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Robust Ridge Estimator in Restricted Semiparametric Regression

Models

M. Roozbeh∗

Faculty of Mathematics, Statistics and Computer Science,
Semnan University, P.O. Box 35195-363, Semnan, Iran

Abstract
In this paper, ridge and non-ridge type estimators and their robust forms are defined in the

semiparametric regression model when the errors are dependent and some non-stochastic linear
restrictions are imposed under a multicollinearity setting. In the context of ridge regression, the
estimation of shrinkage parameter plays an important role in analyzing data. Another common
problem in applied statistics is the presence of outliers in the data besides multicollinearity. In
this respect, we propose some robust estimators for shrinkage parameter based on least trimmed
squares (LTS) method. Given a set of n observations and the integer trimming parameter h ≤ n,
the LTS estimator involves computing the hyperplane that minimizes the sum of the smallest h
squared residuals. The LTS estimator is closely related to the well-known least median squares
(LMS) estimator in which the objective is to minimize the median squared residual. Although LTS
estimator has the advantage of being statistically more efficient than LMS estimator, the compu-
tational complexity of LTS is less understood than LMS. Here, we extract the robust estimators
for linear and non linear parts of the model based on robust shrinkage estimators. It is shown that
these estimators perform better than ordinary ridge estimator. For our proposal, via a Monté-
Carlo simulation and a real data example, performance of the ridge type of robust estimators are
compared with the classical ones in restricted semiparametric regression models.

Key words and phrases: Breakdown point; Generalized restricted ridge estimator; Kernel smooth-
ing; Least trimmed squares estimator; Linear restrictions; Multicollinearity; Outlier; Robust esti-
mation; Semiparametric regression model

AMS Subject Classifications: primary: 62G08; 62G35 secondary: 62J05, 62J07

1 Introduction

Semiparametric regression models (SRMs) or are appropriate models when a suitable link function of the

mean response is assumed to have a linear parametric relationship to some explanatory variables while its

relationship to the other variables has an unknown form. Let (y1, x
>
1 , t1),. . . , (yn, x

>
n , tn) be the observations

that follow the semiparametric regression model, that is,

yi = x>
i β + f(ti) + εi, i = 1, . . . , n, (1.1)
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where x>
i = (xi1, . . . , xip) is a vector of explanatory variables, β = (β1, . . . , βp)> is an unknown p-dimensional

vector parameter, ti’s are design points which belong to some bounded domain D ⊂ R, f(t) is an unknown

smooth function and εi’s are random errors which are assumed to be independent of (xi, ti).

Surveys regarding the estimation and application of the model (1.1) can be found in the monograph of

Härdle et al. (2000). Speckman (1988) studied partial residual estimation of β and f(·) in (1.1), and obtained

asymptotic bias and variance of the estimators. He showed that these estimators are less biased compared to

the partial smoothing spline estimators. Bunea (2004) proposed a consistent covariate selection technique in

an SRM through penalized least squares criterion. He showed that the selected estimator of the linear part

is asymptotically normal. You and Chen (2007) considered the problem of estimation in model (1.1) with

serially correlated errors, obtained the semiparametric generalized least-squares estimator of the parametric

component and studied the asymptotic properties of it. You et al. (2007) developed statistical inference for

the model (1.1) for both heteroscedastic and/or correlated errors under general assumption V ar(ε) = σ2V ,

with a positive definite matrix V , is supposed to hold. For bandwidth selection in the context of kernel-based

estimation in model (1.1), Li et al. (2011) used cross-validation criteria for optimal bandwidth selection.

Now consider a semiparametric regression model in the presence of multicollinearity. The existence of

multicollinearity may lead to wide confidence intervals for the individual parameters or linear combination

of the parameters and may produce estimates with wrong signs. For our purpose we only employ the ridge

regression concept due to Hoerl and Kennard (1970), to combat multicollinearity. There are a lot of works

adopting ridge regression methodology to overcome the multicollinearity problem. To mention a few recent

researches in full-parametric regression, see Saleh and Kibria (1993), Hassanzadeh Bashtian et al. (2011),

Kaciranlar et al. (2011), Kibria and Saleh (2011), Arashi et al. (2014) and Arashi et al. (2015). However

Akden̈ız and Tabakan (2009), Roozbeh et al. (2011), Akden̈ız Duran et al. (2012), Roozbeh and Arashi

(2013), Amini and Roozbeh (2015), Arashi and Valizadeh (2015), and Roozbeh (2015) adopted this approach

in facing with semiparametric regression model. The main focus of this approach is to develop necessary tools

for computing the risk function of regression coefficient in a semiparametric regression model based on the

eigenvalues of design matrix and then, estimating it based on robust approach.

The restricted models are widely applicable in the problem of general hypothesis testing specially the

generalized likelihood ratio (GLR) tests in regression models. Norouzirad et al. (2015) defined a restricted

LASSO estimator and configure three classes of LASSO type estimators to fulfill both variable selection and

restricted estimation in regression model. Akden̈ız and Tabakan (2009) and Akden̈ız et al. (2015) developed

the restricted ridge and Liu estimators in semiparametric regression models. The problem of restricted ridge

partial residual estimation in a semiparametric regression model with correlated errors is studied by Amini and

Roozbeh (2015) used generalized cross-validation (GCV) criteria for optimal bandwidth and ridge parameter

selection in model (1.1), simultaneously.

Besides multicollinearity, outliers (points that fail to follow partial linear pattern of the majority of the
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points) are another common problem in the regression analysis. Robust regression methods are used to

overcome the effects of outliers (inflated sum of squares, bias or distortion of estimation, distortion of p-

values, etc.). Here, we only employ the least trimmed squares semiparametric regression estimators for both

parts of our model. It is well-known that the ordinary least-squares estimator is very sensitive to outliers.

This motivated the researchers to focus on robust estimators. Examples of recent researches in full-parametric

regression include the studies made by Edelsbrunner and Souvaine (1990), Bernholt (2005), Jung (2005),

Erickson et al. (2006), Bremner et al. (2008), Nguyen and Welsch (2010), Mount et al. (2007, 2014) and

Roozbeh and Babaie-Kafaki (2016).

The basic measure of the robustness of an estimator is its breakdown point, that is, the fraction (up to

50%) of outlying data points that can corrupt the estimator arbitrarily. The study of efficient algorithms for

robust statistical estimators have been an active area of research in computational geometry. Many researchers

studied Rousseeuw’s least median of squares estimator which is defined to be the hyperplane that minimizes

the median squared residual (for example, see Rousseeuw; 1984). Although the vast majority of works on

robust linear estimation in the field of computational geometry has been devoted to the study of the LMS

estimator, it has been observed by Rousseeuw and Leroy (1987) that LMS is not the estimator of choice from

the perspective of statistical properties. They argued that a better choice is the least trimmed squares. The

breakdown point of LTS and LMS are the same. Like LMS, the LTS estimator is a robust estimator with

a 50%-breakdown point which means that the estimator is insensitive to the corruption made by outliers,

provided that the outliers constitute less than 50% of the set. However, LTS has a number of advantages

in contrast to LMS. The LTS objective function is smoother than that of LMS. LTS has better statistical

efficiency because it is asymptotically normal (see Rousseeuw; 1984) and converges faster. Rousseeuw and

van Driessen (2006) remarked that, for these reasons, LTS is more suitable as a starting point for two-step

robust estimators such as the MM-estimator (see Yohai; 1987) and generalized M-estimators (see Simpson et

al.; 1992).

