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a b s t r a c t

In this paper we show how, based on a decomposition of the likelihood ratio test
for sphericity into two independent tests and a suitably developed decomposition of
the characteristic function of the logarithm of the likelihood ratio test statistic to test
independence in a set of variates, we may obtain extremely well-fitting near-exact
distributions for both test statistics. Since both test statistics have the distribution
of the product of independent Beta random variables, it is possible to obtain near-
exact distributions for both statistics in the form of Generalized Near-Integer Gamma
distributions or mixtures of these distributions. For the independence test statistic,
numerical studies and comparisons with asymptotic distributions proposed by other
authors show the extremely high accuracy of the near-exact distributions developed
as approximations to the exact distribution. Concerning the sphericity test statistic,
comparisons with formerly developed near-exact distributions show the advantages of
these new near-exact distributions.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let X be a p×1 vector with a p-multivariate Normal distribution with expected valueµ and variance–covariance matrix
Σ , denoted by

X ∼ Np(µ,Σ). (1)
Then, the [2/(n+ 1)]-th power of the likelihood ratio test statistic to test the null hypothesis of independence,

H01 : Σ = diag(σ 21 , σ
2
2 , . . . , σ

2
p ) (2)

based on a sample of size n+ 1, is the statistic

Λ1 =
|V |
p∏
j=1
Vj

(3)

where the p × p matrix V is either the MLE (Maximum Likelihood Estimator) of Σ , the sample matrix of sum of squares
and products of deviations from the sample mean or the sample variance–covariance matrix of the p variables in X and Vj
is the j-th diagonal element of V . The statistic in (3) is a particular case of the generalized WilksΛ statistic used to test the
independence of p groups of variables, when each of the groups contains only one variable (see [1], [2, Chap. 9]). Near-exact
distributions for this statistic are thus readily available from the results in [3–5].
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In a simple way, we may say that near-exact distributions are asymptotic distributions built using an entirely different
concept. These distributions are built in such away that themajor part of the exact c.f. (characteristic function) of the statistic
is left unchanged and the remaining part is replaced by an asymptotic function, so that:
(i) if we denote byΦ∗(t) the part of the exact c.f. of the statistic that is replaced byΦ∗n (t), where, for simplicity of notation,
n is used to denote any and every parameter in the distribution of that statistic, we have

lim
n→∞

∫
+∞

−∞

∣∣∣∣Φ∗n (t)− Φ∗(t)t

∣∣∣∣ dt = 0⇐⇒ lim
n→∞

Φ∗n (t) = Φ
∗(t),

with this replacement yielding what we call the near-exact c.f., in such a way that,
(ii) the near-exact distribution, obtained by inversion of the near-exact c.f., corresponds to a known and manageable
distribution, from which the computation of p-values and quantiles is rendered easy.

However, given the specificity of the case under consideration, some further development may be sought. In particular,
it is desirable to obtain a simpler formulation for the shape parameters of the Gamma distributions involved in the part of
the distribution ofΛ1 left untouched. In addition, it is to be hoped that these parameters could be obtained with less effort
than in the general case. These details will be addressed in Section 2.
On the other hand, the [2/(n + 1)]-th power of the likelihood ratio test statistic to test the sphericity hypothesis on Σ ,

based on a sample of size n+ 1, that is, to test the null hypothesis

H0 : Σ = σ 2 Ip (σ 2 unspecified) (4)
is the statistic (see [2, Chap. 10])

Λ = pp
|V |
(trV )p

. (5)

Well-fitting near-exact distributions have already been developed for this statistic by Marques and Coelho in [6]. In this
paper we will show that even better near-exact distributions may be obtained for this statistic by taking as a basis the near-
exact distributions developed for the statisticΛ1 in (3) and the decomposition performedon its characteristic function. These
near-exact distributions forΛwill be obtained from a decomposition of the statisticΛ in (5), which may be written as

Λ = Λ1Λ2, (6)
whereΛ1 is the statistic in (3) and

Λ2 = pp

p∏
j=1
Vj

(trV )p
, (7)

is the [2/(n+ 1)]-th power of the likelihood ratio test statistic to test the hypothesis

H02|01 : σ 21 = σ
2
2 = · · · = σ

2
p (given that, or, assuming that the p variables in X are independent) (8)

based on p independent estimates of the variances of the variables in X, one for each σ 2j , from samples of size n+ 1.
The statistic in (7)may be derived from the likelihood ratio test statistic for the equality of p variance–covariancematrices

