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a b s t r a c t

In this paper, we show that quantum logic of linear subspaces can be used for recognition
of random signals by a Bayesian energy discriminant classifier. The energy distribution on
linear subspaces is described by the correlation matrix of the probability distribution. We
show that the correlation matrix corresponds to von Neumann density matrix in quantum
theory. We suggest the interpretation of quantum logic as a fuzzy logic of fuzzy sets. The
use of quantum logic for recognition is based on the fact that the probability distribution of
each class lies approximately in a lower-dimensional subspace of feature space. We offer
the interpretation of discriminant functions as membership functions of fuzzy sets. Also,
we offer the quality functional for optimal choice of discriminant functions for recognition
from some class of discriminant functions.

© 2009 Published by Elsevier Inc.

1. Introduction

A Bayesian probabilistic discriminant classifier is based on a classical probability theory using algebra of subsets.
The decision rule of the probabilistic classifier maximizes the probability of ‘‘correct’’ recognition. A Bayesian energy
discriminant classifier was briefly presented in [1]. The algebra of linear subspaces (quantum logic) is used instead of algebra
of subsets. The decision rule of energy classifiermaximizes the energy of ‘‘correct’’ recognition. The recognition of two classes
is considered in detail. The use of quantum logic for recognition of signals is considered in [2].
The use of linear subspaces is based on the assumption that the distribution of each class lies approximately in a lower-

dimensional subspace of feature space. These spaces can be found by principal components analysis carried out individually
on each class. An input vector from the unknown class is classified according to the greatest projection to the subspaces,
each of which represents one class.
The subspace classifier was suggested by Watanabe (method CLAFIC [3,4]). This method, however, has drawbacks: a

priori probabilities of classes are not used; subspaces of classes can overlap. T. Kohonen has offered the Learning Subspace
Method (LSM) [5,3]. During the training LSM decreases the number of vectors that are included in subspaces of different
classes. The recognition of handwritten signs by the subspace classifier is considered in [4]. The subspace classifier is applied
to phonemes recognition in [6] and to speaker recognition in [7].
Eldar and Oppenheim [8] draw a parallel between quantum measurements and algorithms in signal processing. They

propose to exploit the rich mathematical structure of quantum theory in signal processing without realization of quantum
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processes. We suggest to consider energy processes instead of quantum processes because nature spends some energy to
create any signal.

2. Quantum logic as an example of fuzzy logic

Let H be a Hilbert space that can be complex or real, finite- or infinite-dimensional in this section. In the following
sections we consider only real and finite-dimensional Hilbert spaces. A fuzzy set A of H is a pair {x, µA(x): x ∈ H}, where
µA(x): H → [0,∞) is called a membership function of the fuzzy set A, i.e., for each x ∈ H , µA(x) is the degree of
membership of x. The fuzzy set and its membership function often do not differ. Suppose µA(x) be non necessarily normal:
supµA(x) 6= 1, x ∈ H. A set of membership functions is a partially ordered set equipped with a partial order relation:
µA(x) ≤ µB(x) for all x ∈ H . The result of operations

µA(x) ∧ µB(x) = inf
(
µA(x), µB(x)

)
, µA(x) ∨ µB(x) = sup

(
µA(x), µB(x)

)
is defined pointwise and the result is again a nonnegative function. Hence, the set of membership functions is a lattice.
Each closed linear subspace M ⊂ H corresponds to an elementary logical proposition of quantum logic. Each linear

subspaceM has an orthogonal projection PM ontoM . So a proposition of quantum logic can be associatedwith the orthogonal
projection. The set of all orthogonal projections is a lattice equipped with a partial order relation: P ≤ R if 〈Px, x〉 ≤ 〈Rx, x〉
for all x ∈ H . Hence every pair of projections P, R has a unique supremum (least upper bound) and a unique infimum
(greatest lower bound):

P ∧ R = inf(P, R), P ∨ R = sup(P, R).

Operations P ∧ R, P ∨ R, and P⊥ = I − P are conjunction, disjunction, and negation of quantum logic, respectively.
Each projection PM on the subspace M can be viewed as a filter [2] and it passes some energy µM(x) = 〈PMx, x〉 =

‖PMx‖2 of signal x (in quantum theory, a projection passes some quantum probability). This energy evaluates the value of
membership of signal x to subspaceM . So each linear subspaceM ⊂ H can be associated with the fuzzy set:

AM =
{
x, µM(x): x ∈ H, M ⊂ H

}
, where µM(x) = 〈PMx, x〉.

