.00111 0.00041 −0.00388 0.00159 −0.00917 −0.01561
2/3 −0.00048 −0.00119 0.00248 −0.00469 −0.01193 −0.00315
1 0.00232 −0.00162 0.00127 −0.00140 −0.00925 0.00390

Table 6
Values of I(α) for Model (B).
n a α = 0.01 α = 0.05

Ra Ra
I Ra

CF Ra Ra
I Ra

CF

32 0 −0.01000 −0.00886 −0.04967 −0.04879
0.2 −0.00970 0.00061 −0.00995 −0.04965 −0.03933 −0.04916
2/3 −0.00966 −0.00969 −0.00995 −0.04965 −0.04967 −0.04910
1 −0.00967 −0.00970 −0.00995 −0.04967 −0.04970 −0.04992

48 0 −0.00960 −0.00946 −0.04948 −0.04992
0.2 −0.00960 −0.00664 −0.00999 −0.04949 −0.02837 −0.04988
2/3 −0.00949 −0.00956 −0.00993 −0.04948 −0.04956 −0.04991
1 −0.00948 −0.00955 −0.00992 −0.04947 −0.04955 −0.04991

64 0 −0.00956 −0.00930 −0.04934 −0.04926
0.2 −0.00955 −0.00450 −0.00999 −0.04931 −0.03882 −0.04996
2/3 −0.00929 −0.00942 −0.00987 −0.04929 −0.04942 −0.04987
1 −0.00929 −0.00942 −0.00987 −0.04929 −0.04942 −0.04987

80 0 −0.00947 −0.00914 −0.04916 −0.04913
0.2 −0.00919 −0.00435 −0.00999 −0.04912 −0.04067 −0.04999
2/3 −0.00913 −0.00934 −0.00979 −0.04912 −0.04934 −0.04979
1 −0.00914 −0.00934 −0.00980 −0.04914 −0.04934 −0.04980

Next, we compare the power of transformed statistics R0
CF = R0

B, R
a
I and Ra

CF with a ∈ {0.2, 2/3, 1}with that of the original
statistics. For a 2 × 2 × 4 table, against the null hypothesis H0, we consider the alternative hypothesis

H1 : ∀j∈{1,2}∀k∈{1,2}∀ℓ∈{1,...,4} pjkℓ = pj·ℓp·kℓ/p··ℓ + εjkℓ, (24)

where ε111 = −r , ε112 = 2r , ε113 = 3r , ε114 = 0, ε121 = 3r , ε122 = 0, ε123 = −r , ε124 = 2r , ε211 = −r , ε212 = r , ε213 = 3r ,
ε214 = 2r , ε221 = r , ε222 = 3r , ε223 = −3r , ε224 = −14r . Also, for a 2 × 3 × 4 table, against the null hypothesis H0, we
consider the alternative hypothesis

H1 : ∀j∈{1,2}∀k∈{1,2,3}∀ℓ∈{1,...,4} pjkℓ = pj·ℓp·kℓ/p··ℓ + εjkℓ, (25)

where ε111 = r , ε112 = r , ε113 = −r , ε114 = −r , ε121 = r , ε122 = r , ε123 = −r , ε124 = −r , ε131 = r , ε132 = r , ε133 = −r ,
ε134 = −r , ε211 = −r , ε212 = −r , ε213 = r , ε214 = r , ε221 = −r , ε222 = −r , ε223 = r , ε224 = r , ε231 = −r , ε232 = −r ,
ε233 = r , ε234 = r . We calculated the simulated average power Po against the alternative hypotheses (24) and (25) with
r = 0.01 by using simulated exact critical values of the statistics.
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Fig. 5. Simulated average power P0 against an alternative model (24) when original statistics are R0 , R0.2 , R2/3 , and R1 for a 2 × 2 × 4 contingency table
with sample size n ∈ {64, 96}: ◦ and • are the values for Ra with a ∈ {0, 0.2, 2/3, 1} when α = 0.01 and 0.05, respectively, △ and ▲ are the values for Ra

I
with a ∈ {0.2, 2/3, 1} when α = 0.01 and 0.05, respectively, and ▽ and ▼ are the values for R0

B(= R0
CF ) and Ra

CF with a ∈ {0.2, 2/3, 1} when α = 0.01 and 0.05,
respectively. The first column is for Case I and the second column is for Case II.