(see Ch. 10 in [2]), taking each matrix to have dimensions 1× 1 (the p groups consist of one variable each).
We may write for H0 in (4), H01 in (2) and H02 in (8),
H0 = H02|01 o H01,

to be read as ‘‘H02|01 after H01’’, meaning that we may test H0 in two steps: (i) testing first H01, that is, if the p variables in (1)
are independent and (ii) once the hypothesis of independence of the p variables is not rejected, testing then if they all have
the same variance. Under H0 in (4) the two test statisticsΛ1 andΛ2 in (6) are independent (see Ch. 10, subsec. 10.7.3 in [2]).
Thisway to look at this testwill enable us to obtain even better near-exact distributions than the already available ones in [6].
As a side note we may observe that the test statistic in (7) may be used, under a slightly different setting, to test the null

hypothesis of equality of variances in (8), without any conditioning as long as the p estimators Vj are based on p independent
samples, in which case those samples may have different sizes.
We should note that the requirement that the p estimators Vj in (7) have to be independent is indeed met even if the p

estimators Vj come from amultivariate sample of size n+1 of the p variables inX, once the null hypothesis of independence
of the p variables is not rejected, since then the matrix V will have a Wishart distribution with n degrees of freedom and
parameter matrixΣ , the matrix in (2), so that the diagonal elements of V are independent (through Theorem 7.3.5 in [2]).

2. Near-exact distributions for the likelihood ratio test statistic of independence

In order to obtain the c.f. of W1 = − log Λ1 we may consider Theorems 9.3.2 and 9.3.3 of [2] which state that, for a
sample of size n+ 1,Λ1 in (3) has the same distribution as

∏p−1
j=1 Yj,with

Yj ∼ B
(
n− p+ j
2

,
p− j
2

)
(j = 1, . . . , p− 1) (9)
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where, under H01 in (2), the p− 1 random variables Yj in (9) are independent. Then, since we know that

E
(
Y hj
)
=
0
( n
2

)
0
( n−p+j

2 + h
)

0
( n
2 + h

)
0
( n−p+j

2

) , (
h > −

n− p+ j
2

)
we have, for i = (−1)1/2,

ΦW1(t) = E
(
eitW1

)
=

p−1∏
j=1

E
(
Y−itj

)
=

p−1∏
j=1

0
( n
2

)
0
( n−p+j

2 − it
)

0
( n
2 − it

)
0
( n−p+j

2

) . (10)

Now, in order to be able to obtain a suitable decomposition of the c.f. of W1 we may either consider the results and
developments in Section 5 of [3], taking pk = 1 for k = 1, . . . ,m and k∗ = bp/2c, or we may take a different approach
which will indeed enable us to obtain simpler expressions for the shape parameters of the Gamma distributions involved in
the part of the distribution ofW1 which will be left unchanged. We will take this second approach.
The following Lemma gives the c.f. of W1, for both even and odd p, in a form that is suitable for the development of

near-exact distributions for bothW1 andΛ1.

Lemma 1. Under H01 in (2), taking k∗ = bp/2c, the c.f. of W1 = − log Λ1 (whereΛ1 is the statistic in (3)), may be written in
the form

ΦW1(t) = Φ
∗

1 (t)Φ
∗

2 (t), (11)

where

Φ∗1 (t) =

(
0
( n
2

)
0
( n
2 −

1
2 − it

)
0
( n
2 −

1
2

)
0
( n
2 − it

))k∗
is the c.f. of the sum of k∗ independent Logbeta r.v.’s with parameters (n− 1)/2 and 1/2 and

Φ∗2 (t) =
p−2∏
k=1

(
n− 1− k
2

)⌊ p−k
2

⌋ (
n− 1− k
2

− it
)−⌊ p−k2 ⌋

is the c.f. of a GIG (Generalized Integer Gamma) distribution [1] of depth p − 2 with rate parameters (n − 1 − k)/2 and shape
parameters

⌊ p−k
2

⌋
(k = 1, . . . , p− 2), that is the distribution of the sum of p− 2 independent Gamma r.v.’s with the given rate

and integer shape parameters.