The main focus of this paper is to study a robust generalized least squares ridge estimator in restricted

semiparametric regression model. The organization of the paper is as follows: Section 2 contains the classical

estimator of restricted semiparametric regression model based on kernel approach and related assumptions.

The properties of generalized restricted ridge estimator of linear part are exactly derived in section 3. We

review least trimmed squares estimators in semiparametric regression model and then, propose a new robust

estimator in restricted semiparametric regression model together with its theoretical properties in Section 4.

We estimate the shrinkage parameter based on robust methods in Section 5 and then, the proposed generalized

least squares ridge estimator will be reconstructed based on robust estimators of shrinkage parameter. In

Section 6, the efficiencies of robust estimators relative to nonrobust estimator are evaluated for both ridge

and nonridge types through the Monté-Carlo simulation studies as same as a real data example. Finally, some

concluding important results are stated in Section 7.
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2 The Classical Estimators under Restriction

Consider the following semiparametric regression model

y = Xβ + f (t) + ε, (2.1)

where y = (y1, . . . , yn)>, X = (x1, . . . ,xn)> is a n × p matrix, f(t) = (f(t1), . . . , f(tn))> and ε =

(ε1, . . . , εn)>. We assume that in general, ε is a vector of disturbances, which is distributed with E(ε) = 0 and

E(ε>ε) = σ2V , where σ2 is an unknown parameter and V is a symmetric, positive definite known matrix.

In this paper we confine ourselves to the semiparametric kernel smoothing estimator of β, which attains

the usual parametric convergence rate n1/2 without under smoothing the nonparametric component f(·) (see
Speckman; 1988). Assume that (yi,x>

i , ti), i = 1, . . . , n satisfy model (2.1). Since E(εi) = 0, we have

f(ti) = E(yi − x>
i β) for i = 1, . . . , n. Hence, if we know β, a natural nonparametric estimator of f(·) is

f̂(t,β) =
n∑

i=1

Wni(t)(yi − x>
i β), (2.2)

where the positive weight functions Wni(·) satisfy three conditions below:

(i) max1≤i≤n

∑n
j=1 Wni(tj) = O(1),

(ii) max1≤i,j≤nWni(tj) = O(n−2/3),

(iii) max1≤i≤n

∑n
j=1 Wni(tj)I(|ti − tj | > cn) = O(dn),

where I is the indicator function, cn satisfies lim supn→∞ nc3n <∞, and dn satisfies lim supn→∞ nd3
n <∞.

The above assumptions guarantee the existence of f̂(t,β) at the optimal convergence rate n−4/5, in semi-

parametric regression models with probability one. See Müller (2000) for more details.

To estimate β, we use the generalized least-squares estimator (GLSE), the best linear unbiased estimator,

given by

β̂
LS

G = argmin
β

(ỹ − X̃β)>V −1(ỹ − X̃β)

= C−1X̃
>
V −1ỹ, (2.3)

where C = X̃
>
V −1X̃, ỹ = (ỹ1, . . . , ỹn)>, X̃ = (x̃1, . . . , x̃n)>, ỹi = yi −

∑n
j=1 Wnj(ti)yj and x̃i = xi −

∑n
j=1 Wnj(ti)xj for i = 1, . . . , n.

Simultaneously, we assume that β satisfies a linear non stochastic constraint, i.e.,

Rβ = r, (2.4)

for a given q × p matrix R with rank q < p and a given q × 1 vector r. In this article, we refer restricted

semiparametric regression model (RSRM) to (2.4). The full row rank assumption is chosen for convenience

and can be justified by the fact that every consistent linear equation can be transformed into an equivalent
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equation with a coefficient matrix of full row rank. Subject to the imposed linear restriction, the generalized

least-squares restricted estimator (GLSRE) is given by

β̂
LS

GR = argmin
β

(ỹ − X̃β)>V −1(ỹ − X̃β)

s.t. Rβ = r,

= β̂
LS

G −C−1R>(RC−1R>)−1(
Rβ̂

LS

G − r
)
. (2.5)

In this section, we will be discussing a biased estimation technique under multicollinearity, for RSRM.

The covariance matrix of β̂
LS

G is equal to σ2C−1. As it can be seen, both GLSE and its covariance matrix

heavily depend on the characteristics of the matrix C. If C is ill-conditioned, the GLS estimators are sensitive

to a number of errors. For example, some of the regression coefficients may be statistically insignificant or

have wrong signs, and they may result in wide confidence intervals for individual parameters (which are called

unstable estimators). With these errors, it is difficult to make valid statistical inference.

The problem of multicollinearity can be solved by collecting additional data, re-parameterizing the model

and reselecting variables. There are two well-known mathematical methods to overcome multicollinearity:

the principal components regression method and the ridge regression method. In this article, we will discuss

the ridge regression method. A brief review of the literature reveals an abundance of works related to the

ridge regression method. Hoerl and Kennard (1970) first proposed this method to solve the multicollinearity

problem. They suggested a small positive number to be added to the diagonal elements of C matrix; and the

resulting estimator has form

β̂
LS

G (k) = C−1
k X̃

>
V −1ỹ, Ck = C + kIp, (2.6)

which is known as a generalized least-squares ridge estimator. For a positive value of k, this estimator provides

a smaller mean squared error (MSE) compared to the GLSE. The constant k (k ≥ 0) is called the “ridge” or

“shrinkage” parameter, and it must be estimated using the data. Although, the ridge estimator is the most

popular method for dealing with multicollinearity, it has some drawbacks. Dependency on the ridge parameter

k tends to result in either instability or bias. However, as k → ∞, β̂
LS

G (k) → 0 and one obtains a stable,

but biased estimator of β. As k → 0, β̂
LS

G (k) → β̂
LS

G and one obtains an unbiased, but unstable estimator

of β. The expected distance between β̂
LS

G (k) and β must decrease as k increases from the origin. The value

of k that produces the best estimator, however, is not clear. It is realized that the estimator β̂
LS

G (k) is a

complicated function of k.

It is clear that for the semi-positive definite matrix C, there exists an orthogonal matrix Γ such that

C = ΓΛΓ>, where Λ = diag(λ1, . . . , λp) contains the eigenvalues of matrix C. Therefore, the orthogonal

(canonical) version of the model (2.1) is given by

ỹ = X̃
∗
α+ ε, (2.7)

where X̃
∗
= X̃Γ and α = Γ>β.
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But, when the matrix C is ill-conditioned (in the sense that there is a near linear dependency among

the columns of matrix), the GLSE of β has a large variance, and multicollinearity is said to be present. If

multicollinearity is present, at least for one eigenvalue, λi
.= 0. The more closeness of the smallest eigenvalue

to the origin, the more strength of linear multicollinearity. To make the behavior of C matrix more like the

canonical form, we need to increase the eigenvalues. Ridge regression replaces C with Ck = C+kIp, (k > 0),

which is the same as replacing the λi by λi+k. This replacement counters the damaging effect of the smallest

eigenvalue.