Fig. 6. Simulated average power P0 against an alternative model (25) when the original statistics are R0 , R0.2 , R2/3 , and R1 for a 2 × 3 × 4 contingency table
with sample size n ∈ {96, 144}: ◦ and • are the values for Ra with a ∈ {0, 0.2, 2/3, 1} when α = 0.01 and 0.05, respectively, △ and ▲ are the values for Ra

I
with a ∈ {0.2, 2/3, 1} when α = 0.01 and 0.05, respectively, and ▽ and ▼ are the values for R0

B(= R0
CF ) and Ra

CF with a ∈ {0.2, 2/3, 1} when α = 0.01 and 0.05,
respectively. The first column is for Case I and the second column is for Case II.

Fig. 5 shows the power of the statistics for a 2 × 2 × 4 contingency table in Cases I–II when the significance level is
α = 0.01 and 0.05 and the original statistics are Ra for a ∈ {0, 0.2, 2/3, 1}. The number of repetitions is 106, the ratio of
irregular cases is 0.0, and the sample sizes are 64 and 96.

Fig. 6 shows the power of the statistics for a 2 × 3 × 4 contingency table. The number of repetitions is 106, the ratio of
irregular cases is 0.0, and the sample sizes are 96 and 144. From Figs. 5–6, we conclude that the power against H1 given by
(24) and (25) of the transformed statistics R0

CF = R0
B, R

a
I and Ra

CF with a ∈ {0.2, 2/3, 1} is not so different from that of the
original statistics in 2 × 2 × 4 and 2 × 3 × 4 contingency tables, respectively.

These power results were expected since it is known that a transformed statistic by a monotone function that includes a
Bartlett adjustment has the same power as that of the original statistic.
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Table 7
Three-way data #1.
A C Yes No

B 1 2 3 1 2 3

Yes 30 23 21 25 19 40
No 8 5 1 4 2 2

Table 8
Three-way data #2.
A C Yes No

B Yes No Yes No

Yes 5 9 21 1
No 7 17 9 4

Table 9
Three-way data #3.
A C Yes No

B Yes No Yes No

Yes 7 14 9 2
No 3 14 16 3

Table 10
Three-way data #4.
A C Yes No

B Yes No Yes No

Yes 4 13 5 4
No 0 11 14 4

7. Unconditional methods and our methods

For a 2 × 2 contingency table, Storer and Kim [18] and Tang and Tang [23] proposed and developed exact methods
(unconditional methods). Since our methods are improved asymptotic methods, their performance is inferior to that of
unconditional methods in a small sample size. For a conditional independent model of a three-way contingency table,
in order to compute the p-value of statistic T by an approximate unconditional method (AU-method), we consider the
probability structure

Pr(X = x) = n!

⎧⎨⎩
J∏

j=1

K∏
k=1

L∏
ℓ=1

(x∗

j·ℓx
∗

·kℓ

nx∗

··ℓ

)xjkℓ
⎫⎬⎭/⎧⎨⎩

J∏
j=1

K∏
k=1

L∏
ℓ=1

(xjkℓ)!