A set of all membership functions {µM(x),M ⊂ H} is a lattice equipped with a partial order relation: 〈PMx, x〉 ≤ 〈PNx, x〉
for all x ∈ H . So operations supremum and infimum of that lattice can be used as a fuzzy logic conjunction and disjunction
of fuzzy sets {AM ,M ∈ H}. A fuzzy logic negation of fuzzy set AM withmembership functionµM(x) can be defined as a fuzzy
set AM⊥ using the following membership function: µM⊥(x) = 〈PM⊥x, x〉 = 〈P

⊥

M x, x〉 = 〈(I − PM)x, x〉, where a subspaceM
⊥

is the orthogonal complement of subspaceM . Thus fuzzy sets {AM ,M ⊂ H} form a fuzzy logic.

3. Discriminant functions as membership functions

If an object of recognition is described as a vector x = (x1, x2, . . . , xn), where each xi ∈ R, i = 1 . . . l, is a feature, then
the vector x is the pattern of the object in the feature space Rn. A membership of object to some class Si, i = 1 . . . l, is an
additional feature, which can be defined as the index i of the class, where i ∈ I = {1, 2, . . . , l}.
We use discriminant functions for the classifier of recognition. Discriminant functions are functions gi(x), i = 1 . . . l, that

determine the membership of the object with the pattern x to class Si according to the following decision rule: if the object
with the pattern x satisfies gi(x) > gj(x) for all j 6= i, then the object having the pattern x is assigned the class Si.
Discriminant functions split the feature space Rn into disjoint sets:

Ai =
{
x: gi(x) > gj(x), j = 1 . . . l, j 6= i

}
.

Thus, if x ∈ Ai, then the object having the pattern x is assigned the class Si. However, there are sets {x: gi(x) = gj(x), j 6= i},
i = 1 . . . l, whose elements it is impossible to include in some set Ai, i = 1 . . . l. Usually these sets redefine Ai, i = 1 . . . l to
allow equality.
Using discriminant functions, the classifier determines the value about the membership of the object with the pattern

x to some class Si. Thus the discriminant functions gi(x), i = 1 . . . l, can be understood as membership functions. In the
following, we assume that discriminant functions are non-negative and need not satisfy sup gi(x) 6= 1, x ∈ R, i = 1 . . . l.

4. Quality functional for a choice of optimal decision rule

We shall use a probabilistic model for recognition. Let (Ω,A, P) be a probability space where a sample spaceΩ is a set
of recognition objects. It is evident that the set of recognition classes S1, S2, . . . , Sl are a partition ofΩ: S1∪S2∪· · ·∪Sl = Ω
where Si ∩ Sj = ∅ for all i 6= j.
Following Zadeh [9], a fuzzy set A is called a fuzzy event if the corresponding membership functionµA(ω):Ω → [0,∞)

isA-measurable. The probability of a fuzzy event is defined as

P(A) = EµA =
∫
Ω

µAdP. (1)



70 G. Melnichenko / Journal of Multivariate Analysis 101 (2010) 68–76

Suppose that an object ω is described by the vector ξ(ω) = (ξ1(ω), ξ2(ω), . . . , ξn(ω)) of features where each ξi(ω):
Ω → R, i = 1 . . . n, is A-measurable random variable. Since each object ω has the pattern x in the feature space Rn = H ,
there is a map ξ(ω): Ω → H . We define an integer-valued random variable γ such that γ (ω) = i for all ω ∈ Si, where
i ∈ I={1, 2, . . . , l}. The sample space Ω of the objects is usually not accessible to immediate observation, therefore it is
necessary to deal with the feature space H . However,Ω can be considered as I × H .
We use a Bayesian method which needs a prior probabilities pi = P(Si), i = 1 . . . l, and conditional distributions

µi(A) = P(ξ ∈ A|Si), i = 1 . . . l. Since P(Si) = P(γ = i), it follows that pi, i = 1 . . . l, is the probability distribution of
the random variable γ .
We denote µ(B, A) = P(γ ∈ B, ξ ∈ A), where B = {i1, i2, . . . , im} ⊂ I and A ⊂ H. The measure µ is the probability

distribution on I × H . Since µi(A) = P(ξ ∈ A|Si) and Si = (γ = i), where i = 1 . . . l, we get

µ({i}, A) = P(γ = i, ξ ∈ A) = P(ξ ∈ A|γ = i)P(γ = i) = P(ξ ∈ A|Si)P(Si) = piµi(A).

Let us put µ1({i}) = pi and µ12(i, A) = µi(A). We have

µ(B, A) = P
( m∑
k=1

(γ = ik) ∩ (ξ ∈ A)
)
=

m∑
k=1

P(ξ ∈ A | γ = ik)P(γ = ik)

=

m∑
k=1

µ({ik}, A)
pik

pik =
m∑
k=1

µ12(ik, A)µ1({ik}) =
∫
B
µ12(i, A)µ1(d i).