Based on Hoerl et al. (1975), the ridge parameter k can be estimated using GLSRE in RSRM as follows:

k̂LS =
pσ̂2

LS

β̂
LS

GR

>
β̂
LS

GR

, σ̂2
LS =

1
n− (p+ q)

(
ỹ − X̃β̂

LS

GR

)>
V −1

(
ỹ − X̃β̂

LS

GR

)
. (2.8)

Following Swamy et al. (1978), the restricted ridge estimator can be obtained by minimizing the sum of

squared residuals with a spherical restriction and a linear restriction (2.4), i.e., the restricted linear semipara-

metric regression is transformed into an optimal problem with two restrictions:

min(ỹ − X̃β)>V −1(ỹ − X̃β)

s.t. β>>β ≤ φ2,

Rβ = r.

The resulting estimator is given by

β̂
LS

GR(k) = (C + kI)−1X̃
>
V −1ỹ

−(C + kI)−1R>(R(C + kI)−1R>)−1(
R(C + kI)−1X̃

>
V −1

D ỹ − r
)

= β̂
LS

G (k)−C−1
k R>(RC−1

k R>)−1(
Rβ̂

LS

G (k)− r
)
. (2.9)

We designate generalized least-squares restricted ridge estimator (GLSRRE) to (2.9). Comparing GLSRRE

with GLSRE, we can easily find that the form of our method, where β̂
LS

G (k) and Ck, taking the places of

β̂
LS

G and C of GLSRE, respectively, is completely consistent with that of GLSRE. Furthermore, we can give

another explanation to the GLSRRE by transforming (2.9) into

β̂
LS

GR(k) =
(
I −C−1

k R>(RC−1
k R>)−1R

)
β̂
LS

G (k) +CkR
>(RC−1

k R>)−1
r. (2.10)

Since R
(
C−1

k R>(RC−1
k R>)−1

)
R = R and the definition of generalized inverse, it is easy to see that

C−1
k R>(RC−1

k R>)−1 is a generalized inverse of R. Define R− = C−1
k R>(RC−1

k R>)−1, (2.10) is equivalent

to

β̂
LS

GR(k) = (I −R−R)β̂
LS

G (k) +R−r (2.11)

It is easy to see that the β̂
LS

GR and β̂
LS

GR(k) are restricted with respect to Rβ = r. It is also clear that for

k = 0 we get β̂
LS

GR(0) = β̂
LS

GR.

6



3 Computing the Risk Function

For any particular estimator β̂ of β, the risk function under square error loss is measured by

R(β̂,β) = E
{
(β̂ − β)>(β̂ − β)

}
.

Lemma 3.1. (Roozbeh and Arashi (2013)) If β satisfies the linear restriction Rβ = r, then the bias, covari-

ance matrix and risk functions of proposed estimator can be evaluated as follows:

b
(
β̂
LS

GR(k)
)

= E
(
β̂
LS

GR(k)− β
)

= −kMkβ, (3.1)

Cov
(
β̂
LS

GR(k)
)

= σ2MkCMk, (3.2)

R
(
β̂

LS

GR(k),β
)

= σ2 tr
(
MkCMk

)
+ k2β>M2

kβ, (3.3)

where Mk = C−1
k −C−1

k R>(RC−1
k R>)−1

RC−1
k .

Then the properties of β̂
LS

GR is obtained by letting k = 0 in the above Lemma as follows:

b
(
β̂
LS

GR

)
= 0, (3.4)

Cov
(
β̂
LS

GR

)
= σ2M0CM0, (3.5)

R
(
β̂

LS

GR,β
)

= σ2 tr
(
M 0CM0

)
. (3.6)

Theorem 3.1. The risk function of the estimator under study can be given by

R
(
β̂

LS

GR(k),β
)

= σ2

p∑

i=1

λi(λi + k − r∗ii)
2

(λi + k)4
+ k2

p∑

i=1

[
αi(λi + k − r∗ii)

(λi + k)2

]2

, (3.7)

where R∗ = ΓtopR>(RC−1
k R>)−1

RΓ and Diag(R∗) = r∗ii.

Proof. We can write

MkCMk =
(
C−1

k −C−1
k R>(RC−1

k R>)−1
RC−1

k

)
C

(
C−1

k −C−1
k R>(RC−1

k R>)−1
RC−1

k

)

=
(
C−1

k CC−1
k

)
−
(
C−1

k CC−1
k R>(RC−1

k R>)−1
RC−1

k

)

−
(
C−1

k R>(RC−1
k R>)−1

RC−1
k CC−1

k

)

+
(
C−1

k R>(RC−1
k R>)−1

RC−1
k CC−1

k R>(RC−1
k R>)−1

RC−1
k

)
.

Also, from C−1
k = Γ(Λ+ kI)−1Γ>, we have

tr
{
C−1

k CC−1
k

}
= tr

{
Γ(Λ+ kI)−1Γ>ΓΛΓ>Γ(Λ+ kI)−1Γ>

}

= tr
{
Λ(Λ+ kI)−2

}

=
p∑

i=1

λi
(λi + k)2

, (3.8)
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tr
{
C−1

k CC−1
k R>(RC−1

k R>)−1
RC−1

k

}

= tr
{
Γ(Λ+ kI)−1Γ>ΓΛΓ>Γ(Λ+ kI)−1Γ>R>(RC−1

k R>)−1
RΓ(Λ+ kI)−1Γ>

}

= tr
{
(Λ+ kI)−2Λ(Λ+ kI)−1R∗}

=
p∑

i=1

r∗iiλi
(λi + k)3

, (3.9)

tr
{
C−1

k R>(RC−1
k R>)−1

RC−1
k CC−1

k

}

= tr
{
Γ(Λ+ kI)−1Γ>R>(RC−1

k R>)−1
RΓ(Λ+ kI)−1Γ>ΓΛΓ>Γ(Λ+ kI)−1Γ>

}

= tr
{
(Λ+ kI)−2R∗(Λ+ kI)−1Λ

}

=
p∑

i=1

r∗iiλi
(λi + k)3

(3.10)

and

tr
{
C−1

k R>(RC−1
k R>)−1RC−1

k CC−1
k R>(RC−1

k R>)−1
RC−1

k

}

= tr
{
Γ(Λ+ kI)−1Γ>R>(RC−1

k R>)−1
RΓ(Λ+ kI)−1Γ>ΓΛΓ>Γ(Λ+ kI)−1Γ>R>(RC−1

k R>)−1
RΓ(Λ+ kI)−1Γ>

}

= tr
{
(Λ+ kI)−2R∗(Λ+ kI)−1Λ(Λ+ kI)−1R∗}

=
p∑

i=1

r∗ii
2λi

(λi + k)4
. (3.11)

Thus, we get

tr
(
MkCMk

)
=

p∑

i=1

λi
(λi + k)2

− 2
p∑

i=1

r∗iiλi
(λi + k)3

+
p∑

i=1

r∗ii
2λi

(λi + k)4

=
p∑

i=1

λi(λi + k − r∗ii)
2

(λi + k)4
. (3.12)

Also,

M 2
k =

(
C−1

k −C−1
k R>(RC−1

k R>)−1
RC−1

k

)(
C−1

k −C−1
k R>(RC−1

k R>)−1
RC−1

k

)

= C−2
k −C−2

k R>(RC−1
k R>)−1

RC−1
k −C−1

k R>(RC−1
k R>)−1

RC−2
k

+C−1
k R>(RC−1

k R>)−1
RC−2

k R>(RC−1
k R>)−1

RC−1
k . (3.13)

By some algebraic manipulations, we can obtain

tr
(
C−2

k

)
= tr

{
Γ(Λ+ kI)−1Γ>Γ(Λ+ kI)−1Γ>

}
=

p∑

i=1

1
(λi + k)2

, (3.14)

tr
{
C−2

k R>(RC−1
k R>)−1

RC−1
k

}
= tr

{
C−1

k R>(RC−1
k R>)−1

RC−2
k

}

= tr
{
Γ(Λ+ kI)−1R∗(Λ+ kI)−2Γ>

}

=
p∑

i=1

r∗ii
(λi + k)3

. (3.15)
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In a similar fashion, we have

tr
{
C−1

k R>(RC−1
k R>)−1

RC−2
k R>(RC−1

k R>)−1
RC−1

k

}
=

p∑

i=1

r∗ii
2

(λi + k)4
. (3.16)

Using equations (3.14) - (3.16), we have the point

tr
(
M2

k

)
=

p∑

i=1

(
1

(λi + k)2
− 2r∗ii

(λi + k)3
+

r∗ii
2

(λi + k)4

)
=

p∑

i=1

(λi + k − r∗ii)
2

(λi + k)4
.