⎫⎬⎭ ,

where x∗

··ℓ, x
∗

j·ℓ and x∗

·kℓ are themarginal observation calculated fromobservation x∗
= (x∗

111, . . . , x
∗

JKL)
⊤. Let the observed value

of statistic be T (x∗). We consider every lattice x = (x111, . . . , xJKL)⊤ with non-negative integers xjkℓ ≥ 0 for all j ∈ {1, . . . , J},
k ∈ {1, . . . , K }, and ℓ ∈ {1, . . . , L}. Suppose that the counts add up to n. The number LA of lattices is then

(n+JKL−1
n

)
. For every

x, compute the value of statistic T (x). Then, the p-value pAU (x∗) of T given by AU-method is given by

pAU (x∗) =

∑
x∈{x|T (x)≥T (x∗)}

Pr(X = x).

However, in a three-way contingency table, the number LA of lattices increases rapidly with n. For example, for a 2 × 2 × 2
contingency table, LA = 245,157 when n = 16 and LA = 2,629,575 when n = 24. The computation of pAU (x∗) is thus very
difficult in practice except for a very small sample size.

Let pA be the p-value of the statistic Ra
CF given by the approximated AU-method by using the Monte Carlo method. The

value of pA is considered to be very accurate. Let pB be the p-value of statistic Ra
CF given by (23).

The values of pA and pB for some data (Tables 1, 7–10) are shown in Table 11. From Table 11, pA and pB are very close, and
the approximated p-value based on (23) therefore performed well for not so small sample sizes. Also, this approximation is
not necessary for a large computational power.

8. Application to real data

Using the results in Table 11, we test (C1) for the data in Table 1. The value of the log likelihood ratio statistic R0
= G2 is

9.637. The value of the transformed log likelihood ratio statistic R0
CF is 9.425. Since χ

2
4 (0.05) = 9.488, (C1) cannot be rejected
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Table 11
Values of pA and pB for each data set.
a Table 1 Table 7 Table 8 Table 9 Table 10

pA pB pA pB pA pB pA pB pA pB
0 0.05226 0.05130 0.30512 0.28683 0.11950 0.11582 0.57098 0.56378 0.07205 0.07560
0.2 0.05183 0.05128 0.30381 0.29393 0.11202 0.11240 0.56953 0.56399 0.08139 0.08720
2/3 0.05179 0.05176 0.31155 0.31159 0.09958 0.10327 0.56735 0.56477 0.09834 0.10627
1 0.05251 0.05253 0.32235 0.32422 0.09265 0.09570 0.56675 0.56552 0.10828 0.11496

at the 5% level using the transformed statistic R0
CF . The asymptotic p-value of R0 is 0.0470, and the simulated p-value based

on the AU-method (which is more precise) for R0 is 0.05254. In contrast, the asymptotic p-value of R0
CF is 0.05130, and the

simulated p-value based on the AU-method for R0
CF is 0.05226. Therefore, for the statistic R0, the conclusion of the test based

on an asymptotic distribution is opposite to that of the test based on an exact distribution at the 5% level. In contrast, for the
statistic R0

CF , the conclusion of the test based on an asymptotic distribution agrees with that of the test based on the exact
distribution at the 5% level.

9. Relation to testing a loglinear model for three-way contingency tables

Here we consider the correspondence between testing independence and testing a loglinear model. Throughout this
section, we use the notations of Agresti [1] for loglinear models in three-way contingency tables.

Taneichi et al. [22] obtained an approximation for the distribution of test statistics for complete independence in multi-
way contingency tables. Using the approximation, we proposed transformed statistics to improve the speed of convergence
to a chi-square distribution. For the loglinear model of a three-way table, testing complete independence corresponds to
testing the model

lnµijk = λ+ λXi + λYj + λZk .

Kobe et al. [10] obtained an approximation for the distribution of test statistics for the independence of one factor to two
other factors in three-way tables and proposed transformed statistics using the approximation. For the loglinear model of a
three-way table, testing the independence of one factor to two other factors corresponds to testing the model

lnµijk = λ+ λXi + λYj + λZk + λXYi j .

We obtained an approximation for the distribution of Cφ for a test of conditional independence in three-way contingency
tables, andweproposed a transformed statistic using the approximation. For the loglinearmodel of a three-way table, testing
conditional independence corresponds to testing the model

lnµijk = λ+ λXi + λYj + λZk + λXYi j + λYZj k .

