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a b s t r a c t

It turns out that there exist general covariance matrices associated not only to a random
vector itself but also to its general moments. In this paper we introduce and characterize
general covariance matrices of a random vector that are associated to some important
general moments, which are determined by a specific class of convex functions. As special
cases, the original covariance matrices of a random vector, as well as the pth covariance
matrices characterized recently, are included. The covariance matrices associated to the
p-power function distribution and the logistic distribution are characterized as by-
products.
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1. Introduction

Two fundamentalmeasures of a randomvector X inRn are the expected value (themean vector) and the covariancematrix.
The expected value scales themedian vector of a random vector X and usually plays the role of a location parameter in most
related mathematical models. The covariance matrix Σ of a random vector X in Rn is the matrix whose (i, j)-entry is the
covarianceΣij = cov(Xi, Xj) = E


(Xi − µi)(Xj − µj)


whereµi = E[Xi] is the expected value of the ith entry in the vector X .

It is conventional to use the covariancematrix to define amultivariate Gaussian distribution Z , which can be expressed by the
notation X ∼ G(µ, Σ), where G(µ, Σ) is the standard Gaussian distributionwith mean vector µ and covariance matrix Σ .

We will focus only on an important special situation, in which any random vector X that we consider here has the mean
vector µ = 0 and a positive definite covariance matrix Σ . In that case, the covariance matrix Σ can be written as

Σ = cov(X) = E[X ⊗ X],

and the second moment of a random vector X in Rn is given by

E[|X |
2
] =


Rn

|x|2fX (x)dx, (1)

where fX is the density function of X .
An important characterization of the covariance matrix Σ is the following:
The matrix Σ−1/2 is the unique positive definite symmetric matrix with maximal determinant among all positive definite

symmetric matrices A satisfying E[|AX |
2
] = n.

There is a natural extension of the moment and second moment of a random vector. For p ∈ R, the pth moment E[|X |
p
]

of a random vector X in Rn can be defined as

E[|X |
p
] =


Rn

|x|pfX (x)dx. (2)
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Recently, Lutwak et al. [15] extended the characterization of the covariance matrix to a definition of the pth covariance
matrix for all p ∈ (0, ∞):

For a random vector X in Rn with positive definite covariance matrix E[X ⊗ X], there exists a unique matrix A ∈ S, the set of
positive definite symmetric n-by-nmatrices, such that A has maximal determinant among all positive definite symmetric matrices
A′ satisfying that E[|A′X |

p
] = n.

The pth covariancematrix is defined to beΣp = A−p, whereA is given by the characterization above. Since a pth covariance
matrix is defined implicitly, one may wonder what kind of explicit expressions it may have. For some certain invariant pth
moments under a linear transformation, an explicit integral formula was found in [11]. The authors of [11] also showed
that such linear-transformation-invariant pth moments have found important applications to sharp information theoretic
inequalities (cf. [12]).

The progress from the classical covariance matrix to the pth covariance matrix shows that there exist some covariance
matrices associated not only to the random vector X but also to some certain functions. In fact, a key observation used
in [15] is that the power function tp/p is naturally associated to the pth moment, and therefore can be used to result in a
characterization of the pth covariancematrix. This observationmotivates us to investigatemore general covariancematrices
that are associated to other certain functions.

Another motivation of the investigation on general covariance matrix lies in: Since the general moment E[Φ(X)], for a
continuous scalar-, vector-, or matrix-valued function Φ , is well-defined and has been widely used in congeneric fields, the
corresponding general covariance matrices may find multifarious applications in interrelated areas as well.

To investigate the general covariance matrices associated to a certain function φ other than the power functions, a key
step is to set the notion of the φ-moment of a random vector.

Recall that the pthmoment of a random vector is associated closely to the power function φ(t) = tp/p for t ∈ (0, ∞). On
the other hand, a specific form of the density function of the standard Gaussian distribution can be given by αe−|x|p/p, where
α > 0 is an appropriate constant (the complete profile of the pth Gaussian density is much more complicated, see [10–17]
for details and applications of the generalized pth Gaussian distribution). A Gaussian random vector Z is the normal
multivariate distribution whose density function fZ is given by

fZ (y) =
α

√
det C

exp

−

1
p


xtC−1x

 p
2



=

exp

−φ


(xtC−1x)

1
2




Rn exp

−φ


(xtC−1x)

1
2


dx

, (3)

for a positive definite symmetricmatrix C and some y ∈ Rn, where det C and C−1 are the determinant and the inversematrix
of the matrix C , and xt is the transpose of the vector x ∈ Rn. The mean of Z is 0 and the covariance matrix of Z is 1

nC . Here
the density function fZ of the Gaussian distribution is actually defined to be the exponential function of −φ. Therefore we
can refer to (3) as the density function of φ-Gaussian with φ(t) = tp/p.