It follows thatµ12(i, A) = µi(A) is the transition probability on I×B [10], whereB is a σ -algebra of Borel subsets of feature
space H = Rn.
Discriminant functions gi(x), i = 1 . . . l, define a random variable gγ (ξ). We put g(γ , ξ) = gγ (ξ). Sinceµ12(i, A) = µi(A)

is the transition probability on I ×B, we have [10]

Eg(γ , ξ) =
∫
I
µ1(di)

∫
H
g(i, x)µ12(i, dx) =

l∑
i=1

pi

∫
H
gi(x)µi(dx). (2)

Suppose H = A1 ∪ A2 ∪ · · · ∪ Al, where Ai, i = 1 . . . l, are disjoint sets. Let Φ be a class of discriminant functions which
contain only indicator functions:

gi(x) = 1Ai(x) =
{
1 if x ∈ Ai,
0 if x 6∈ Ai.

It is evident that g(γ (ω), ξ(ω)) = gγ (ω)(ξ(ω)) is the indicator function with a support:

G =
l∑
i=1

(ξ ∈ Ai) ∩ (γ = i) =
l∑
i=1

(ξ ∈ Ai) ∩ Si.

We can say that the indicator function 1G = g(γ , ξ) is the membership function of ‘‘correct’’ recognition, where G is a
ordinary event (crisp event) of ‘‘correct’’ recognition. By (2), we have

P(G) = Eg(γ , ξ) =
l∑
i=1

pi

∫
H
g(i, x)µi(dx) =

l∑
i=1

P(ξ ∈ Ai|Si)P(Si). (3)

If we use discriminant functions that are indicator functions, then Bayesian discriminant classifier splits the feature space
H into disjoint sets H = A1 ∪ A2 ∪ · · · ∪ Al such that the probability (3) for the ordinary event G of ‘‘correct’’ recognition
would be maximal.
Let gi(x), i = 1 . . . l, be discriminant functions from some class Φ , where each function gi(x): H → [0,∞) is a Borel-

measurable membership function of class Si. Then the random variable gi(ξ(ω)), i = 1 . . . l onΩ is a membership function
such that the value gi(ξ(ω)) is a membership degree of object ω to a class Si. We define fuzzy events G1,G2, . . . ,Gl as
Gi = {ω, gi(ξ(ω)):ω ∈ Ω} for all i = 1 . . . l.
Let us define the membership function:

µj(i, ω) = 1Sj(ω)gi
(
ξ(ω)

)
=

{
gi
(
ξ(ω)

)
if ω ∈ Sj,

0 if ω 6∈ Sj.

This membership function defines the fuzzy event SjGi = {ω,µj(i, ω):ω ∈ Ω}, which is a product [9] of events Gj and Si.
The value µj(i, ω) is the membership degree of the object ω to the class Si if the statement ω ∈ Sj is true. There can be two
cases. First, if j = i, then µi(i, ω) is the membership degree of the object ω to the class Si when the object ω belongs to
its own class Si. We call the value µi(i, ω) a ‘‘correct’’ degree of membership; we call the fuzzy event SiGi a fuzzy event of
‘‘correct’’ recognition. Second, if j 6= i, thenµj(i, ω) is the membership degree of the object ω to the class Si when the object
ω belongs to the other class Sj. We call the value µj(i, ω), j 6= i, an ‘‘error’’ degree of membership; we call the fuzzy event
SjGi, j 6= i, a fuzzy event of ‘‘error’’ recognition.
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Since g(γ , ξ) = gγ (ξ) and 1Si = 1(γ=i) for all i = 1 . . . l, we get

g(γ , ξ) =
l∑
i=1

1(γ=i)g(γ , ξ) =
l∑
i=1

1(γ=i)gi(ξ) =
l∑
i=1

1Sigi(ξ) =
l∑
i=1

µi(i, ω).

This membership function defines a degree of ‘‘correct’’ membership for all objects ω ∈ Ω . We call the random variable
g(γ , ξ) as a membership function of ‘‘correct’’ recognition and the fuzzy set G = {ω, g(γ (ω), ξ(ω)):ω ∈ Ω} as a fuzzy
event of ‘‘correct’’ recognition.
It is natural to choose discriminant functions gi(x), i = 1 . . . l from the classΦ such that the probability of the fuzzy event

G of ‘‘correct’’ recognition would be maximal. From (1) and (2), we have that the probability of the fuzzy event G is defined
as

P(G) = Eg(γ , ξ) =
l∑
i=1

pi

∫
H
g(i, x)µi(dx). (4)

Also (4) defines a quality functional for choice of discriminant functions from the classΦ .
Let us show another interpretation of the quality functional (4). We define

1(k=j)(k) =
{
1 if k = j,
0 if k 6= j.