By using tests of three types of independence model, we have covered for testing the loglinear model in three-way tables
except for the model

lnµijk = λ+ λXi + λYj + λZk + λXYi j + λYZj k + λXZi k .

10. Concluding remarks

We derived an expression of asymptotic expansion for the distribution of test statistics Cφ (based on φ-divergence) for
conditional independence in J × K × L contingency tables. Using the continuous terms of the expression, we obtained
transformations that improve the speed of convergence to the chi-square asymptotic distribution of Cφ .

As a special case of Cφ , we considered power divergence statistics Ra. By numerical comparison,we found that the Bartlett-
type transformed R0 and R0.2 statistics, namely R0

CF and R0.2
CF , perform very well and are recommendable when n ≥ 4JKL. Also,

the power of transformed statistics is almost the same as that of the original statistics.
We can state with certitude that for small-sample J × K × L contingency tables with non-zero marginal frequencies

and sample size n ≥ 4JKL, the proposed transformed statistics, especially R0
CF and R0.2

CF , are more reliable than the original
statistics.

There are four standard independence models in a J × K × L contingency table. We obtained improved transformed test
statistics for the third case. Therefore, by the results of this work and previous works [10,22], we constructed and covered
the transformed test statistics for three out of four possible independence models.
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Appendix

A.1. Proof of Theorem 1

Introduce the notation
[JKL−1]∑

ajkℓ =

J∑
j=1

K∑
k=1

L∑
ℓ=1

ajkℓ − aJKL.

If we set X̃ = (IN−1ON−1)X, the characteristic function G of X̃ is given by

G(s) =

∑
x̃∈Sx

exp(is⊤x̃) Pr(X̃ = x̃ |H0) =

{
[JKL−1]∑

qjkℓ exp(isjkℓ) + qJKL

}n

,

where s = (s111, . . . , sJK ,L−1)⊤. For each u = (x̃ − np̃0)/
√
n ∈ S, we find

Pr(U = u |H0) = Pr(X̃ = x̃ |H0) = (2π )−(N−1)
∫ π

−π

· · ·

∫ π

−π

G(s) exp(−is⊤x̃)ds = (2π
√
n)−(N−1)I,

where

I =

∫ √
nπ

−
√
nπ

· · ·

∫ √
nπ

−
√
nπ
γ (s) exp(−is⊤u)ds (A.1)

and γ (s) = G(s/
√
n) exp(−i

√
ns⊤p̃0). We can write

γ (s) = {exp(−s⊤Ωs/2)}

{
1 +

3∑
m=1

n−m/2bm(s) + O(n−2)

}
(A.2)

for large n and fixed s, where

b1(s) =
i3

6

{
[JKL−1]∑

qjkℓs3jkℓ − 3(s⊤p̃0)s⊤Ωs − (s⊤p̃0)3
}
,

b2(s) =
1
2
{b1(s)}2 +

i4

24

{
[JKL−1]∑

qjkℓs4jkℓ − 4(s⊤p̃0)
[JKL−1]∑

qjkℓs3jkℓ − 3(s⊤Ωs)2 + 6(s⊤p̃0)2s⊤Ωs + 3(s⊤p̃0)4
}

and

b3(s) = −
1
3
{b1(s)}3 + b1(s)b2(s) +

i5

120

{
[JKL−1]∑

qjkℓs5jkℓ − 5(s⊤p̃0)
[JKL−1]∑

qjkℓs4jkℓ − 10(s⊤Ωs)
[JKL−1]∑

qjkℓs3jkℓ

+10(s⊤p̃0)2
[JKL−1]∑

qjkℓs3jkℓ + 30(s⊤p̃0)(s⊤Ωs)2 − 6(s⊤p̃0)5
}
.