Based on these observations, we define a general momentm by

E

φ


|X |

m


= E[φ(Z)]. (4)

Wewill call themomentm the φ-moment of X andwill denote it by Eφ(|X |). There are two advantages over the pth moment
(2) for the φ-moment, even though both definitions refer to the same measure of X when φ(t) = tp/p. The first one is in
that: no matter whether the function φ is given explicitly or not, the definition (4) guarantees that m = n = E[|Z |

p
] if

φ(t) = tp/p and X = Z . The second one is in that: the implicit definition (4) allows us to extend the notion of moment from
homogeneous φ to inhomogeneous ones, which do distribute in a large quantity of mathematical models.

We follow Cianchi et al. [1] to call the Gaussian density generating function φ a Gaussian gauge, and regard m defined
in (4) as the φ-moment associated to the Gaussian gauge φ. Gaussian gauges are usually used to define various general
Gaussian density functions directly, which in general act as extremal functions in Sobolev embedding theory (functional
analysis) and information theoretic inequalities (information theory), see [1–3,5,7,8,10–15,17] for related topics.

Note that the pth covariance matrix solves the maximal determinant problem in all positive definite symmetric matrices
A with given pth moment of AX .

In our context, a certain function like the last function in (3) turns into a proper candidate of the density function of
φ-Gaussian random vectors for other certain gauges φ whenwe characterize the covariancematrices associated to Gaussian
gauges.

The main goal of the present paper is to consider the following maximal determinant problem in all positive definite
symmetric matrices Awith given φ-moment:

Is there a unique positive definite symmetric matrix with maximal determinant among all positive definite symmetric matrices
A satisfying that the φ-moment of AX equals n for a given random vector X in Rn?

We provide an analytic approach to the above maximal problem and characterize φ-covariance matrices associated
to Gaussian gauges in an implicit way. We show that under certain assumptions there is a positive definite symmetric
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matrix, unique up to a scalar multiple, solving the φ-covariance matrix problem. Existence and characterization of the pth
covariance matrix due to Lutwak et al. [15], as well as the logistic covariance matrix and the φ-covariance matrix for the
power function distribution, are included as consequences of our main result. For characterizations of covariance matrices
in different directions, one can refer to [4,9].

Except for the covariance matrix, there is another fundamental matrix playing crucial roles in a number of applications
in statistics, information theory, financial economics, and other related fields, see e.g. [18]. That is the Fisher information
matrix, whose inverse matrix derives a lower bound on the covariance of any unbiased estimator of the location parameter,
see, for example, [1,10]. In view of the key features of the Fisher information matrix in statistics, information theory, and
information geometry, to characterize the general Fisher informationmatrices associated to Gaussian gauges also is of great
interest. We will produce characterizations of φ-Fisher information matrices in a separate work.

The present paper is organized as follows: In Section 2, we introduce the notion of general moments of a random vector
and set basic notations. Section 3 acts as the main ingredient of this paper. We show how the φ-covariance matrix problem
can be solved by employing some important analytic ideas and techniques. In this section, we present a unified treat for
characterizations of covariancematrices associated to Gaussian gauges. Section 4 is devoted to some applicable examples of
characterizations of theφ-covariancematrices. Among the large amount of inhomogeneous Gaussian gauges, two important
inhomogeneous instances of φ-covariance matrices are the ones associated to the power function distribution and the
logistic distribution. As consequences of ourmain theorem,wepresent the characterizations of the logistic covariancematrix
and the general covariance matrix in connection with a Gaussian gauge that is tied to the power function distribution.

2. General moments of a random vector

Let X be a random vector in Rn with probability density function fX . IfΦ is a continuous scalar-, vector-, or matrix-valued
function on Rn, then the expected value of the random vector X is given by

E[Φ(X)] =


Rn

Φ(x)fX (x)dx. (5)

We define a gauge to be a continuously differentiable function φ : (0, b) → R with 0 < b ≤ ∞ such that φ′ is a strictly
increasing function. In particular, φ is strictly convex.