Proof. See Appendix.
Then, taking into account the fact that a single Logbeta distribution may be represented in the form of an infinite mixture
of Exponential distributions [7], a sum of independent Logbeta r.v.’s with either the same or different parameters may
thus be represented in the form of an infinite mixture of sums of independent Exponentials, that is an infinite mixture
of GIG distributions. Then, taking into account the fact that the GIG distribution itself may be seen as a mixture of Gamma
distributions [8], the replacement of the sum of independent Logbeta r.v.’s by a single Gamma distribution or by a (finite)
mixture of Gamma distributions seems to be most adequate.
Thus, near-exact distributions for W1 may then be obtained in the form of a GNIG (Generalized Near-Integer Gamma)

distribution [3] or mixtures of GNIG distributions by replacing Φ∗1 (t) by the c.f. of a Gamma distribution or the c.f. of a
mixture of Gamma distributions. These near-exact distributions will match, by construction, the first two, four or six exact
moments ofW1.

Theorem 2. Using for Φ∗1 (t) in (11), the approximations:

h/2∑
k=1

θk µ
δk(µ− it)−δk , h = 2, 4, 6, (12)

for θk, µ, δk > 0 and
∑h/2
k=1 θk = 1, such that, for j = 1, . . . , h,

∂ j

∂t j

h/2∑
k=1

θk µ
δk(µ− it)−δk

∣∣∣∣∣
t=0

=
∂ j

∂t j
Φ∗1 (t)

∣∣∣∣
t=0
, (13)

we obtain as near-exact distributions for W1, a GNIG distribution, for h = 2, or, for h = 4 or 6, a mixture of 2 or 3 GNIG
distributions, with cdf’s given by (using the notation in (19) of [6])

h/2∑
k=1

θkF(w|r1, . . . , rp−2, δk; λ1, . . . , λp−2, µ) (14)
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where

rj =
⌊
p− j
2

⌋
, λj =

n− 1− j
2

, (j = 1, . . . , p− 2), (15)

µ and δ1, . . . , δh/2 and θ1, . . . , θh/2−1, are obtained from the numerical solution of the system of h equations

h/2∑
k=1

θk
0(δk + j)
0(δk)

µ−j = i−j
∂ j

∂t j
Φ∗1 (t)

∣∣∣∣
t=0

(j = 1, . . . , h) (16)

for these parameters, with θh/2 = 1−
∑h/2−1
k=1 θk.

Proof. If in the characteristic function ofW1 in (11) we replaceΦ∗1 (t) by
∑h/2
k=1 θk µ

δk(µ− it)−δk we obtain

ΦW1(t) ≈
h/2∑
k=1

θk µ
δk(µ− it)−δk

p−2∏
j=1

(
n− 1− j
2

)⌊ p−j
2

⌋ (
n− 1− j
2

− it
)−⌊ p−j2 ⌋

,

that is the characteristic function of a GNIG distribution, for h = 2, or of a mixture of 2 or 3 GNIG distributions, for h = 4 or
6, with cdf’s given by (14), with each component in the mixture being clearly the sum of p−1 independent Gamma random
variables, p−2 ofwhichwith integer shape parameters rj and rate parametersλj given by (15), and a further Gamma random
variable with rate parameter δk > 0 and shape parameterµ. The parameters δk, µ and θk are determined in such a way that
(16) holds (for which indeed there is a simple analytical solution for h = 2). �

Corollary 3. Distributions with cdf’s given by

1−
h/2∑
k=1

θk F(− log z|r1, . . . , rp−2, δk; λ1, . . . , λp−2, µ), (h = 2, 4, 6)

where the parameters are the same as in Theorem 2, and 0 < z < 1 represents the running value of the statistic Λ1 = e−W1 ,
may be used as near-exact distributions for this statistic.

Proof. Since the near-exact distributions developed in Theorem 2 were for the random variableW1 = − log Λ1 we only
need to mind the relation

FΛ1(z) = 1− FW1(− log z)

where FΛ1(·) is the cumulative distribution function ofΛ1 and FW1(·) is the cumulative distribution function ofW1, in order
to obtain the corresponding near-exact distributions forΛ1. �

Indeed, in order to obtain near-exact α-quantiles forΛ1, we do not even need the near-exact distributions forΛ1, since
if we consider the relation

Λ1(α) = e−W1(1−α),

where Λ1(α) is the α-quantile of Λ1 and W1(1 − α) is the (1 − α)-quantile of W1 we may easily obtain the near-exact
α-quantiles ofΛ1 from the corresponding (1− α)-quantiles ofW1.