The result follows by applying Lemma 4.1 and the fact that

α>M2
kα =

p∑

i=1

{
αi(λi + k − r∗ii)

(λi + k)2

}2

,

where α = Γ>β = (α1, · · · , αp)>. Finally, we have

R
(
β̂
LS

GR(k),β
)

= σ2 tr
(
MkCMk

)
+ k2β>M2

k(k)β

= σ2

p∑

i=1

λi(λi + k − r∗ii)
2

(λi + k)4
+ k2

p∑

i=1

{
αi(λi + k − r∗ii)

(λi + k)2

}2

. (3.17)

So, the proof is completed.

4 Robust Approaches

We have mentioned that outliers can strongly corrupt the least-squares fit due to their dominant effect on

the objective function. Least trimmed squares attempts to solve this problem by minimizing the sum of the

smallest h squared residuals rather than the complete sum of squares. Here, h is a threshold such that the

ratio α = (n− h)/n represents the percentage of the outlying observations.

Let zi be the indicator whether observation i is a good observation or not. Consider the LTS problem in

RSRM as follows:

min
β,z

ψ(β, z) = (ỹ − X̃β)>V −1/2ZV −1/2(ỹ − X̃β)

s.t. Rβ = r,

e>z = h,

zi ∈ {0, 1}, i = 1, . . . , n, (4.1)

where Z is the diagonal matrix with diagonal elements z = (z1, . . . , zn)> and e = (1, . . . , 1)>n×1. The resulting

estimator is generalized least trimmed squares restricted estimator (GLTSRE), which is given by

β̂
LTS

GR (z) = β̂
LTS

G (z)−C(z)−1R>(RC(z)−1R>)−1(
Rβ̂

LTS

G (z)− r
)
, (4.2)

where C(z) = X̃
>
V −1/2ZV −1/2X̃ and β̂

LTS

G (z) = C(z)−1
X̃

>
V −1/2ZV −1/2ỹ.
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Based on Nguyen and Welsch (2010), we can consider the following relaxation, here called relaxed least

trimmed squares (RLTS) problem, in RSRM as follows:

min
β,z∗

ψ(β, z∗) = (ỹ − X̃β)>V −1/2Z∗V −1/2(ỹ − X̃β)

s.t. Rβ = r,

e>z∗ = h,

0 ≤ z∗i ≤ 1, i = 1, . . . , n, (4.3)

where Z∗ is the diagonal matrix with diagonal elements z∗ = (z∗1 , . . . , z
∗
n)

> and h is a positive integer. This

optimization problem lead to the generalized relaxed least trimmed squares restricted estimator (GRLTSRE)

of the regression coefficients β, obtained in the RSRM as

β̂
RLTS

GR (z∗) = β̂
RLTS

G (z∗)−C(z∗)−1
R>(RC(z∗)−1R>)−1(

Rβ̂
RLTS

G (z∗)− r
)
, (4.4)

where C(z∗) = X̃
>
V −1/2Z∗V −1/2X̃ and β̂

RLTS

G (z∗) = C(z∗)−1X̃
>
V −1/2Z∗V −1/2ỹ.

Here, we propose an extension of the RLTS problem in RSRM, called ERLTS, as follows:

min
β,z∗∗

ψ(β, z∗∗) = (ỹ − X̃β)>V −1/2Z∗∗V −1/2(ỹ − X̃β)

s.t. Rβ = r,

h1 ≤ e>z∗∗ ≤ h2,

0 ≤ z∗∗i ≤ 1, i = 1, . . . , n, (4.5)

where Z∗∗ is the diagonal matrix with diagonal elements z∗∗ = (z∗∗1 , . . . , z∗∗n )>, h1 and h2 are positive integers

such that h1 ≤ h ≤ h2. The solution of this optimization problem is called the generalized extended relaxed

least trimmed squares restricted estimator (GERLTSRE) of the regression coefficients β, obtained in the

RSRM as

β̂
ERLTS

GR (z∗∗) = β̂
ERLTS

G (z∗∗)−C(z∗∗)−1
R>(RC(z∗∗)−1R>)−1(

Rβ̂
ERLTS

G (z∗∗)− r
)
, (4.6)

where C(z∗∗) = X̃
>
V −1/2Z∗∗V −1/2X̃ and β̂

ERLTS

G (z∗∗) = C(z∗∗)−1X̃
>
V −1/2Z∗∗V −1/2ỹ.

In order to theoretically justify the suggested extension of RLTS given by ERLTS, let F ∗ and F∗∗ respec-

tively denote the regions of RLTS and ERLTS. Since h ∈ [h1, h2], we have F∗ ⊆ F∗∗. Hence, the optimal

solution of the ERLTS problem is at least as good as that of the RLTS problem. Also, in real applications the

exact number of suitable points to be used in a regression may not be determined. So, to make the problem

more realistic, it is proper to relax optimization problem (4.3) in the sense of optimization problem (4.5) to

allow uncertainty in the input data.

Theorem 4.1. At most p+ q + 2 decision variables z∗∗i , i = 1, . . . , n, are noninteger in the optimal solution

of the extended relaxed problem.
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Proof. Consider the following form of the ERLTS problem:

min
β,z∗∗

ψ(β, z∗∗) = (ỹ − X̃β)>V −1/2Z∗∗V −1/2(ỹ − X̃β)− λ>(Rβ − r)

s.t. z∗∗ ≥ 0,

−z∗∗ + 1 ≥ 0,

e>z∗∗ − h1 ≥ 0,

−e>z∗∗ + h2 ≥ 0,

where λ = (λ1, . . . , λq)> ∈ Rq . Let ẑ∗∗ be the optimal solution of the ERLTS problem. Thus, from the

first-order optimality conditions (see chapter 8 of Sun and Yuan (2006)), there exist Lagrange multipliers

α, ξ ∈ Rn and γ1, γ2 ∈ R such that

∂ψ
(
β(ẑ∗∗), ẑ∗∗)

∂zi
= αi − ξi + γ1 − γ2 −

p∑

j=1

∂β(ẑ∗∗)
∂zi

λ>Rj , i = 1, . . . , n, (4.7)

αiẑ
∗∗
i = 0, i = 1, . . . , n, (4.8)

ξi(−ẑ∗∗i + 1) = 0, i = 1, . . . , n, (4.9)