A gauge φ is said to be Gaussian, if b

0
e−φ(t)dt < ∞.

For a Gaussian gauge φ : (0, b) → R, where 0 < b ≤ ∞, the standard φ-Gaussian random vector Zφ is defined to be the
random vector whose density function fφ is given by

fZφ (y) = e−φ(|y|)1suppφ(|y|)


Rn
e−φ(|x|)1suppφ(|x|)dx


,

for y ∈ Rn, where 1suppφ denotes the characteristic function of the support suppφ of the Gaussian gauge φ.
Any random vector of the form Z = T (Zφ −µ), where T is a nonsingular matrix, is called a φ-Gaussian. If we let C = TT t ,

then the density function of Z is given explicitly by

fZ (x) =
a

√
det C

exp

−φ


(xtC−1x)

1
2


1suppφ


(xtC−1x)

1
2


,

where x ∈ Rn and a is a constant such that fZ forms a probability density. In our context the mean vector of Z is µ = 0 and
the covariance matrix of Z is 1

nC .
Let φ be a Gaussian gauge. A random vector X in Rn with density fX is said to have finite φ-moment, if there existsm > 0

such that

P

0 <

|X |

m
< b


= 1 and − ∞ <


Rn

φ


|x|
m


fX (x)dx < ∞. (6)

Let Zφ be the standard φ-Gaussian random vector associated to the Gaussian gauge φ, and denote

φ̂ = E[φ(Zφ)] =


Rn

e−φ(|x|)1suppφ(|x|)dx
−1 

Rn
φ(|x|)e−φ(|x|)dx.

Here we always assume that φ̂ is finite. In that case, in view of (6) we define the φ-moment Eφ(|X |) of X as

Eφ(|X |) = inf

m > 0 :


Rn

φ


|x|
m


fX (x)dx ≤ φ̂


. (7)

Observe that the infimum in (7) need not be attained, but

E

φ


|X |

Eφ(|X |)


≤ φ̂, (8)
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with equality if φ satisfies the ∆2-condition, i.e., there exists c > 0 such that

φ(2t) ≤ cφ(t) for each t ∈ (0, b) (9)

(see e.g. [19, Corollary 5, Section 3.4]).
For a Gaussian gauge φ that satisfies the ∆2-condition, we define the φ-moment Eφ(|X |) of a random vector X in Rn

implicitly by

E

φ


|X |

Eφ(|X |)


= φ̂. (10)

Obviously, if φ(t) = tp/p for p > 0 then Eφ(|X |) is exactly the pth moment E [|X |
p] in which the second moment E[|X |

2
]

of X corresponds to the case p = 2.
If c is a positive real number, then

Eφ(|cX |) = cEφ(|X |). (11)

3. General covariance matrices of a random vector

If w ∈ Rn, we denote by w ⊗ w the n-by-n matrix whose (i, j)th component is wiwj. We call a random vector X non-
degenerate, if the original covariance matrix cov(X) = E[X ⊗ X] of X is positive definite. Recall that we always assume that
the expected value of X equals 0.

Denote by S the set of positive definite symmetric n-by-nmatrices. The n-by-n identity matrix is denoted by In. For each
A ∈ S, define a norm ∥ · ∥A to be

∥x∥A = |Ax| =
√
Ax · Ax

for each x ∈ Rn.
Let φ be Gaussian gauge, and let X be a non-degenerate random vector in Rn with finite general moment, an extremal

problem asks whether there is a unique positive definite symmetric matrix with maximal determinant among all matrices
A ∈ S satisfying

Eφ(∥X∥A) = n.

As mentioned above, if φ(t) = tp/p this problem was solved by Lutwak et al. [15] and the unique matrix was referred to as
p-covariance matrix of X (the case where p = 2 is exactly the original covariance matrix of X). The following result gives a
unified treat for certain Gaussian gauges φ.