3. Near-exact distributions for the likelihood ratio test statistic of sphericity

Lemma 4. The c.f. of W = − log Λ, whereΛ is the test statistic in (5)may be written, for k∗ = bp/2c, as

ΦW (t) = Φ∗∗1 (t)Φ
∗∗

2 (t) (17)

where

Φ∗∗1 (t) =
p∏

j=p−k∗+1

0

(
n
2 +

j−1
p

)
0
( n+1
2 − it

)
0
( n+1
2

)
0

(
n
2 +

j−1
p − it

) p−k∗∏
j=1

0

(
n
2 +

j−1
p

)
0
( n
2 − it

)
0
( n
2

)
0

(
n
2 +

j−1
p − it

)
is the c.f. of the sum of p independent Logbeta r.v.’s, k∗ of which with parameters (n + 1)/2 and (j − 1)/p − 1/2 (j =
p− k∗ + 1, . . . , p) and the remaining p− k∗ with parameters n/2 and (j− 1)/p (j = 1, . . . , p− k∗) and

Φ∗∗2 (t) =
p−1∏
k=1

(
n− k
2

)⌊ p−k+1
2

⌋ (
n− k
2
− it

)−⌊ p−k+12 ⌋

is the c.f. of a GIG distribution of depth p−1, with rate parameters (n−k)/2 and shape parameters
⌊ p−k+1

2

⌋
(k = 1, . . . , p−1).
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Proof. See Appendix.
Then, by replacingΦ∗∗1 (t) in (17) by the c.f. of a Gamma distribution or the c.f. of a mixture of Gamma distributions, we will
get near-exact distributions forW = − log Λ in the form of a GNIG distribution or mixtures of GNIG distributions.
As we will see in the next section, these near-exact distributions provide better approximations than the ones already

available in [6].

Theorem 5. Using for Φ∗∗1 (t) in (17), approximations similar in formulation to the ones used in Theorem 2 for Φ
∗

1 (t), withΦ
∗

1 (t)
replaced byΦ∗∗1 (t) in (13), we obtain as near-exact distributions for W = − log Λ, respectively a GNIG distribution, or a mixture
of two or three GNIG distributions, all of depth p, which respectively match the first two, four or six exact moments and which
have cdf’s (using the notation in (19) of [6])

h/2∑
k=1

θk F(w|r1, . . . , rp−1, δk; λ1, . . . , λp−1, µ), (18)

where

rj =
⌊
p− j+ 1
2

⌋
, λj =

n− j
2
, (j = 1, . . . , p− 1), (19)

θk(k = 1, . . . , h/2− 1), µ, δk(k = 1, . . . , h/2), in (18), with θh/2 = 1−
∑h/2−1
k=1 θk, are obtained from the numerical solution

of a system of h equations similar to the ones in (16) withΦ∗1 (t) replaced byΦ
∗∗

1 (t).
Proof. Similar to the proof of Theorem 2. For details see Appendix.

Corollary 6. Distributions with cdf’s given by

1−
h/2∑
k=1

θk F(− log z|r1, . . . , rp−1, δk; λ1, . . . , λp−1, µ), (h = 2, 4, 6)

where the parameters are the same as in Theorem 5, and 0 < z < 1 represents the running value of the statistic Λ = e−W , may
be used as near-exact distributions for this statistic.

The proof of this corollary is in all respects similar to the proof of Corollary 3 and also similar considerations to the ones
right after Corollary 3, concerning the computation of near-exact quantiles of the statistics W1 and Λ1, apply here to the
computation of near-exact quantiles of the statisticsW andΛ.

4. Numerical and comparative studies

In order to assess the proximity between the near-exact approximations developed and the exact distribution, we will
use two measures of proximity,

∆1 =

∫
∞

−∞

|φW (t)− φn(t)| dt and ∆2 =
1
2π

∫
∞

−∞

∣∣∣∣φW (t)− φn(t)t

∣∣∣∣ dt, (20)

with

max
w∈S
|fW (w)− fn(w)| ≤

1
2π
∆1 and max

w∈S
|FW (w)− Fn(w)| ≤ ∆2, (21)

whereW represents a continuous random variable defined on S with cdf FW (w), density function fW (w) and characteristic
function φW (t), and φn(t), Fn(y) and fn(y) represent respectively the near-exact characteristic, distribution and density
function ofW . For further details on these measures see [6].
In this section we will denote by GNIG, M2GNIG and M3GNIG respectively the near-exact distributions based on a GNIG

or a mixture of two or three GNIG distributions, for both the likelihood ratio statistics of independence and sphericity.
In Section 4.2 we will use GNIGpre, M2GNIGpre and M3GNIGpre to denote the previous near-exact distributions based
respectively on a GNIG distribution or on a mixture of two or three of such distributions, obtained in [6].