γ1(e>ẑ∗∗ − h1) = 0,

γ2(−e>ẑ∗∗ + h2) = 0,

α, ξ, γ1, γ2 ≥ 0,

where Rj , j = 1, . . . , p, is the jth column of R

Now, define G = {i : ẑ∗∗i ∈ (0, 1)}. Hence, for all i ∈ G from the complementary slackness conditions (4.8)

and (4.9) we have αi = ξi = 0, and consequently from (4.7) we get

∂ψ
(
β(ẑ∗∗), ẑ∗∗)

∂zi
= γ1 − γ2 −

p∑

j=1

∂β(ẑ∗∗)
∂zi

λ>Rj , ∀i ∈ G. (4.10)

Let ui ∈ Rn, i = 1, . . . , n, be the ith column of the matrix V −1/2. Since V −1/2 is a symmetric matrix, u>i is

its ith row. Hence,

∂ψ
(
β(ẑ∗∗), ẑ∗∗)
∂zi

=
(
u>i

(
ỹ − X̃β(ẑ∗∗)

))2

−2
∂β>(ẑ∗∗)

∂zi
X̃

>
V −1/2Z∗∗V −1/2

(
ỹ − X̃β(ẑ∗∗)

)
. (4.11)

Therefore, since

X̃
>
V −1/2Z∗∗V −1/2

(
ỹ − X̃β(ẑ∗∗)

)
= 0,

from (4.10) and (4.11) we have

(
u>i

(
ỹ − X̃β(ẑ∗∗)

))2

= γ1 − γ2 −
p∑

j=1

∂β(ẑ∗∗)
∂zi

λ>Rj , ∀i ∈ G. (4.12)
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By a small randomization on the difference-based data (X̃ , ỹ), since the system of equations (4.12) has

p + q + 2 degrees of freedom on β, γ1, γ2 and λ, it can be ensured that the system holds for no more than

p+ q + 2 observations (x̃i, ỹi). That is, the cardinality of the set G is at most p+ q + 2. Hence, the proof is

complete.

5 Ridge Estimator based on Robust Approaches

We estimate the ridge parameter k and β by using robust methods which were introduced in last section.

Indeed, we propose robust estimators for ridge parameter by substituting σ2 and β by their robust estimators

in (2.8). After substituting these estimators into (2.8), we estimate the ridge parameter and then, we obtain

two stage estimators for β as follows:

1. Estimators for k and β based on LTS method in RSRM (thereafter GLTSRR method)

k̂LTS =
pσ̂2

LTS

β̂
LTS

GR (z)
>
β̂
LTS

GR (z)
, σ̂2

LTS =
1

n− (p+ q)
(
ỹ − X̃β̂

LTS

GR (z)
)>

V −1/2ZV −1/2
(
ỹ − X̃β̂

LTS

GR (z)
)
, (5.1)

β̂
LTS

GR (k̂LTS , z) = β̂
LTS

G (k̂LTS , z)−C(k̂LTS , z)−1R>(RC(k̂LTS , z)−1R>)−1(
Rβ̂

LTS

G (k̂LTS , z)− r
)
, (5.2)

where C(k̂LTS , z) = C(z) + k̂LTSI and β̂
LTS

G (k̂LTS , z) = C(k̂LTS , z)−1X̃
>
V −1/2ZV −1/2ỹ.

2. Estimators for k and β based on RLTS method in RSRM (thereafter GRLTSRR method)

k̂RLTS =
pσ̂2

RLTS

β̂
RLTS

GR (z∗)
>
β̂
RLTS

GR (z∗)
, σ̂2

RLTS =
1

n− (p+ q)
(
ỹ − X̃β̂

RLTS

GR (z∗)
)>

V −1/2Z∗V −1/2
(
ỹ − X̃β̂

RLTS

GR (z∗)
)
,(5.3)

β̂
RLTS

GR (k̂RLTS , z
∗) = β̂

RLTS

G (k̂RLTS , z
∗)−C(k̂RLTS , z

∗)−1R>(RC(k̂RLTS , z
∗)−1R>)−1(

Rβ̂
RLTS

G (k̂RLTS , z
∗)− r

)
,(5.4)

where C(k̂RLTS , z
∗) = C(z∗) + k̂RLTSI and β̂

RLTS

G (k̂RLTS , z
∗) = C(k̂RLTS , z

∗)−1X̃
>
V −1/2Z∗V −1/2ỹ,

3. Estimators for k and β based on ERLTS method in RSRM (thereafter GERLTSRR method)

k̂ERLTS =
pσ̂2

ERLTS

β̂
ERLTS

GR (z∗∗)
>
β̂
ERLTS

GR (z∗∗)
, (5.5)

σ̂2
ERLTS =

1
n− (p+ q)

(
ỹ − X̃β̂

ERLTS

GR (z)
)>

V −1/2Z∗∗V −1/2
(
ỹ − X̃β̂

ERLTS

GR (z)
)
,

β̂
ERLTS

GR (k̂ERLTS , z
∗∗) = β̂

ERLTS

G (k̂ERLTS , z
∗∗)

−C(k̂ERLTS , z
∗∗)−1R>(RC(k̂ERLTS , z

∗∗)−1R>)−1(
Rβ̂

ERLTS

G (k̂ERLTS , z
∗∗)− r

)
, (5.6)
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whereC(k̂ERLTS , z
∗∗) = C(z∗∗)+k̂ERLTSI and β̂

ERLTS

G (k̂ERLTS , z
∗∗) = C(k̂ERLTS , z

∗∗)−1X̃
>
V −1/2Z∗∗V −1/2ỹ.

To evaluate the performance of risk function we use different values of ridge parameter k to evaluate the

proposed estimators. We compare the nonridge and ridge estimators based on LS, LTS, RLTS and ERLTS

methods. Since, theoretically, these estimators are very difficult to compare, the Monté-Carlo simulation

studies have been conducted to compare the efficiency of the estimators as well as real data example in the

following section.

6 Numerical Results

In this section we proceed with some numerical computations as proofs of our assertions. First we consider

the Monté-Carlo simulation schemes to evaluate the performance of the proposed ridge estimators and then,

we consider a real data example.

6.1 The Monté-Carlo Simulation

Here, we numerically examine the accuracy of our robust estimators for RSRM with contaminated data. The

regressors are drawn anew in every replication. The efficiencies of β̂2 relative to β̂1 are defined based on the

Euclidean norm by

Eff(β̂2, β̂1) =
R̂
(
β̂1,β

)

R̂
(
β̂2,β

) =
1
M

∑M
m=1

∥∥β̂(m)

1 − β
∥∥2

2

1
M

∑M
m=1

∥∥β̂2(m)− β
∥∥2

2

, (6.1)

where M is the number of iterations, β̂
(m)

i is the ith estimator of β in the mth iteration and ‖x‖2 denotes the

Euclidean norm of vector x. To achieve different degrees of collinearity, following McDonald and Galarneau

(1975) and Gibbons (1981) the explanatory variables were generated using the following device for n = 150

with 103 iteration from the following model:

xij = (1− γ2)
1
2 zij + γzip, i = 1, . . . , n, j = 1, . . . , p, (6.2)

where zij are independent standard normal pseudo-random numbers, and γ is specified so that the correlation

between any two explanatory variables is given by γ2. These variables are then standardized so that X>X

and X>y are in correlation forms. Three different sets of correlation corresponding to γ = 0.90, 0.95 and 0.99

are considered. Then n observations for the dependent variable are determined by

yi =
6∑

j=1

xijβj + f(ti) + εi, i = 1, . . . , n, (6.3)

where

β = (−1, 4, 2,−5,−3)>,

f(t) = exp
{
sin(2t) cos(5t) +

√
t
}
,
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Figure 1: The nonparametric function.

for t ∈ [0, 3] and ε = (ε>1 , ε
>
2 )

> where

ε1 (h×1) ∼ Nh(0, σ2V ), σ2 = 1.44, vij = exp
(
− 9|i− j|

)
,

ε2 ((n−h)×1) ∼
i.i.d.