Theorem 3.1. Let a Gaussian gauge φ satisfy the∆2-condition (9), and let X be a non-degenerate random vector inRn with finite
φ-moment, then there exists A ∈ S, unique up to a scalar multiple, such that

Eφ(∥X∥A) = n,

and

det A ≥ det A′

for each A′
∈ S with Eφ(∥X∥A′) = n. Moreover, if A is such a unique matrix in S, then it satisfies

E

φ′


|AX |

n


AX ⊗ AX

|AX |


=

1
n
E

φ′


|AX |

n


|AX |


In. (12)

Proof. We divide the proof into three steps.
Step 1. We first claim the existence of a solution to the extremal problem.
Recall that X is non-degenerate, i.e., E[X ⊗ X] is positive definite, is equivalent to that for any v ∈ Rn

\{0}, E[|v · X |] > 0,
that is to say, there exists a constant c > 0 such that

E[|v · X |] ≥ c > 0, for any v ∈ Rn
\ {0}. (13)

Denoted by S ′ the set of positive-definite symmetric matrices B satisfying the constraint

Eφ(|BX |) = n. (14)

Because the determinant function is continuous on the set S ′, we only need to show that S ′ is compact. Since this set is
closed, it suffices to prove that it is bounded.

For given B ∈ S ′, let η be the maximal eigenvalue of Bwith normalized eigenvector e, then it follows that

|Bx| ≥ η|e · x| for any x ∈ Rn
\ {0}. (15)
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By (14), (7)–(9), (15), Jensen’s inequality, and (13), we have

φ̂ =


Rn

φ


|Bx|
n


fX (x)dx

≥


Rn

φ


η|e · x|

n


fX (x)dx

≥ φ


η

n


Rn

|e · x|fX (x)dx


= φ
η

n
E[|e · X |]


≥ φ

 c
n
η


.

This together with the invertibility and monotonicity of the function φ gives

η ≤
n
c
φ−1(φ̂).

By the definitions of φ and φ̂, it is easily seen that 0 < φ−1(φ̂) < ∞. Thus the eigenvalues of B is uniformly bounded from
above, proving that the set S ′ is bounded.

Step 2. Secondly, we show that if A is the matrix with maximal determinant, then (12) holds.
Note that a solution to the maximal determinant problem exists if and only if a solution to the following minimal φ-

moment problem exists:
Is there a unique positive definite symmetric matrix with minimal φ-moment among all matrices A ∈ S satisfying det A = 1?
In fact, the solutions to the maximal determinant problem and the minimal φ-moment problem only differ by a scale

factor.
We also note that the existence of a solution to such an extremal problem guarantees a matrix, say, A ∈ S to be a solution

to the minimal φ-moment problem. For every B ∈ S, denote (BA)s = [(BA)t(BA)]1/2, then det(BA) = det(BA)s and |(BA)x| =

|(BA)sx|, for each x ∈ Rn. Let Y = AX , then by the fact that the φ-moment is homogeneous of degree 1 we have

Eφ(|BY |) = (det B)−
1
n Eφ(|BY |)

= (det A)
1
n (det(BA))−

1
n Eφ(|(BA)X |)

= (det A)
1
n (det(BA)s)−

1
n Eφ(|(BA)sX |)

≥ (det A)
1
n (det A)−

1
n Eφ(|AX |)

= Eφ(|Y |), (16)

where B = B/(det B)1/n.
Thus by the definition (7), we see that the inequality (16) is equivalent to

Rn
φ


|BY |

Eφ(|Y |)


fY (y)dy ≥


Rn

φ


|Y |

Eφ(|Y |)


fY (y)dy = φ̂. (17)

Denoting the first integrand in (17) by F(B), and setting B = (In + εB′)/(det(In + εB′))1/n for B′
∈ S, we get

F


In + εB′

det(In + εB′)
1
n


=


Rn

φ


|(In + εB′)Y |

det(In + εB′)
1
n Eφ(|Y |)


fY (y)dy ≥ φ̂,

for every ε near 0. Observe that there is a real ε0 > 0 such that for every near 0 real ε with |ε| ≤ ε0, the matrix In + εB′ still
belongs to the set S. Thus it follows that

d
dε


ε=0


Rn

φ


|(In + εB′)Y |

det(In + εB′)
1
n Eφ(|Y |)


fY (y)dy = 0. (18)

Since

d
dε

φ


|(In + εB′)y|

det(In + εB′)
1
n Eφ(|Y |)


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exists and is bounded for all ε ∈ [−ε0, ε0], and y ∈ supp fY , where supp fY is the support of the density fY of Y , by the
Dominated Convergence Theorem we get

0 =


supp fY

d
dε


ε=0

φ


|(In + εB′)y|

det(In + εB′)
1
n Eφ(|Y |)


fY (y)dy

=
1

Eφ(|Y |)


supp fY

φ′


|y|

Eφ(|Y |)


B′Y · Y

|Y |
−

1
n
tr(B′)|Y |


fY (y)dy.