Since 1Si = 1(γ=j), it follows that [10]

E
(
1Sjgi(ξ)

)
= E

(
1(γ=j)gi(ξ)

)
=

∫∫
I×H
1(k=j)gi(x)µ(dk, dx) =

∫
I
µ1(dk)1(k=j)

∫
H
gi(x)µ12(k, dx)

=

l∑
k=1

µ1({k})1(k=j)

∫
H
gi(x)µ12(k, dx) = pj

∫
H
gi(x)µj(dx).

Then the probability of the fuzzy event SjGi = {ω, 1Sj(ω)gi(ξ(ω)):ω ∈ Ω} is defined as

rj(i) = P(SjGi) = E
(
1Sjgi(ξ)

)
= pj

∫
H
gi(x)µj(dx). (5)

We call the value rj(i) a ‘‘correct’’ probability of recognition if i = j and an ‘‘error’’ probability of recognition if i 6= j. By
(4) and (5), the total sum of all the ‘‘correct’’ probabilities of recognition is equal to P(G), so we have another interpretation
of the quality functional (4).
By definition of the conditional expectation, we have E

(
gi(ξ)|Si

)
= E(gi(ξ)1Si)/P(Si), i = 1 . . . l. Hence we get one more

interpretation of the quality functional (4):

P(G) = Eg(γ , ξ) = E
( l∑
i=1

1(γ=i)g(γ , ξ)
)
=

l∑
i=1

E
(
1Sigi(ξ)

)
=

l∑
i=1

E
(
gi(ξ)|Si

)
P(Si).

5. Basic formula

Let (Ω,A, P) be a probability space and H is a finite-dimensional Hilbert space over the real numbers with the inner
product 〈·, ·〉, norm ‖ · ‖, and σ -algebra BH of Borel sets. A map ξ :Ω → H is called a random element if it is of (A,BH)-
measurable. The measure ν given by ν = P(ξ−1(A)), A ∈ BH is called a probability distribution of the random element ξ . If
Ω is a set of recognition objects, then the vector value x = ξ(ω) can be understood as the pattern of the object ω.
Assuming that E‖ξ‖2 <∞, we can define one linear form and two bilinear forms

〈m, y〉 = E〈ξ, y〉 =
∫
H
〈x, y〉ν(dx),

〈Ky, z〉 = E
(
〈ξ, y〉〈ξ, z〉

)
=

∫
H
〈x, y〉〈x, z〉ν(dx), (6)

〈Ry, z〉 = E
(
〈ξ −m, y〉〈ξ −m, z〉

)
=

∫
H
〈x−m, y〉〈x−m, z〉ν(dx). (7)

Under the assumption that the random element ξ takes values in Hilbert space, the non-random vectorm, operator K , and
operator R are usually called as mathematical expectation, a correlation operator, and a covariance operator, respectively.
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From (6) and (7), we have 〈Ky, z〉 = 〈Ry, z〉 + 〈m, y〉〈m, z〉. Then 〈Ry, z〉 + 〈m, y〉〈m, z〉 = 〈(R + pm)y, z〉, where
pmy = 〈y,m〉m is a rank-one operator. It is evident that pmy = ‖m‖2pm̄y, where m̄ = m/‖m‖ and pm̄y = 〈y, m̄〉m̄ is a
one-dimensional projection. Then

K = R+ pm = R+ ‖m‖2pm̄. (8)

If P(ξ = a) = 1, where a is a non-random vector, then the covariance operator R is the zero operator. From (9) it follows
that the correlation K operator is the rank-one operator. If ‖a‖ = 1 in addition, in quantum theory it can be said that a
quantum system is prepared in the pure state.
An affine structure of Hilbert space H is used when realizations of random element are considered as points. Using a

vector-space structure of H , it is possible to interpret a value ‖x‖2 as a physical value, for example, as energy, power, or
intensity. If the random element is random signal, then the value ‖x‖2 is a measure of deviation of signal from the zero
vector, and nature uses some energy for this deviation. In the following, we refer to ‖x‖2 as energy.
Let 〈Aξ, ξ〉 be a bilinear form, where A is a linear operator. Then

E〈Aξ, ξ〉 =
∫
H
〈Ax, x〉ν(dx) =

∫
H
〈x, Ax〉ν(dx) = tr KA = tr AK . (9)

If P is an orthogonal projection, then 〈Pξ, ξ〉 is the membership function. We can define a fuzzy event AP =
{ω, 〈Pξ(ω), ξ(ω)〉:ω ∈ Ω}. According to (1) and (9), the probability of the fuzzy event AP is equal to

P(AP) = E〈Pξ, ξ〉 =
∫
H
〈Px, x〉ν(dx) = tr PK = tr KP.