4.1. Studies for the independence test statistic

Mudholkar et al. in [9] developed a Normal approximation to the distribution of the likelihood ratio test statistic
used for testing H01 in (2). These authors presented numerical studies comparing their Normal approximation with the
approximations due to Box and Bartlett [10,11].
Since the asymptotic Normal approximation from Mudholkar et al. in [9] yields indeed for logΛ1 a non-central

generalized Gamma distribution, whose c.f. is not manageable, in order to compare the performance of the near-exact
distributions developed with this Normal asymptotic approximation, instead of using measures ∆1 and ∆2, we decided
to use a similar method to the one used in [9] to assess the performance of their Normal asymptotic approximation.
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Table 1
Values of the tail probability error= (approx.prob-α) for the Mudholkar et al. [9] asymptotic distribution (MTL) and the near-exact distributions GNIG and
M2GNIG, for samples of size n+ 1.

p n α

0.005 0.01 0.05 0.10 0.20 0.50

3 6 MTL 1.90× 10−4 1.10× 10−4 −8.60× 10−4 −1.64× 10−3 −1.71× 10−3 2.81× 10−3

GNIG 1.29× 10−5 2.72× 10−5 −1.23× 10−5 −7.92× 10−5 −1.65× 10−4 −5.75× 10−5

M2GNIG −9.91× 10−6 −9.77× 10−7 −4.20× 10−6 −1.82× 10−6 5.42× 10−6 −6.78× 10−6

13 MTL 1.80× 10−4 1.10× 10−4 −9.00× 10−4 −1.67× 10−3 −1.73× 10−3 2.79× 10−3

GNIG 1.26× 10−5 3.47× 10−6 −2.61× 10−6 −1.76× 10−5 −3.30× 10−5 −5.33× 10−6

M2GNIG 7.79× 10−6 −1.85× 10−6 1.75× 10−6 4.88× 10−7 4.69× 10−7 −1.13× 10−6

6 9 MTL 5.00× 10−5 6.00× 10−5 1.00× 10−5 −1.40× 10−4 −3.70× 10−4 −2.80× 10−4

GNIG 2.05× 10−6 2.97× 10−6 4.25× 10−6 9.65× 10−7 −7.81× 10−6 −1.83× 10−5

M2GNIG 1.58× 10−8 −8.79× 10−8 1.85× 10−8 −3.24× 10−8 −3.26× 10−8 7.92× 10−8

16 MTL 8.00× 10−5 7.00× 10−5 −1.60× 10−4 −4.10× 10−4 −6.00× 10−4 4.00× 10−5

GNIG 1.15× 10−6 1.59× 10−6 1.43× 10−6 4.31× 10−7 4.27× 10−6 −6.82× 10−6

M2GNIG 2.80× 10−8 4.49× 10−8 −1.08× 10−8 4.80× 10−9 2.21× 10−8 1.56× 10−8

10 13 MTL −2.00× 10−5 −1.00× 10−5 1.20× 10−4 1.60× 10−4 6.00× 10−5 −4.70× 10−4

GNIG 2.12× 10−7 3.25× 10−7 5.45× 10−7 3.26× 10−7 −4.52× 10−7 −1.87× 10−6

M2GNIG 7.02× 10−11 −2.87× 10−12 −7.41× 10−10 −9.29× 10−10 −5.28× 10−11 2.01× 10−9

20 MTL 2.00× 10−5 2.00× 10−5 −6.00× 10−5 −1.60× 10−4 −2.80× 10−4 −3.30× 10−4

GNIG 1.97× 10−7 2.82× 10−7 3.70× 10−7 1.32× 10−7 −4.80× 10−7 −1.25× 10−6

M2GNIG 1.50× 10−10 −2.32× 10−10 −5.39× 10−10 −6.23× 10−10 2.71× 10−10 1.48× 10−9

Table 2
Values of the measures∆1 and∆2 for the near-exact distributions, for samples of size n+ 1.