A direct calculation shows that this happens only if

E

φ′


|Y |

Eφ(|Y |)


Y ⊗ Y
|Y |


=

1
n
E

φ′


|Y |

Eφ(|Y |)


|Y |


In. (19)

Now by rescaling the given matrix A in (19) so that Eφ(|Y |) = n and substituting Y = AX , we obtain (12).

Remark 3.2. We note that a Borel measure µ on Rn is said to be in isotropic position (see e.g. [15]) if
Rn

x ⊗ x
|x|2

dµ(x) =
1
n
In. (20)

Eq. (19) implies that the probability measure

dµ(y) =

φ′


|y|

Eφ (|Y |)


|y|

E

φ′


|Y |

Eφ (|Y |)


|Y |

 fY (y)dy (21)

is in isotropic position.
Note that (20) is equivalent to

Rn

(ei · x)2

|x|2
dµ(x) =

1
n
. (22)

Step 3. Finally, we claim that the matrix Awith minimal φ-moment is unique up to a scalar multiplication. We will show
that the equality in the inequality (16), or equivalently, the inequality (17), holds if and only if A = aIn for some a > 0.

In Step 2, we proved that for the normalized B ∈ S,

F(B) ≥ F(In) (23)

holds and entails that themeasureµ defined by (21) is in isotropic position. Thus it suffices to show that the equality in (23)
holds if and only if B = In.

Let e1, . . . , en be an orthonormal basis of eigenvectors of Bwith corresponding eigenvalues λ1, . . . , λn. Then

F(B) =


Rn

φ




n
i=1

λ2
i (ei · y)

2
1/2

Eφ(|Y |)

 fY (y)dy

=


Rn

φ


|diag(λ1, . . . , λn)y|

Eφ(|Y |)


fY (y)dy

= F(diag(λ1, . . . , λn)).

If we associate to the diagonal matrix diag(λ1, . . . , λn) the vector λ = (λ1, . . . , λn)
t
∈ Rn, then we may identify the matrix

diag(λ1, . . . , λn)with the vector λ ∈ Rn and view F as to a function from Rn
+
(a conic subset of Rn with nonnegative n tubes)

to R.
By the continuity and boundedness on supp fY of the function φ, it follows from the Dominated Convergence Theorem

that F is continuous on Rn
+
. Meanwhile, by the subadditivity of the Euclidean norm, the monotonicity and convexity of the

function φ, we see that F(λ) is convex in λ. Also by the strictly increasing monotonicity of φ, we know that F is radially
monotone increasing, i.e., F(cλ) is strictly increasing in c > 0.

Let e be the vector (1, . . . , 1) ∈ Rn, and F−1([0, F(e)]) = {λ ∈ Rn
+

: F(λ) ≤ F(e)} be the preimage of [0, F(e)], then
F−1([0, F(e)]) can be shown to be compact, convex and with non-empty interior. To this end, suppose that x, y ∈ F−1([0,
F(e)]), then by the convexity of the function F we get that, for any α ∈ [0, 1],

0 ≤ F((1 − α)x + αy) ≤ (1 − α)F(x) + αF(y) ≤ F(e),

which means that (1 − α)x + αy ∈ F−1([0, F(e)]). Thus F−1([0, F(e)]) is convex. From the continuity of F , it is trivial to
prove that the set F−1([0, F(e)]) is compact and has nonempty interior.
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The radially monotonicity of the function F and convexity of F−1([0, F(e)]) implies that the set {λ ∈ Rn
+

: F(λ) = F(e)}
belongs to the boundary of F−1([0, F(e)]). In particular, e ∈ ∂F−1([0, F(e)]). Choosing an open neighborhoodU of e such that
for any λ = (λ1, . . . , λn) ∈ U ,

n
i=1 λi 	 0, we claim that F is smooth on the surface piece U ∩ F−1([0, F(e)]). By the con-

vexity of F , it is sufficient to show that all partial derivatives of F exist on U (see e.g. [6, Theorem 2.5]). To this end, choose an
appropriate h ∈ R\{0} and for i ∈ {1, . . . , n} denoteΛh the diagonal matrix with the same entries asΛ = diag(λ1, . . . , λn)
except for that the ith entry λi replaced by λi + h. Then the triangle inequality gives

| |Λhy| − |Λy| | ≤ |(Λh − Λ)y| ≤ |h| |y| ≤ |h| max
supp fY

|y|.