χ2
1(15),

where χ2
ν(δ) is the noncentral Chi-squared distribution with ν degrees of freedom and non centrality parameter

δ. The main reason of selecting such structure for errors is to contaminate the data to check the efficiency

of the robust estimators. We set the first h error terms as dependent normal random variables and the last

(n − h) error terms as independent noncentral Chi-squared random variables. The non centrality causes the

outliers lie on one side of the true regression model while pull the nonrobust estimation toward themselves.

For estimating the nonparametric part of the model, f(.), we use

Wni(tj) =
1
nhn

K
( ti − tj

hn

)
=

1
nhn

.
1√
2π

exp
{
− (ti − tj)2

2h2
n

}
,

which is Priestley and Chao’s weight with the Gaussian kernel. We also apply the cross-validation (C.V.)

method to select the optimal bandwidth hn, which minimizes the following C.V. function

C.V.(hn) =
1
n

n∑

i=1

(
ỹ(−i) − X̃

(−i)
β̂

(−i)
)2

,

where β̂
(−i)

is obtained by replacing X̃ and ỹ with X̃
(−i)

=
(
x̃

(−i)
jk

)
, x̃

(−i)
sk = xsk − ∑n

j 6=iWnj(ti)xsj ,

1 ≤ k ≤ n, 1 ≤ j ≤ p, y(−i) =
(
ỹ
(−i)
1 , . . . , ỹ

(−i)
n

)
, ỹ(−i)

k = yk −∑n
j 6=iWnj(ti)yj . Here y(−i) is the predicted

value of y = (y1, . . . , yn) at xi = (x1i, . . . , xpi) with yi and xi left out of the estimation of the β.

In Figure 1, the nonparametric part of the model (6.3) is plotted. This function is difficult to be estimated

and provides a good test case for the nonparametric regression method. All computations were conducted

using the statistical package R 3.1.2. In Tables 1 to 9, we computed the proposed estimators, respectively. We

numerically estimated the R(.), efficiencies of robust estimators relative to nonrobust estimators for ridge types
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Table 1: Evaluation of parameters for proposed estimators with γ = 0.9 and α = 25% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0053 -1.0029 -1.0044 -1.0029 -1.0015 -1.0018 -1.0023 -1.0014

β̂2 3.8837 3.9351 3.9033 3.9372 3.9670 3.9600 3.9499 3.9701

β̂3 1.6510 1.8054 1.7099 1.8116 1.9010 1.8799 1.8496 1.9103

β̂4 -4.6986 -4.8320 -4.7495 -4.8372 -4.9145 -4.8962 -4.8701 -4.9225

β̂5 -2.8414 -2.9116 -2.8681 -2.9143 -2.9550 -2.9454 -2.9316 -2.9592

k̂ 0.0000 0.0000 0.0000 0.0000 0.7168 0.2200 0.4409 0.2456

R̂
(
β̂,β

)
1.0338 0.4477 0.7035 0.4265 0.7756 0.3985 0.5824 0.3804

Eff
(
β̂(k̂), β̂

)
1.0000 2.3091 1.4695 2.4238 1.0000 1.9465 1.3316 2.0388

m̂se
(
f̂(t), f(t)

)
0.5139 0.3384 0.4055 0.3293 0.4457 0.3255 0.3739 0.3180

Table 2: Evaluation of parameters for proposed estimators with γ = 0.95 and α = 25% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0120 -1.0079 -1.0087 -1.0069 -1.0051 -1.0056 -1.0045 -1.0041

β̂2 3.7358 3.8258 3.8097 3.8488 3.8881 3.8760 3.9010 3.9096

β̂3 1.2074 1.4774 1.4290 1.5464 1.6643 1.6279 1.7029 1.7289

β̂4 -4.3155 -4.5486 -4.5069 -4.6083 -4.7101 -4.6786 -4.7434 -4.7659

β̂5 -2.6397 -2.7624 -2.7405 -2.7938 -2.8474 -2.8309 -2.8650 -2.8768

k̂ 0.0000 0.0000 0.0000 0.0000 0.6386 0.2053 0.3493 0.2131

R̂
(
β̂,β

)
2.7769 1.1724 1.6454 1.1101 1.7160 0.8745 1.0845 0.8476

Eff
(
β̂(k̂), β̂

)
1.0000 2.3685 1.6876 2.5016 1.0000 1.9622 1.5823 2.0246

m̂se
(
f̂(t), f(t)

)
0.5522 0.3750 0.4160 0.3635 0.4150 0.3364 0.3472 0.3266

and nonridge types, separately, and m̂se
(
f̂(t), f(t)

)
= 1

hM

∑M
i=1 ‖f̂(t)− f(t)‖2

2 for proposed estimators, which

heavily depends on k̂, γ and α. The Figure 2 shows the fitted function by kernel smoothing after estimating

the linear part of the model by proposed estimators for α = 25% and γ = 0.90, 0.95, 0.99.
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Table 3: Evaluation of parameters for proposed estimators with γ = 0.99 and α = 25% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0305 -1.0158 -1.0212 -1.0166 -1.0075 -1.0068 -1.0063 -1.0050

β̂2 3.3279 3.6535 3.5330 3.6340 3.8353 3.8510 3.8624 3.8896

β̂3 -0.0163 0.9604 0.5989 0.9021 1.5060 1.5529 1.5871 1.6688

β̂4 -3.2587 -4.1021 -3.7899 -4.0518 -4.5733 -4.6139 -4.6434 -4.7140

β̂5 -2.0835 -2.5274 -2.3631 -2.5009 -2.7754 -2.7968 -2.8123 -2.8495

k̂ 0.0000 0.0000 0.0000 0.0000 4.5216 0.5244 1.9424 0.8638

R̂
(
β̂,β

)
11.3412 5.1621 7.2416 4.4436 4.6362 3.3157 4.2489 2.2428

Eff
(
β̂(k̂), β̂

)
1.0000 2.1970 1.5661 2.5522 1.0000 1.3983 1.0912 2.0672

m̂se
(
f̂(t), f(t)

)
0.3575 0.2759 0.2988 0.2626 0.2829 0.2520 0.2632 0.2351

Table 4: Evaluation of parameters for proposed estimators with γ = 0.9 and α = 33% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0064 -1.0031 -1.0059 -1.0043 -1.0016 -1.0012 -1.0035 -1.0027

β̂2 3.8588 3.9318 3.8697 3.9044 3.9638 3.9741 3.9237 3.9414

β̂3 1.5764 1.7953 1.6091 1.7132 1.8913 1.9223 1.7711 1.8243

β̂4 -4.6342 -4.8232 -4.6624 -4.7523 -4.9061 -4.9329 -4.8023 -4.8483

β̂5 -2.8075 -2.9069 -2.8223 -2.8696 -2.9506 -2.9647 -2.8959 -2.9201

k̂ 0.0000 0.0000 0.0000 0.0000 1.4631 0.4550 0.4852 0.3879

R̂
(
β̂,β

)
1.1776 0.4522 0.7872 0.4351 0.8152 0.3671 0.5453 0.3161

Eff
(
β̂(k̂), β̂

)
1.0000 2.6042 1.4959 2.7067 1.0000 2.2204 1.4950 2.5787

m̂se
(
f̂(t), f(t)