From (A.2), I given by (A.1) is divided into three parts, say I = I1 + I2 − I3, where

I1 =

∫
∞

−∞

· · ·

∫
∞

−∞

[exp{−(s⊤Ωs + 2is⊤u)/2}]

{
1 +

3∑
m=1

n−m/2bm(s)

}
ds,

I2 =

∫
∞

−∞

· · ·

∫
∞

−∞

[exp{−(s⊤Ωs + 2is⊤u)/2}]O(n−2)ds,

I3 =

∫
· · ·

∫
Q c

[exp{−(s⊤Ωs + 2is⊤u)/2}]

{
1 +

3∑
m=1

n−m/2bm(s) + O(n−2)

}
ds

and Q = [−
√
nπ,

√
nπ ]× · · ·× [−

√
nπ,

√
nπ ]. Evaluation I = I1 +O(n−2) is derived by using I2 = O(n−2) and I3 = o(n−2).

Therefore, we find

Pr(U = u|H0) = (2π
√
n)−(N−1)

[∫
∞

−∞

· · ·

∫
∞

−∞

[exp{−(s⊤Ωs + 2is⊤u)/2}]

{
1 +

3∑
m=1

n−m/2bm(s)

}
ds + O(n−2)

]
.

By calculating the integral of the above expression, we find the results stated in Theorem 1. □
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A.2. Proof of Theorem 2

By the transformation (7), the statistic Cφ can be rewritten as

Cφ(U) = 2n
J∑

j=1

K∑
k=1

L∑
ℓ=1

qjkℓGjkℓφ(Djkℓ),

where for each j ∈ {1, . . . , J}, k ∈ {1, . . . , K }, ℓ ∈ {1, . . . , L},

Gjkℓ =

(
1 +

Uj·ℓ
√
npj·ℓ

)(
1 +

U·kℓ
√
np·kℓ

)(
1 +

U··ℓ
√
np··ℓ

)−1

, Djkℓ =

(
1 +

Ujkℓ
√
nqjkℓ

)
G−1
jkℓ ,

with Uj·ℓ = Uj1ℓ + · · · + UjKℓ, U·kℓ = U1kℓ + · · · + UJkℓ, and U··ℓ =
∑J

j=1
∑K

k=1 Ujkℓ. Since W1 is multivariate Edgeworth
expansion,W1 is represented as

W1 =

∫
· · ·

∫
Bφ (x)

f (u){1 + h1(u)/
√
n + h2(u)/n + h3(u)/(n

√
n)}du + O(n−2),

where Bφ(x) is defined by (16), du = du111 · · · duJK ,L−1, and f (u), h1(u), h2(u) and h3(u) are defined by (10) and (12)–(14),
respectively. We derive an approximation of the characteristic function of Cφ(U), i.e.,

ψφ(t) =

∫
∞

∞

· · ·

∫
∞

−∞

exp{itCφ(u)}f (u){1 + h1(u)/
√
n + h2(u)/n + h3(u)/(n

√
n)}du (A.3)

up to order n−3/2. By the assumption on φ(t), we obtain

Cφ(u) = τ0(u) + τ
φ

1 (u)/
√
n + τ

φ

2 (u)/n + τ
φ

3 (u)/(n
√
n) + O(n−2), (A.4)

where τ0(u) = u⊤Ω−1u + M(1)2 − M(2)0,2,

τ
φ

1 (u) = φ′′′(1)M3
2/3 + {4φ′′′(1)/3 + 1}M(1)3 + {2φ′′′(1)/3 + 1}M(2)0,3

+{φ′′′(1) + 1}{−2M(2)1,2 + 2M(3)0,1,1 + M(3)1,0,2 − M(4)0,0,1,2},

τ
φ

2 (u) = φ(4)(1)M4
3/12 + {3φ(4)(1)/4 + 4φ′′′(1)/3}M(1)4 − {φ(4)(1)/4 + 4φ′′′(1)/3 + 1}M(2)0,4