Observing that the convex function φ is Lipschitzian on any compact subset of U , from the boundedness of Eφ(|Y |) and
maxsupp fY |y|, we see that

φ(|Λhy|/Eφ(|Y |)) − φ(|Λy|/Eφ(|Y |))

h
is bounded for all y ∈ supp fY . By applying the Dominated Convergence Theorem, we get that

∂

∂λi
F(λ) =


Rn

∂

∂λi
φ




n
i=1

λ2
i (ei · y)

2
1/2

Eφ(|Y |)

 fY (y)dy

=


Rn

φ′




n
i=1

λ2
i (ei · y)

2
1/2

Eφ(|Y |)

 λi(ei · y)2

Eφ(|Y |)


n

i=1
λ2
i (ei · y)2

1/2 fY (y)dy

holds for almost every y ∈ supp fY . Thus all of the partial derivatives of F exist on U and then F is smooth on the surface
piece U ∩ F−1([0, F(e)]). In particular, this observation together with (21) and (22) gives

∂

∂λi
F(λ)


λ=e

=


Rn

(ei · y)2

|y|2
φ′


|y|

Eφ (|Y |)


|y|

Eφ(|Y |)
fY (y)dy

=

E

φ′


|Y |

Eφ (|Y |)


|Y |


Eφ(|Y |)


Rn

(ei · y)2

|y|2
dµ(y)

=

E

φ′


|Y |

Eφ (|Y |)


|Y |


nEφ(|Y |)

,

which is a constant independent of the index i. Thus the gradient of F at the point e is given by

∇F(e) =

E

φ′


|Y |

Eφ (|Y |)


|Y |


nEφ(|Y |)

e,

which implies that the vector e is an outer normal of F−1([0, F(e)]) at the point e ∈ ∂F−1([0, F(e)]). Since F−1([0, F(e)]) is
convex, it is contained in the half-space {x ∈ Rn

: x · e ≤ e · e}. That is, for each λ ∈ Rn
+
,

F(λ) ≤ F(e) ⇒ λ · e ≤ n. (24)

On the other hand, for λ = (λ1, . . . , λn) ∈ Rn
+
with

n
i=1 λi = 1, the inequality of arithmetic and geometric means gives

λ · e ≥ n, (25)

with equality if and only if λ = e.
Combining (24) and (25) we see that, for all λ ∈ Rn

+
with

n
i=1 λi = 1, it follows that

F(λ) ≥ F(e),

with the equality holding if and only if λ = e. That confirms the desired claim. �

4. Specific φ-covariance matrices of a random vector

In this section we present some specific examples of general covariance matrices implied by the unified covariance
matrices given by Theorem 3.1.
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4.1. The pth covariance matrix

The following is the pth covariance matrix of a random vector, which was found by Lutwak et al. [15].

Corollary 4.1. If p ∈ (1, ∞) and X is a non-degenerate random vector in Rn with finite pth moment, then there exists a unique
matrix A ∈ S such that

E[∥X∥
p
A] = n

and

det A ≥ det A′

for each A′
∈ S such that E[∥X∥

p
A′ ] = n. Moreover, the matrix A is the unique matrix in S satisfying

In = E[|AX |
p−2(AX) ⊗ (AX)].

Proof. For t ≥ 0, let φ(t) = tp/p in Theorem 3.1. Then φ is a Gaussian gauge whenever p > 1.
It is easily seen that φ(t) = tp/p satisfies the ∆2-condition.
Now a straightforward computation shows that the corollary is an immediate consequence of Theorem 3.1. �

4.2. The logistic covariance matrix

If a Gaussian gauge ϕ : (0, ∞) → (ln 2, ∞) is given by

ϕ(t) = t + 2 ln
1 + e−t

√
2

, (26)

then the probability distribution for any constant multiple of the ϕ-Gaussian Zϕ is known as a logistic distribution (see
e.g. [20]). In fact,

∞

0
e−ϕ(t)dt = 2


∞

0

e−t

(1 + e−t)2
dt = 1,

which implies that fZϕ (x) = e−ϕ(|x|)
= 2e−|x|/(1+ e−|x|)2 is the density function of a logistic distribution, where x ∈ Rn

\ {0}.
Thanks to the fact that (1 + e−2t) ≤ (1 + e−t)2 and that ϕ is strictly increasing, we have

ϕ(2t) = 2(t + ln(1 + e−2t)) − ln 2

≤ 2(t + 2 ln(1 + e−t)) − ln 2

= 2ϕ(t) + ln 2

≤ 3ϕ(t).