p n ∆1 ∆2

GNIG M2GNIG M3GNIG GNIG M2GNIG M3GNIG

3 6 5.8× 10−2 5.7× 10−3 2.4× 10−3 5.1× 10−4 2.1× 10−5 4.6× 10−6

13 2.7× 10−2 1.9× 10−3 2.7× 10−5 9.4× 10−5 3.1× 10−6 3.3× 10−8

6 9 3.3× 10−4 3.5× 10−6 3.6× 10−8 2.4× 10−5 1.7× 10−7 1.3× 10−9

16 2.8× 10−4 2.4× 10−6 2.1× 10−9 9.5× 10−6 5.6× 10−8 3.5× 10−11

10 13 1.9× 10−5 4.2× 10−8 6.2× 10−12 2.0× 10−6 3.2× 10−9 3.5× 10−13

20 2.4× 10−5 5.1× 10−8 4.6× 10−11 1.4× 10−6 2.1× 10−9 1.5× 10−12

20 23 5.2× 10−7 1.4× 10−10 3.0× 10−14 7.8× 10−8 1.5× 10−11 2.7× 10−15

50 1.1× 10−6 2.8× 10−10 7.4× 10−14 4.9× 10−8 9.7× 10−12 2.1× 10−15

100 7.4× 10−7 1.2× 10−10 2.5× 10−14 1.5× 10−8 1.8× 10−12 3.2× 10−16

50 53 5.8× 10−9 1.0× 10−13 1.5× 10−19 1.1× 10−9 1.5× 10−14 1.9× 10−20

100 1.1× 10−6 2.8× 10−10 1.9× 10−17 4.9× 10−8 9.7× 10−12 7.5× 10−19

150 2.3× 10−8 4.6× 10−13 4.3× 10−19 8.5× 10−10 1.3× 10−14 1.0× 10−20

200 2.0× 10−8 3.2× 10−13 3.3× 10−19 5.3× 10−10 6.5× 10−15 5.7× 10−21

500 9.8× 10−9 7.1× 10−14 5.0× 10−20 1.0× 10−12 5.4× 10−16 3.2× 10−22

We used the exact quantiles for Λ1 computed directly from the numerical inversion of the c.f. of logΛ1 by using the
Gil-Pelaez inversion formulas (see [12]) which gives us a precision at least equal to the one used in [9] in terms of exact
quantiles, which in turn give, for the Normal asymptotic approximation of [9], exactly the same results obtained by these
authors.
However, given that the exact quantiles computed in this way have a precision that does not go beyond 12 digits, and

given that this precision is not enough for making comparisons with the near-exact distribution M3GNIG, which requires a
higher precision, we have used in Table 1 only the near-exact distributions GNIG and M2GNIG.
In Table 1 the errors displayed are evaluated using the exact samemethod used by Mudholkar et al. in [9], the difference

between the approximate and the exact tail probabilities. The cases considered are a subset of the ones considered by
Mudholkar et al. in [9]. We may observe that the errors obtained when using the near-exact distributions are always much
smaller than the ones obtained for the Normal approximation of Mudholkar et al. in [9], mainly for larger values of p.
In Table 2 we use measures ∆1 and ∆2 to better assess the relative performance of the three near-exact distributions

GNIG, M2GNIG and M3GNIG as approximating distributions for the independence test statistic.
From Table 2 wemay easily see that the near-exact distributionM3GNIG provides a better approximation than the other

two near-exact distributions and we may also see that the near-exact distribution M2GNIG always outperforms the GNIG
near-exact distribution. The values exhibited for the M3GNIG distribution for both measures, mainly for the measure ∆2,
which represents an upper bound for the absolute value of the difference between its cdf and the exact cdf, would lead
us to recommend its use as a replacement for the exact distribution, mainly for larger values of p. The three near-exact
distributions display an asymptotic behavior, that is, smaller values for the two measures, both for increasing sample sizes
and increasing number of variables, although for larger values of p we need to consider large enough sample sizes in order
to be able to observe their asymptotic behavior in terms of sample size.
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Table 3
Values of∆1 and∆2 for the near-exact distributions forW = − logΛ, for p = 4, n = 6 and p = 5, n = 7, for samples of size n+ 1.

p = 4, n = 6 p = 5, n = 7
∆1 ∆2 ∆1 ∆2

GNIG 1.198× 10−4 7.564× 10−6 8.803× 10−5 7.226× 10−6

M2GNIG 1.765× 10−6 6.906× 10−8 8.104× 10−7 4.330× 10−8

M3GNIG 3.706× 10−8 3.706× 10−10 1.551× 10−8 6.259× 10−10

Table 4
Values of∆1 and∆2 for the near-exact distributions forW = − logΛ, for p = 7, n = 9 and p = 10, n = 12, for samples of size n+ 1.

p = 7, n = 9 p = 10, n = 12
∆1 ∆2 ∆1 ∆2

GNIG 1.242× 10−5 1.330× 10−6 1.058× 10−6 1.383× 10−7

M2GNIG 4.281× 10−8 3.163× 10−9 8.994× 10−10 8.370× 10−11

M3GNIG 1.765× 10−10 1.018× 10−11 2.779× 10−13 2.048× 10−14

Table 5
Values of∆1 and∆2 for the near-exact distributions forW = − logΛ, for p = 4, 5, 7 and n = 50, for samples of size n+ 1.