We now prove formula (9). Let {ei}, i = 1 . . . n, be an orthonormal basis in H . Using definitions of trace and correlation
operator (6), we have

tr KA =
n∑
i=1

〈KAei, ei〉 =
n∑
i=1

∫
H
〈x, Aei〉〈x, ei〉ν(dx) =

∫
H

n∑
i=1

〈
A∗x, 〈x, ei〉ei

〉
ν(dx)

=

∫
H

〈
A∗x,

n∑
i=1

〈x, ei〉ei

〉
ν(dx) =

∫
H
〈A∗x, x〉ν(dx) =

∫
H
〈x, Ax〉ν(dx).

Since the scalar product is symmetric in a real Hilbert space, 〈x, y〉 = 〈y, x〉, we get 〈Ax, x〉 = 〈x, Ax〉. Then

tr AK =
n∑
i=1

〈AKei, ei〉 =
n∑
i=1

〈Kei, A∗ei〉 =
n∑
i=1

∫
H
〈x, ei〉〈x, A∗ei〉ν(dx)

=

∫
H

〈
n∑
i=1

〈x, ei〉x, A∗ei

〉
ν(dx) =

∫
H
〈x, Ax〉ν(dx) =

∫
H
〈Ax, x〉ν(dx) = E〈Aξ, ξ〉.

Statistical states of quantum system are described by the von Neumann density matrix [11]. In fact, the von Neumann
density matrix is the correlation matrix of the discrete probability distribution. The formula (9) enables us to describe
statistical states of quantum system with continuous probability distributions.

6. Recognition of two signal classes

Helstrom was first who considered recognition of two classes in the quantum theory [11]. We apply Helstrom’s result
for recognition of two classes of random signals; we only consider an energy distribution instead of quantum probability
distribution on projections.
If each recognition object ω ∈ Ω has a pattern x ∈ H , then we have map ξ : Ω → H , i.e., ξ is a random element. Here

and in the sequel, we will use a term ‘‘signal’’ instead of the term ‘‘element’’. Generally a random signal is of physical nature,
therefore it carries energy.
Assume that the object ω of recognition belongs to one of the classes Si, i = 1, 2 and the pattern of object is the signal

x = ξ(ω). Suppose that each class Si, i = 1, 2, is matched with the orthogonal projection Pi, i = 1, 2, where P1 + P2 = I .
Then the value 〈Pix, x〉 = 〈Piξ(ω), ξ(ω)〉 = gi(ξ(ω)) is the membership of object ω to the class Si, i = 1, 2. Therefore, the
projections Pi, i = 1, 2, define a classΦ of discriminant functions gi(x) = 〈Pix, x〉, i = 1, 2.
Let pi = P(Si), i = 1, 2 be a priori probabilities of classes and let the conditional distributions νi(A) = P(ξ ∈ A|Si),

i = 1, 2, have the correlation operators Ki, i = 1, 2. We define a fuzzy event G = {ω, g(γ (ω), ξ(ω)):ω ∈ Ω}, where
g(γ , ξ) = 〈Pγ ξ, ξ〉. By (4), we must maximize the probability of the fuzzy event G:

P(G) = Eg(γ , ξ) = p1
∫
H
〈P1x, x〉ν1(dx)+ p2

∫
H
〈P2x, x〉ν2(dx). (10)
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Let us suggest an energy interpretation of formula (10). Using (5) and (10), we have

rj(i) = E
(
1Sj〈Piξ, ξ〉

)
= pj

∫
H
〈Pix, x〉νj(dx) = pjtr PiKj.

By the assumption, the projection Pi corresponds to the class Si. If ω ∈ Si, then the projection Pi (as a filter) passes an energy
of signals of its own class Si; the average value of such energy is ri(i). If ω ∈ Sj, j 6= i, then the projection Pi passes an energy
of signals of the other class Sj, j 6= i; the average value of such energy is rj(i), j 6= i. We call energy rj(i) a ‘‘correct’’ energy
if i = j and an ‘‘error’’ energy if i 6= j. We also call the total ‘‘correct’’ energy, which passes projections of all classes, as an
energy of ‘‘correct’’ recognition. This energy is defined as

EnrC(P1, P2) = r1(1)+ r2(2) = p1tr P1K1 + p2tr P2K2. (11)

It is clear that wemust find projections P1, P2 so that the value EnrC(P1, P2)would be the largest. In other words, projections
P1, P2 together must pass the energy of signals from their own classes as much as possible.
Since P2 = I − P1, we have

EnrC(P1, P2) = p2tr K2 + tr P1(p1K1 − p2K2).