− {3φ(4)(1)/2 + 4φ′′′(1) + 1}M(2)2,2

+ {φ(4)(1)/2 + 2φ′′′(1) + 1}
{
2M(2)1,3 + M(3)0,2,0 + M(4)0,0,2,2 − 2M(4)0,1,2,1

}
+ {φ(4)(1) + 2φ′′′(1)}{M(3)2,0,2/2 + M(3)1,0,3/3 − M(4)0,0,1,3/3}

+ {φ(4)(1) + 3φ′′′(1) + 1}{M(3)0,1,2 + 2M(3)1,1,1 − M(4)1,0,1,2},

M(1)a =

L∑
ℓ=1

ua
··ℓ/p

a−1
··ℓ , M(2)a,b =

J∑
j=1

L∑
ℓ=1

(u··ℓ/p··ℓ)
a ub

j·ℓ/p
b−1
j·ℓ +

K∑
k=1

L∑
ℓ=1

(u··ℓ/p··ℓ)
a ub

·kℓ/p
b−1
·kℓ ,

M(3)a,b,c =

J∑
j=1

K∑
k=1

L∑
ℓ=1

(u··ℓ/p··ℓ)
a
{(uj·ℓu·kℓ)/(pj·ℓp·kℓ)}buc

jkℓ/q
c−1
jkℓ ,

M(4)a,b,c,d =

J∑
j=1

K∑
k=1

L∑
ℓ=1

(u··ℓ/p··ℓ)a{(uj·ℓ/pj·ℓ)b(u·kℓ/p·kℓ)c + (uj·ℓ/pj·ℓ)c(u·kℓ/p·kℓ)b}ud
jkℓ/q

d−1
jkℓ ,

where τφ3 (u) is a homogeneous polynomial of degree 5 with respect to the variables u111, . . . , uJK ,L−1. By substituting the
expanded expression of exp{itCφ(u)} obtained by using (A.4) for exp{itCφ(u)} in (A.3), we find

ψφ(t) = (|Ω|/|Λ|)−1/2
∫

∞

−∞

· · ·

∫
∞

−∞

h0(u)gφ(u)du + O(n−2), (A.5)

where

h0(u) = (2π )−(N−1)/2
|Λ|

−1/2 exp(−u⊤Λ−1u/2),

gφ(u) = 1 +
1

√
n
{h1(u) + (it)τφ1 (u)} +

1
n
[h2(u) + (it)τφ1 (u)h1(u) + (it)τ2φ(u) + (it)2{τφ1 (u)}

2/2] +
1

n
√
n
Q0(u),

Λ = (1 − 2it)−1(Ω − 2itΩΞΩ),
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Ξ = (IN−1,−1N−1)
(
(1K1⊤

K )⊗ D−1
1 ⊕ · · · ⊕ (1K1⊤

K )⊗ D−1
J + (1J1⊤

J )⊗ D−1
(2) − (1J1⊤

J )⊗ (1K1⊤

K )⊗ D−1
(3)

)
(IN−1,−1N−1)

⊤ ,

and for all j ∈ {1, . . . , J}, Dj = diag(pj·1, . . . , pj·L), D(2) = diag(p·11, . . . , p·1L, . . . , p·K1, . . . , p·KL) and D(3) = diag(p··1, . . . , p··L),
where N is given by (9), ⊗ and ⊕ denote the Kronecker product and direct sum of matrices, and the degrees of all terms of
polynomial Q0(u) are odd.

We compute the integral in (A.5) by using the equation |Ω|/|Λ| = (1 − 2it)M . Then,

ψφ(t) = (1 − 2it)−M/2

⎧⎨⎩1 +
1
n

3∑
j=0

(1 − 2it)−jv
φ

j + O(n−2)

⎫⎬⎭ , (A.6)

where vφ0 , . . . , v
φ

3 are defined in (15). The results of Theorem 2 are derived by inverting (A.6).
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