p = 4, n = 50 p = 5, n = 50 p = 7, n = 50
∆1 ∆2 ∆1 ∆2 ∆1 ∆2

GNIG 3.048× 10−5 1.887× 10−7 2.981× 10−5 2.668× 10−7 7.446× 10−6 1.044× 10−7

M2GNIG 8.425× 10−8 3.472× 10−10 9.222× 10−8 5.765× 10−10 1.123× 10−8 1.137× 10−10

M3GNIG 3.872× 10−10 1.199× 10−12 1.550× 10−10 7.504× 10−13 8.671× 10−12 7.047× 10−14

Table 6
Values of∆1 and∆2 for the near-exact distributions forW = − logΛ, for p = 10, 20, 30 and n = 50, for samples of size n+ 1.

p = 10, n = 50 p = 20, n = 50 p = 30, n = 50
∆1 ∆2 ∆1 ∆2 ∆1 ∆2

GNIG 1.204× 10−6 2.561× 10−8 1.001× 10−7 4.755× 10−9 1.816× 10−8 1.460× 10−9

M2GNIG 5.382× 10−10 8.438× 10−12 1.138× 10−11 4.030× 10−13 8.197× 10−13 4.922× 10−14

M3GNIG 1.959× 10−13 2.515× 10−15 1.131× 10−15 3.321× 10−17 3.521× 10−17 1.755× 10−18

4.2. Studies for the sphericity test statistic

Tables 3–7 present the values of the measures ∆1 and ∆2 given in (20) for the new near-exact distributions, GNIG,
M2GNIG and M3GNIG, developed in this paper for the likelihood ratio test statistic used for testing sphericity. In this sub-
section our purpose is to assess the quality of the new near-exact distributions and compare them with the ones already
developed, GNIGpre, M2GNIGpre andM3GNIGpre, using a different method, in [6]. In order to achieve our purpose we have
considered the exact same values for n and p already considered in the numerical studies presented in that reference.
Comparing Tables 3 and 4 with Tables 1 and 2 in [6] we may observe that the values for the new approximations are

always better with the exception of M3GNIG for p = 5, n = 7 and p = 7, n = 9.
Comparing Tables 5 and 6 with Tables 3 and 4 in [6] we may verify that in most cases we have for the new near-exact

approximations smaller values for the measures ∆1 and ∆2, with the exception of the near-exact distributions M2GNIG
and M3GNIG for the cases in Table 5. The new near-exact approximations developed in this paper also exhibit the good
asymptotic properties exhibited by the near-exact approximations in [6].
Wemay say, as a general conclusion, that the new near-exact distributions perform better than the ones developed in [6]

for large values of nwith p large enough (p ≥ 10). Moreover in Table 7 we may see that for large values of p and values of n
close to pwe also have better values of both measures for the near-exact distributions developed in this paper.

5. Conclusions

In this paper we have shown how, using a decomposition of the null hypothesis into two independent hypotheses,
we may use the induced factorization of the overall test statistic to obtain very accurate near-exact distributions for the
sphericity test statistic. These new near-exact distributions developed for the sphericity test statistic aremore accurate than
the ones developed in [6] for larger values of p (p ≥ 10). As a by-product we have also obtained near-exact distributions for
the independence test statistic which show a much better precision than the Normal approximation in [9].
Moreover, the process used to factorize the characteristic functions involved allowedus to obtain near-exact distributions

almost simultaneously for the independence and the sphericity test statistics, and also to obtain simple expressions for the
shape parameters of Φ∗2 (t) in (11) and Φ

∗∗

2 (t) in (17), with the shape parameters for the near-exact distributions for the
sphericity test statistic bearing much simpler expressions than the ones for the near-exact distributions in [6].
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Table 7
Values of∆1 and∆2 for the near-exact distributions forW = − logΛ, for p = 10, 20, 30 and n = 12, 22, 32, for samples of size n+ 1.