Here the first value is constant, but the second value depends only on the projection P1. Hence we must find the projection
P1 such that the second value was the largest. Assume that λi, i = 1 . . . n, are eigenvalues and yi, i = 1 . . . n, are the
eigenvectors of the operator p1K1 − p2K2. Then

tr P1(p1K1 − p2K2) =
n∑
i=1

〈P1(p1K1 − p2K2)yi, yi〉 =
n∑
i=1

〈P1λiyi, yi〉

=

n∑
i=1

λi‖P1yi‖2 =
∑
λi>0

λi‖P1yi‖2 +
∑
λi≤0

λi‖P1yi‖2 = d1 + d2,

where ‖P1yi‖2 ≤ ‖yi‖2 for all i = 1 . . . n, d1 > 0, d2 ≤ 0. Let P1 be a projection onto a subspace spanned by the eigenvectors
with positive eigenvalues. Then ‖P1yi‖2 = ‖yi‖2 if λi > 0 and ‖P1yi‖2 = 0 if λi ≤ 0. It follows that d1 will be the largest and
d2 = 0. Hence the required projection P1 is found and P2 = I − P1.

Comment 1. It is possible to minimize the energy of ‘‘error’’ recognition. The energy of ‘‘error’’ recognition is the following
sum:

EnrE(P1, P2) = p1r1(2)+ p2r2(1) = p1tr P2K1 + p2tr P1K2.

If the projections P1, P2 maximize the energy of ‘‘correct’’ recognition, then they must minimize energy of ‘‘error’’
recognition. Indeed, we have

EnrE(P1, P2) = p1tr(P2K1)+ p2tr(P1K2) = p1tr(I − P1)K1 + p2tr(I − P2)K2
= p1tr K1 + p2tr(K2)− p1tr P1K1 − p2tr(P2K2)
= p1tr K1 + p2tr(K2)− EnrC(P1, P2). (12)

There the values p1tr K1 and p2tr K2 are constant. Hence the value EnrE(P1, P2) will be the least if the value EnrR(P1, P2) is
the greatest.

From (12) it follows that the sum energy of ‘‘correct’’ recognition and ‘‘error’’ recognition is a constant. Thus, increasing
the energy of ‘‘correct’’ recognition, we decrease the energy of ‘‘error’’ recognition and vice versa.

7. Decision rule for recognition

Suppose there are two classes of objects Si, i = 1, 2, and the signal x = ξ(ω) is the pattern of the object ω. If we use
a probabilistic Bayesian classifier, then the feature space H is divided into the disjoint subsets: L1, L2, L1 ∪ L2 = H, where
the subset L1 correspond to the class S1 and the subset L2 corresponds to the class S2. The decision rule that determines
unambiguously to which class S1 or S2 belongs the object ω, is defined as follows: ω ∈ S1 if x ∈ L1 and ω ∈ S2 if x ∈ L2.
However, the situation is different when quantum logic is used. Suppose each class Si, i = 1, 2, is matched with the

orthogonal projection Pi, i = 1, 2, where P1 + P2 = I . Denote L1 = P1H , L2 = P2H , where L1 ⊕ L2 = H . Then the pattern
of the object x = ξ(ω) is a sum of two signals: x = P1x + P2x, where P1x ∈ L1, P2x ∈ L2. It is natural to accept that ω ∈ S1
if P1x = x (hence P2x = 0), ω ∈ S2 if P2x = x (hence P1x = 0). Suppose P1x 6= 0 and P2x 6= 0, then 0 6= P1x ∈ L1 and
0 6= P2x ∈ L2 simultaneously. It is as if the pattern x belongs to above subspaces L1 and L2 simultaneously. For instance, let
projections P1, P2 be resonators that select different frequencies from a signal. If the spectrum of the signal has frequencies
of both resonators, then both resonators oscillate simultaneously. Hencewe can not decide towhich class belongs the object
using subspaces of quantum logic.
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Therefore, we must use discriminant functions gi(x) = 〈Pix, x〉, i = 1, 2, which unambiguously gives the decision about
the membership of the object to one of the classes: S1 or S2. By (11), we can find discriminant functions g1(x) = 〈P1x, x〉 and
g2(x) = 〈P2x, x〉 such that they maximize the energy of ‘‘correct’’ recognition. Thus we have the following decision rule:

ω ∈ S1 if 〈P1x, x〉 > 〈P2x, x〉 and ω ∈ S2 otherwise. (13)

When the decision rule (13) is applied, the feature space H is divided into disjoint sets: A1 = {x: 〈P1x, x〉 > 〈P2x, x〉} and
A2 = {x: 〈P2x, x〉 ≥ 〈P1x, x〉}. We put

EnrC(A1, A2) = p1

∫
A1
〈P1x, x〉ν1(dx)+ p2

∫
A2
〈P2x, x〉ν2(dx).