)
0.5562 0.3269 0.4411 0.3347 0.4403 0.2959 0.3677 0.2992

Table 5: Evaluation of parameters for proposed estimators with γ = 0.95 and α = 33% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0119 -1.0059 -1.0063 -1.0054 -1.0034 -1.0025 -1.0018 -1.0024

β̂2 3.7377 3.8698 3.8619 3.8815 3.9262 3.9440 3.9596 3.9463

β̂3 1.2131 1.6093 1.5857 1.6445 1.7786 1.8320 1.8787 1.8388

β̂4 -4.3204 -4.6626 -4.6422 -4.6930 -4.8087 -4.8549 -4.8952 -4.8608

β̂5 -2.6423 -2.8224 -2.8117 -2.8384 -2.8993 -2.9236 -2.9448 -2.9267

k̂ 0.0000 0.0000 0.0000 0.0000 1.6417 0.4172 0.4864 0.3774

R̂
(
β̂,β

)
2.3571 1.2820 1.3432 0.9283 1.1347 0.9903 0.9968 0.7044

Eff
(
β̂(k̂), β̂

)
1.0000 1.8386 1.7549 2.5391 1.0000 1.1458 1.1383 1.6108

m̂se
(
f̂(t), f(t)

)
0.4729 0.3523 0.3552 0.3051 0.3318 0.3139 0.3181 0.2780

16



Table 6: Evaluation of parameters for proposed estimators with γ = 0.99 and α = 33% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0284 -1.0189 -1.0180 -1.0138 -1.0061 -1.0064 -1.0029 -1.0021

β̂2 3.3749 3.5838 3.6045 3.6968 3.8664 3.8588 3.9364 3.9548

β̂3 0.1247 0.7513 0.8135 1.0905 1.5991 1.5764 1.8092 1.8643

β̂4 -3.3804 -3.9216 -3.9753 -4.2145 -4.6538 -4.6341 -4.8352 -4.8828

β̂5 -2.1476 -2.4324 -2.4607 -2.5866 -2.8178 -2.8074 -2.9133 -2.9383

k̂ 0.0000 0.0000 0.0000 0.0000 4.3002 0.3844 1.2217 0.2575

R̂
(
β̂,β

)
14.7570 8.7656 8.0113 5.2058 10.8751 6.8073 6.5814 3.8510

Eff
(
β̂(k̂), β̂

)
1.0000 1.6835 1.8420 2.8347 1.0000 1.5976 1.6524 2.8240

m̂se
(
f̂(t), f(t)

)
0.3430 0.2851 0.2685 0.2472 0.3105 0.2692 0.2572 0.2432

Table 7: Evaluation of parameters for proposed estimators with γ = 0.9 and α = 50% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0081 -1.0060 -1.0038 -1.0029 -1.0016 -1.0022 -1.0008 -1.0008

β̂2 3.8209 3.8682 3.9159 3.9356 3.9659 3.9516 3.9833 3.9817

β̂3 1.4628 1.6047 1.7477 1.8069 1.8977 1.8548 1.9500 1.9450

β̂4 -4.5361 -4.6586 -4.7821 -4.8332 -4.9116 -4.8746 -4.9568 -4.9525

β̂5 -2.7558 -2.8203 -2.8853 -2.9122 -2.9535 -2.9340 -2.9773 -2.9750

k̂ 0.0000 0.0000 0.0000 0.0000 2.9139 1.4506 0.5676 0.5010

R̂
(
β̂,β

)
1.8595 1.3729 0.9263 0.8069 1.2753 1.0716 0.8122 0.7199

Eff
(
β̂(k̂), β̂

)
1.0000 1.3545 2.0075 2.3046 1.0000 1.1901 1.5702 1.7715

m̂se
(
f̂(t), f(t)

)
0.8091 0.6377 0.5045 0.4878 0.6202 0.5485 0.4643 0.4581

Table 8: Evaluation of parameters for proposed estimators with γ = 0.95 and α = 50% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0157 -1.0093 -1.0084 -1.0070 -1.0038 -1.0019 -1.0025 -1.0028

β̂2 3.6555 3.7950 3.8154 3.8469 3.9165 3.9587 3.9452 3.9390

β̂3 0.9665 1.3850 1.4462 1.5408 1.7496 1.8761 1.8357 1.8170

β̂4 -4.1075 -4.4688 -4.5217 -4.6034 -4.7837 -4.8930 -4.8581 -4.8420

β̂5 -2.5302 -2.7204 -2.7483 -2.7913 -2.8862 -2.9437 -2.9253 -2.9168

k̂ 0.0000 0.0000 0.0000 0.0000 1.4943 1.0051 0.8013 0.4644

R̂
(
β̂,β

)
4.0294 2.7950 2.5772 1.8992 1.8742 1.8018 1.8950 1.4603

Eff
(
β̂(k̂), β̂

)
1.0000 1.4417 1.5635 2.1217 1.0000 1.0402 0.9890 1.2834

m̂se
(
f̂(t), f(t)

)
0.7299 0.5717 0.5258 0.4511 0.4470 0.4340 0.4328 0.3877
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Figure 2: Estimation of the function under study by kernel approach for n = 150 and α = 25%. Non ridge and
ridge estimations for γ = 0.90 (top), estimations for γ = 0.95 (middle), estimations for γ = 0.99 (bottom).
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Table 9: Evaluation of parameters for proposed estimators with γ = 0.99 and α = 50% breakdown

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

β̂1 -1.0273 -1.0186 -1.0193 -1.0146 -0.9977 -0.9977 -0.9996 -0.9997

β̂2 3.4002 3.5904 3.5751 3.6792 4.0515 4.0511 4.0086 4.0061

β̂3 0.2006 0.7711 0.7253 1.0376 2.1545 2.1534 2.0257 2.0182

β̂4 -3.4459 -3.9387 -3.8991 -4.1688 -5.1334 -5.1324 -5.0222 -5.0157

β̂5 -2.1821 -2.4414 -2.4206 -2.5625 -3.0702 -3.0697 -3.0117 -3.0083

k̂ 0.0000 0.0000 0.0000 0.0000 1.4395 1.2383 0.2498 0.2802

R̂
(
β̂,β

)
14.4475 13.1786 9.2513 6.7690 12.9781 11.5284 7.0926 4.8948

Eff
(
β̂(k̂), β̂

)
1.0000 1.0963 1.5617 2.1343 1.0000 1.1257 1.8298 2.6514

m̂se
(
f̂(t), f(t)

)
0.4031 0.3416 0.3220 0.2851 0.3534 0.3169 0.2793 0.2615

Table 10: Correlation Matrix

Variable SP LT SFH FP DHW GAR ANI

SP 1.0000 0.14591 0.4774 0.3367 -0.1001 0.2995 0.3415
LT 0.1459 1.00000 0.1544 0.1595 0.0814 0.1699 0.1334

SFH 0.4774 0.15445 1.0000 0.4633 0.0229 0.2230 0.2779
FP 0.3367 0.15953 0.4633 1.0000 0.1085 0.1456 0.3814

DHW -0.1001 0.08145 0.0229 0.1085 1.0000 0.0579 -0.1096
GAR 0.2995 0.16991 0.2230 0.1456 0.0579 1.0000 0.0270
ANI 0.3415 0.13344 0.2779 0.3814 -0.1096 0.0270 1.0000