Thus the Gaussian gauge ϕ : (0, ∞) → (ln 2, ∞) defined by (26) satisfies the ∆2-condition.
A straightforward calculation shows that ϕ̂ = E[ϕ(Zϕ)] = 2 − ln 2.
Let X be a random vector in Rn. We define the logistic moment Eϕ(|X |) of X implicitly by

E


|X |

Eϕ(|X |)
+ 2 ln


1 + e

−
|X |

Eϕ(|X |)


= 2.

The above discussion together with Theorem 3.1 characterizes the logistic covariance matrix of a random vector in Rn:

Corollary 4.2. Suppose that ϕ(t) = t + 2 ln 1+e−t
√
2

for t ≥ 0, and X is a non-degenerate random vector in Rn with finite logistic
moment, then there exists A ∈ S, unique up to a scalar multiple, such that

Eϕ(∥X∥A) = n

and

det A ≥ det A′

for each A′
∈ S with Eϕ(∥X∥A′) = n. Moreover, if A is such a unique matrix in S, then it satisfies

E

1 − e−|AX |/n

1 + e−|AX |/n

AX ⊗ AX
|AX |


=

1
n
E

1 − e−|AX |/n

1 + e−|AX |/n
|AX |


In.
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4.3. The φ-covariance matrix for the power function distribution

We say a random vector X in Rn fulfilling the power function distribution criterion, if |X | is a continuous random variable
with density g and satisfying that:

P[0 < |X | < 1] = 1;
g : [0, 1] → [0, ∞) is continuous;
g is continuously differentiable on (0, 1);
g ′ > 0 on (0, 1);
E[ln |X |] > −1;
−∞ < E[ln(g ′(|X |)/g(|X |))] < ∞;

ln


−1 −
1

E[ln |X |]


≤ E[ln |X |] + E[ln(g ′(|X |)/g(|X |))];

inf
0<t<1

ln(g ′(t)/g(t)) ≥ E[ln |X |] + E[ln(g ′(|X |)/g(|X |))].

For a random vector X fulfilling the power function distribution criterion, Cianchi et al. [1] established the following
Cramér–Rao inequality for the power function distribution:

E[ln |X |] + E[ln(g ′(|X |)/g(|X |))] ≤ ln(g(1) − 1),

with equality if and only if g(t) = (p + 1)tp, where p > 0 satisfies

p + 1 = −
1

E[ln |X |]
. (27)

Given a random vector X in Rn satisfying the above assumptions, let p > 0 be given by (27). We follow Cianchi et al. [1]
to define a gauge φ : (0, 1) → R by

φ(t) = −p ln t. (28)

The φ-Gaussian Zφ has density function

fZφ (x) =


(p + 1)|x|p, if x ∈ {y ∈ Rn

: 0 < |y| < 1};
0, otherwise.

A straightforward calculation gives that φ̂ = p/(p+ 1) and that if E[ln |X |] > −1, then X has a finite φ-moment Eφ(|X |),
where Eφ(|X |) is determined by

ln Eφ(|X |) − E[ln |X |] =
1

p + 1
.

In particular, this together with (27) deduces that if E[ln |X |] > −1, then

Eφ(|X |) = 1.
Observing that φ(2t) = −p ln 2 − p ln t < 0 < φ(t), i.e., the Gaussian gauge φ satisfies the ∆2-condition, from Theo-

rem 3.1 we obtain that

Corollary 4.3. Suppose that the Gaussian gauge φ : (0, 1) → R is given by φ(t) = −p ln t, and X is a non-degenerate random
vector in Rn fulfilling the power function distribution criterion, then there exists a unique A ∈ S, such that AX fulfils the power
function distribution criterion and

Eφ(∥X∥A) = 1;
det A ≥ det A′,

for each A′
∈ S satisfying that A′X fulfils the power function distribution criterion and Eφ(∥X∥A′) = 1. Moreover, if A is such a

unique matrix in S, then it satisfies

E

AX ⊗ AX

|AX |2


=

1
n
In.
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