It is evident that

EnrC(P1, P2) = EnrC(A1, A2)+ p1

∫
A2
〈P1x, x〉ν1(dx)+ p2

∫
A1
〈P2x, x〉ν2(dx). (14)

The objectω of recognition is chosen in a randomwaybutwehope that the value of the discriminant function gi(x) of class
Si is maximal if statement ω ∈ Si is true. Also it is natural to hope that EnrC(P1, P2) is approximately equal to EnrC(A1, A2).
If we apply the decision rule (13), then 〈P1x, x〉 ≤ 〈P2x, x〉 on A2 and 〈P2x, x〉 < 〈P1x, x〉 on A1. So we get

p1

∫
A2
〈P1x, x〉ν1(dx) ≤ p1

∫
A2
〈P2x, x〉ν1(dx) ≤ p1

∫
H
〈P2x, x〉ν1(dx) = p1tr P2K1,

p2

∫
A1
〈P2x, x〉ν2(dx) ≤ p2

∫
A1
〈P1x, x〉ν2(dx) ≤ p2

∫
H
〈P1x, x〉ν2(dx) = p2tr P1K2.

From (14) it follows that

0 ≤ EnrC(P1, P2)− EnrC(A1, A2) ≤ p1tr P2K1 + p2tr P1K2 = EnrE(P1, P2). (15)

If projections P1, P2 maximize the energy EnrC(P1, P2) of ‘‘correct’’ recognition, then from Comment 1 it follows that
projections P1, P2 minimize the energy EnrE(P1, P2) of ‘‘error’’ recognition. If we have good recognition with projections
P1, P2, then the value EnrE(P1, P2) is small. Therefore from (15) it follows that EnrC(P1, P2) is approximately equal to
EnrC(A1, A2).

Example 1. Suppose the object of recognitionω belongs to one of the classes Si, i = 1, 2. Assume that a priori probabilities
of classes are equal p1 = p2 = 1/2; the conditional distributions νi(A) = P(ξ ∈ A|Si), i = 1, 2, have the identical covariance
matrices equal to R and mathematical expectationsm1,m2 are orthogonal as vectors.

We choose the orthonormal basis ei, i = 1 . . . n, in H such that e1 = m1/‖m1‖, en = m2/‖m2‖. We get from (8)
that K1 = R + ‖m1‖2p1, K2 = R + ‖m2‖2p2, where p1x = 〈x, e1〉e1, p2x = 〈x, en〉en. In the chosen basis, the matrix
p1K1 − p2K2 = 1/2(K1 − K2) is diagonal with eigenvalues ‖m1‖2/2, 0, . . . , 0,−‖m2‖2/2. Then P1x = 〈x,m1〉/‖m1‖,
P2x = 〈x,m2〉/‖m2‖. If x = ξ(ω) is the pattern of the object ω, then by (13) we have the following decision rule: ω ∈ S1 if
〈m1, x〉2/‖m1‖2 > 〈m2, x〉2/‖m2‖2 and ω ∈ S2 otherwise.

8. Normalization by trace

Suppose x = ξ(ω) is the pattern of the object ω and E(〈Pξ, ξ〉|Si) = tr PKi, i = 1, 2, are conditional energy distributions
on projections. The conditional energy distributions on projections of different classes are not equivalent if the traces of the
correlation operators Ki, i = 1, 2, are not equal. It is possible to normalize the conditional energy distribution on projections
by normalizing the pattern of objects of each class as follows: ηi = ξ/

√
tr Ki, i = 1, 2. Then the correlation operators will

be normalized as follows: K̄1 = K1/tr K1, K̄2 = K2/tr K2, where tr K̄1 = tr K̄2 = 1. Also it is necessary to normalize the object
patterns x = ξ(ω) in the decision rule (13). So, we have the following decision rule: ω ∈ S1 if 〈P1x, x〉/tr K1 > 〈P2x, x〉/tr K2
and ω ∈ S2 otherwise.

Example 2. We consider a classical recognition task of two classes: the class S1 is a random signal ξ = a + η, where a is a
known non-random signal and η is a white noise; the class S2 is a white noise η. Suppose p1 = p2 = 1/2.

The correlation matrix of white noise η is σ 2I , where σ 2 is a constant and I is an identity matrix. The mathematical
expectations of the random signals of classes Si, i = 1, 2, are respectively m1 = a, m2 = 0. Applying the decision rule of
example 1, the classifier always decides that all objects ω ∈ S1.
We normalize the correlation matrices of both classes by their trace. From (8), we have K1 = σ 2I + ‖a‖2pā, where

pāx = 〈x, ā〉ā, ā = a/‖a‖; we also have K2 = σ 2I . Then tr K1 = σ 2tr I + ‖a‖2tr pā = nσ 2 + ‖a‖2 and tr K2 = nσ 2. Since
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covariance matrices of both classes are σ 2I , they are diagonal in any basis. We choose a basis in H such that e1 = ā. Then
the matrix p1K̄1 − p2K̄2 = 1/2(K1/tr K1 − K2/tr K2) is diagonal in the chosen basis with following eigenvalues:

(n− 1)‖a‖2

2n(nσ 2 + ‖a‖2)
, . . . ,−

‖a‖2

2n(nσ 2 + ‖a‖2)
,−

‖a‖2

2n(nσ 2 + ‖a‖2)
.