p = 10, n = 12 p = 20, n = 22 p = 30, n = 32
∆1 ∆2 ∆1 ∆2 ∆1 ∆2

GNIG 1.058× 10−6 1.383× 10−7 3.526× 10−8 6.034× 10−9 5.043× 10−9 9.685× 10−10

GNIGpre 8.940× 10−6 1.171× 10−6 3.634× 10−7 6.221× 10−8 5.178× 10−8 9.945× 10−9

M2GNIG 8.994× 10−10 8.380× 10−11 3.664× 10−12 4.587× 10−13 1.543× 10−13 2.185× 10−14

M2GNIGpre 3.394× 10−9 3.189× 10−10 1.173× 10−11 1.470× 10−12 4.525× 10−13 6.408× 10−14

M3GNIG 2.779× 10−13 2.048× 10−14 2.956× 10−16 3.014× 10−17 4.413× 10−18 5.122× 10−19

M3GNIGpre 3.601× 10−12 2.706× 10−13 1.104× 10−15 1.128× 10−16 1.766× 10−17 2.051× 10−18
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Appendix. Proofs of Lemmas 1 and 4 and Theorem 5

Proof of Lemma 1. Wewill need to consider separately the two cases of even and odd p. For even p, from (10) wemaywrite

ΦW1(t) = Φ1(t)Φ2(t),

with

Φ1(t) =
p−1∏
j=1
step2

0
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where, for even j, (p− j)/2 ∈ N. Thus, using for z ∈ C \ {0,−1,−2, . . .} and n ∈ N,
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×
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so that we may finally write, for even p,
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For odd p, we may write

ΦW1(t) = Φ3(t)Φ4(t),

with
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where now it is for odd j that (p− j)/2 ∈ N, so that following similar steps to the ones used above to handleΦ2(t), we may
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Φ3(t) =
p−2∏
j=1
step2

p−j
2 −1∏
k=0

(
n− p+ j
2

+ k
)(
n− p+ j
2

+ k− it
)−1

=

p−2∏
j=1
step2

p−j
2∏
k=1

(n
2
− k

) (n
2
− k− it

)−1

=

p−1
2∏
k=1

(n
2
− k

) p−1
2 −k

(n
2
− k− it

)−( p−12 −k)
and

Φ4(t) =
p−1∏
j=2
step2

0
( n
2 −

1
2

)
0
( n−p+j

2 − it
)

0
( n
2 −

1
2 − it

)
0
( n−p+j

2

) 0 ( n2 )0 ( n2 − 1
2 − it

)
0
( n
2 −

1
2

)
0
( n
2 − it

)
=

(
0
( n
2

)
0
( n
2 −

1
2 − it

)
0
( n
2 −

1
2

)
0
( n
2 − it

))(p−1)/2 p−1∏
j=2
step2

p−j−1
2 −1∏
k=0

(
n− p+ j
2

+ k
)(
n− p+ j
2

+ k− it
)−1

=

(
0
( n
2

)
0
( n
2 −

1
2 − it

)
0
( n
2 −

1
2

)
0
( n
2 − it

))(p−1)/2 p−3
2∏
k=1

(
n− 1
2
− k

) p−1
2 −k

(
n− 1
2
− k− it

)−( p−12 −k)
,

so that we may finally write, for odd p,
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Then, taking k∗ = bp/2c, we may writeΦW (t) in the form (11), for any even or odd p. �

Proof of Lemma 4. The h-th null moment of the statistic in (7) is (see Chap. 10 in [2])
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so that takingW2 = − log Λ2 and using the multiplication formula for the Gamma function
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we have
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Therefore, given that underH0 in (4),Λ1 andΛ2 are independent, wemaywrite, from (11) and (22), the c.f. ofW = − log Λ,
whereΛ is the statistic in (5), as
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withΦ∗∗1 (t) andΦ
∗∗

2 (t) in (17). �
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Proof of Theorem 5. The proof of this theorem is, in all respects, similar to the proof of Theorem 2. But since the depth of
the GNIG distributions involved is different, we will still briefly state the proof.
If in the characteristic function ofW in (17) we replaceΦ∗∗1 (t) by

∑h/2
k=1 θk µ

δk(µ− it)−δk we obtain

ΦW (t) ≈
h/2∑
k=1

θk µ
δk(µ− it)−δk
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2
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2
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2
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2

⌋
,

that is the characteristic function of the mixture of h/2 GNIG distributions of depth pwith cdf given in (18). The parameters
δk, µ and θk are determined in such a way that (13) holds withΦ∗1 (t) replaced byΦ

∗∗

1 (t), which requires the evaluation of
these parameters as the numerical solution of a system of h equations in all similar to the ones in (16), withΦ∗1 (t) replaced
byΦ∗∗1 (t), leading to a near-exact distribution that matches the first h exact moments ofW . �
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