6.2 Real Data Example

To motivate the problem of linearly constrained estimation in the semiparametric regression model, we consider

the hedonic prices of housing attributes. Housing prices are very much affected by lot size. The semiparametric

regression model that follows was estimated by Ho (1995) using semiparametric least squares. The data consist

of 92 detached homes in the Ottawa area that were sold in 1987. The variables are defined as follows: The

dependent variable y is sale price (SP), the independent variables include lot size (lot area = LT), square

footage of housing (SFH), average neighborhood income (ANI), distance to highway (DHW), presence of

garage (GAR) and fireplace (FP). We first consider the pure parametric model:

(SP )i = β0 + β1(LT )i + β2(SFH)i + β3(FP )i + β4(DHW )i + β5(GAR)i + β6(ANI)i + εi. (6.4)

In order to detect the correlation between variables, we can take a look at correlation matrix given by

table 10. As it can be investigated, there exists a potential multicollinearity between SFH & FP and DHW

& ANI. Also, the eigenvalues of X>X are as λ7 = 2.385563e+05, λ6 = 2.302869e+02, λ5 = 2.390021e+01,

λ4 = 1.882493e + 01, λ3 = 1.561710e + 01, λ2 = 6.658370 and λ1 = 1.682933. It is easy to see that the

condition number is approximately equal to 1.4175e+ 005. So, the design matrix X is morbidity badly.

An appropriate approach is to replace the pure parametric model with semiparametric model. We use the

added-variable plots (except for the binary explanatory variables) to identify the parametric and nonparametric

components of the model. Added-variable plots enable us to visually assess the effect of each predictor, having

adjusted for the effects of the other predictors. By looking at added-variable plot (Figure 3), we consider ANI
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Figure 3: Added-variable plots of individual explanatory variables vs. dependent variable, linear fit (red solid
line) and kernel fit (blue dashed line).
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Table 11: Evaluation of parameters for proposed estimators for real data set

Method GLSRE GLTSRE GRLTSRE GERLTSRE GLSRRE GLTSRRE GRLTSRRE GERLTSRRE

Coefficients

intercept - - - - - - - -
LT 0.7018 1.0509 0.1522 0.1507 0.8019 1.1349 0.2636 0.2568
SFH 46.7515 33.5686 30.9487 30.2085 39.2135 26.8318 25.1185 24.4659
FP 3.9311 2.5740 2.7443 2.6777 3.2004 1.9234 2.1637 2.1075

DHW -1.6147 -0.7616 -1.2961 -1.2635 -1.1992 -0.3942 -0.9500 -0.9254
GAR 6.2476 4.3865 4.1926 4.0919 5.2015 3.4525 3.3773 3.2896

e>(z ∨ z∗ ∨ z∗∗) 92.000 86.0000 71.9956 74.0379 92.000 86.0000 71.9956 74.0379

k̂ 0.0000 0.0000 0.0000 0.0000 1.6605 1.8761 1.4598 1.4851
RSS 77851.32 39094.07 30964.67 25337.26 70034.08 28293.90 23897.44 17590.95
R2 0.2346 0.6156 0.6956 0.7509 0.3114 0.7218 0.7650 0.8271

as a nonparametric part and so, the specification of the semiparametric regression model is

(SP )i = β0 + β1(LT )i + β2(SFH)i + β3(FP )i + β4(DHW )i + β5(GAR)i + f(ANI)i + εi. (6.5)

The ratio of largest eigenvalue to smallest eigenvalue for new design matrix in model (6.5) is approximately

λ5/λ1 = 427.9926 and so, there exists a potential multicollinearity between the columns of design matrix. As

it can be seen, the ridge type of proposed estimators perform better than non-ridge forms.

To compare the performance of the proposed restricted estimators, we consider the parametric restriction

Rβ = 0, where

R =




−1 0 −1 −1 1
1 0 −1 2 0
0 −1 0 −2 8


 .

We test the linear hypothesis H0 : Rβ = 0 in the framework of our semiparametric model (2.1). The test

statistic for H0, given our observations, is

χ2
rank(R) ' (Rβ̂

LS

G − r)>
(
RΣ̂R>

)−1

(Rβ̂
LS

G − r) = 0.4781,

where Σ̂ = σ̂2
(
X̃

>
X̃

)−1. Thus we conclude that the null hypothesis H0 is not rejected.

Table 11 shows a summery of the results (the intercept term was not significant for the model and so, we

considered an RSRM without intercept). In this Table, the RSS and R2 respectively are the residual sum

of squares and coefficient of determination of the model, i.e., RSS =
∑n

i=1(yi − ŷi)2, ŷi = xiβ̂ + f̂(ti) and

R2 = 1−RSS/Syy, which calculated for eight proposed estimators of β. For estimation of nonparametric

effect, at first we estimated the parametric effects by one of the proposed methods and then, local polynomial

approach was applied to fit SPi − x>
i β̂ on ANIi, i = 1, ..., n for all proposed linear estimators, where

x>
i = (LTi, SFHi, FPi, DHWi, GARi) (the results have been displayed in Figures 4 & 5).
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Figure 4: The robust and nonrobust estimations of nonparametric part of model (4.1).
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Figure 5: The robust and nonrobust ridge type estimations of nonparametric part of model (4.1).
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As it can be found from Table 11 and Figures 4 & 5, because of multicollinearity between the columns of

design matrix, the ridge type of robust and nonrobust estimators perform better than nonridge type in the

sense of parametric and nonparametric estimations. Moreover, since there exist outliers in the data set, the

robust estimators are more efficient than nonrobust estimators in the model fitting.

7 Summary and conclusions

In this paper, we proposed ridge and nonridge form of generalized restricted robust estimators in a semipara-

metric regression model when the errors were dependent and some additional linear constraints held on the

parameter β. In the presence of multicollinearity we introduced robust ridge type estimators under depen-

dency among column vectors of the design matrix in a semiparametric regression model. Since, a theoretical

comparison was not possible, the Monté-Carlo simulation studies and a real data example have been conducted

to compare the performance of the proposed estimators numerically. The results from the Monté-Carlo sim-

ulations for n = 150, P = 5 and different ρ2 and γ are presented in Tables 1 to 9 and Figure 2. From these

tables it can be seen that the factors affecting the performance of the estimators are the degree of correlation

(γ) and percentage of outliers (α). It can be concluded that GERLTSRRE is leading to be the best estimator

among others for the parametric part of the model, since it offers smaller risk and mse values in all proposed

estimators. Further GLSRE is the worst estimator for the parametric part in this examples. In general, the

values of α and γ2 have positive (negative) effect on the estimated risks (performance of the estimators). In

the real example study, a near dependency among the column of X>X identified from λ7/λ1 = 141750.3,

that is, the design matrix may be considered as being very ill-conditioned and we had to consider the ridge

form of proposed estimators in our study. As it can be seen from Figure 3, the nonlinear relation between sale

price and average neighborhood income (ANI) can be detected and so, the pure parametric model does not fit

to the data and semiparametric regression model fits more significantly. Further, from Table 11 and Figures

4 and 5, it can be deduced that GERLTSRRE is quite efficient in the sense that it has significant value of

goodness of fit.
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