Here the first eigenvalue is positive and the last n − 1 eigenvalues are negative. So the projection P1 is a one-dimensional
projection: P1x = 〈x, e1〉e1. Then 〈P1x, x〉 = 〈x, a〉2/‖a‖2 and 〈P2x, x〉 = 〈(I − P1)x, x〉 = 〈x, x〉 − 〈x, a〉2/‖a‖2.
We denote the signal-to-noise ratio as SNR = ‖a‖2/σ 2. Normalizing the object pattern by the trace, we get from (13)

the following decision rule: ω ∈ S1 if 〈x, a〉2/(1+ SNR/n) > ‖x‖2‖a‖2 − 〈x, a〉2 and ω ∈ S2 otherwise.
We have tr P2K1 = σ 2tr P2 = (n− 1)σ 2 and tr P1K2 = σ 2tr P1 = σ 2. Then

EnrE(P1, P2) =
p1
tr K1

tr P2K1 +
p2
tr K2

tr P1K2 =
(n− 1)σ 2

2(nσ 2 + ‖a‖2)
+

σ 2

2nσ 2
=

n− 1
2(n+ SNR)

+
1
2n
.

Thus the energy of ‘‘error’’ recognition depends only on the dimensionality n of the feature space and SNR. The energy of
‘‘error’’ recognition is approximately equal to 1/2n if SNR is high enough.

9. Normalization by signal norm

We can normalize object patterns by normalizing each signal x = ξ(ω) to have the unit length. In that case, ends of
normalized random vectors are located on a unit sphere. Suppose P(ξ = O) = 0. Putting η = ξ/‖ξ‖, we have

E〈η, η〉 = E
(
〈ξ, ξ〉/‖ξ‖2

)
= E

(
‖ξ‖2/‖ξ‖2

)
= 1. (16)

Let K̄ be the correlation operator of the normalized random signal η. From (9) and (16), we have tr K̄ = 1. Hence, the energy
distribution on projections is normalized.
If x = ξ(ω)/‖ξ(ω)‖, i.e., ‖x‖ = 1, then gi(x) = 〈Pix, x〉 ≤ 1, i = 1, 2. This yields that sup gi(x) = 1, i = 1, 2. So the

discriminant functions gi(x), i = 1, 2 are classical membership functions [9].
Vectors x and λx for any λ> 0 describe the same physical state in quantum mechanics. It means that states of quantum

systems are rays, i.e. points of projective space. Due to this fact, we can consider states with unit norm ‖x‖ = 1 only.
The same holds for sound signals and monochrome images. In fact, the sound signals x and λx for any λ> 0 differ in

loudness only. The monochrome images can be described as a set of l = nm real numbers corresponding to the intensity of
the light in each pixel. Hence the space of the monochrome images can be described as a vector space of dimension l = nm.
All the intensities of the monochrome image can be multiplied by a number λ> 0, but that does not change monochrome
image.

10. Subtraction of mean

The following hypothesis is accepted in the recognition theory: the distribution of the patterns of a class is concentrated
in a compact area of a feature space. It is natural to assume that distribution of patterns is grouped around the mean
(mathematical expectation) of this distribution. Then each object pattern x = ξ(ω) can be written as the sum x = y + a,
where a is the mean and y is the random vector from the compact area such that its beginning is the end of the mean a.
If P(ξ = a) = 1, where a is a non-random signal, then E〈Aξ, ξ〉 = 〈Aa, a〉, the correlation operator is the rank-one

operator pa, and the covariance operator is the zero operator. Using (9), we have 〈Aa, a〉 = tr Apa = tr paA. Hence, applying
(9) and taking into account that the orthogonal projection is a self-adjoint operator we have

E〈Pξ, ξ〉 =
∫
H
〈Px, x〉ν(dx) = tr RA+ ‖Pm‖2 = tr AR+ ‖Pm‖2. (17)

Therefore, we can use the formula (17) for the energy distribution on projections if we know themeanm, and the covariance
operator R of a random signal.
Suppose the conditional distributions νi(A) = P(ξ ∈ A|Si), i = 1, 2, have the covariance operators R1, R2 and means

m1,m2. Then from (11) and (17) it follows that we can maximize

EnrR(P1, P2) = p1tr P1R1 + p2tr P2R2 + ‖P1m1‖2 + ‖P2m2‖2

instead of (11).
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