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Estimation of two high-dimensional covariance matrices
and the spectrum of their ratio

Jun Wena

aDepartment of Statistics and Applied Probability, National University of Singapore, Singapore 117546

Abstract

Let S p,1, S p,2 be two independent p × p sample covariance matrices with degrees of freedom n1 and n2, respectively,
whose corresponding population covariance matrices are Σp,1 and Σp,2, respectively. Knowing S p,1, S p,2, this article
proposes a class of estimators for the spectrum (eigenvalues) of the matrix Σp,2Σ−1

p,1 as well as the pair of the whole
matrices (Σp,1,Σp,2). The estimators are created based on Random Matrix Theory. Under mild conditions, our esti-
mator for the spectrum of Σp,2Σ−1

p,1 is shown to be weakly consistent and the estimator for (Σp,1,Σp,2) is shown to be
optimal in the sense of minimizing the asymptotic loss within the class of equivariant estimators as n1, n2, p → ∞
with p/n1 → c1 ∈ (0, 1), p/n2 → c2 ∈ (0, 1) ∪ (1,∞). Also, our estimators are easy to implement. Even when p is
1000, our estimators can be computed in seconds using a personal laptop.

Keywords: Covariance matrix estimation, High-dimensional asymptotics, Marčenko–Pastur equation, Random
matrix theory, Spectrum estimation, Two-sample problem.

1. Introduction

It is widely accepted that covariance matrices play a vital role in various statistical problems. However, in most
real life applications, the true (population) covariance matrices are unknown. Therefore, a good estimate of it is much
in demand. Traditionally, when the population covariance matrix is needed, what statisticians usually do is to use the
sample covariance matrix instead. It is well known that when the dimension p of the covariance matrix is fixed and
the sample size n tends to infinity, the sample covariance matrix is a consistent estimator of its population counterpart.
However, when the dimension p of the covariance matrix is large, especially when the magnitude of p is comparable
to the sample size n, the sample covariance matrix no longer performs as well as it does in the small p large n case;
see, e.g., [19] for an illustration.

With the development of Random Matrix Theory (RMT), and especially spectral analysis of random matrices,
quite a number of new statistical tools on covariance matrices related problems assuming p and n both large have been
proposed, which largely stimulates the exploration of better covariance matrices estimators. One of the important
techniques rooted in RMT is the so-called Marčenko–Pastur (or MP for short) equation technique. Initiated from the
seminal paper [29], MP equation technique has been extensively studied in recent years, see [3–5, 32, 33, 40]. There
has been quite a number of statistical applications resulting from it; see [2, 13, 20–22, 25, 26, 31, 39]. Sometimes
not only are people interested in estimating one covariance matrix, but also in estimating two covariance matrices and
the spectrum of their ratio; see [7, 10, 16, 17, 23, 24, 27, 28, 36]. In this article, we base our proposed covariance
matrices estimators on this MP equation technique with the aim of getting substantial performance improvement over
the traditional estimators.

In the following, for a symmetric positive semidefinite matrix A, its square root A1/2 is defined as the unique
symmetric positive semidefinite matrix such that A1/2A1/2 = A. For a p× p matrix M with real eigenvalues λ1, . . . , λp,
we define the spectral distribution (SD) of M as FM = p−1 ∑p

i=1 1(x ≤ λi), where 1 is the indicator function. Denoting
the set of the eigenvalues of Σp,2Σ−1

p,1 as dp = {dp,1, . . . , dp,p} with dp,1 ≤ · · · ≤ dp,p, we impose the following three
assumptions throughout this article.
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Assumption 1. Let Xp, Yp be two independent real p × n1 and p × n2 random matrices. Both Xp and Yp consist of
iid entries with mean 0, variance 1 and finite 12th moment. Denote Σp,1 and Σp,2 to be two p × p covariance matrices.
The observed data are given as the sample covariance matrices S p,1 = n−1

1 Σ
1/2
p,1 XpX>p Σ

1/2
p,1 and S p,2 = n−1

2 Σ
1/2
p,2 YpY>p Σ

1/2
p,2 .

Assumption 2. n1, n2, p→ ∞ with cp = (c1,p, c2,p) = (p/n1, p/n2)→ (c1, c2) such that c1 ∈ (0, 1), c2 ∈ (0, 1)∪ (1,∞).

Assumption 3. The SD of Σp,2Σ−1
p,1, Dp(t), converges weakly to a distribution D(t) as p → ∞ with Supp(Dp) and

Supp(D), the supports of Dp and D, uniformly contained in a compact subinterval K of (0,∞) for all n1, n2, p large.

In Assumption 2, the case c2 = 1 is ruled out for technical reasons. Nevertheless, our numerical computation can
still address this case. Also, throughout this article, we regard n1, n2 as two functions of p. By saying p → ∞, we
mean n1, n2, p→ ∞ with cp → (c1, c2).

An estimator of the spectrum dp is said to be weakly consistent if its empirical distribution converges in law to D
as p, n1, n2 → ∞ with p/n1 → c1 and p/n2 → c2. There are two goals to this article. One is to propose a weakly
consistent estimator of the spectrum dp. The other is to construct a class of covariance matrices estimators (Σ̂p,1, Σ̂p,2)
having optimal risk performance. For the problem of estimating dp, El Karoui [13] and Ledoit and Wolf [21] have
addressed the one-sample case. Specifically, in their problems, there is only one population covariance matrix Σp,
and given the eigenvalues of the sample covariance matrix S p, weakly consistent spectrum estimators of Σp have been
constructed using the MP equation technique.

In this article, we propose two types of estimators, d̂EK
p and d̂LW

p , of dp which are the two-sample generalization
of those of [13] and [21], respectively. It is shown that these estimators are weakly consistent given Assumptions 1–3.
Moreover, if we regard them as p-variate vectors, such that

d̂EK
p = (d̂EK

p,1 , . . . , d̂
EK
p,p), d̂LW

p = (d̂LW
p,1 , . . . , d̂

LW
p,p ), dp = (dp,1, . . . , dp,p)

then p−1 ∑p
i=1 |d̂LW

p,i − dp,i| and p−1 ∑p
i=1 |d̂EK

p,i − dp,i| both converge to 0 almost surely.
For a generic estimator d̂p = (d̂p,1 . . . , d̂p,p), the absolute loss is also the L1 distance between the vectors d̂p and

dp normalized by p. Some authors, e.g., [10, 21], use the L2 distance p−1 ∑p
i=1(d̂p,i − dp,i)2 as the loss function. One

of the advantages of using the L1 distance instead of the L2 distance is that the L1 distance is more robust against
large eigenvalue deviations. By making use of the weakly consistent estimators of dp, we further constructed our
covariance matrices estimator (Σ̂p,1, Σ̂p,2).

Stein [34, 35] proposed a class of rotation equivariant estimators for the one-sample problem using an unbiased
estimate of risk (SURE). By generalizing Stein’s SURE, Loh [28] proposed the two-sample Stein type estimator
(Σ̂S T

p,1, Σ̂
S T
p,2) which simultaneously estimates the pair of two covariance matrices (Σp,1,Σp,2). Seen from [28], the Stein

type estimator (Σ̂S T
p,1, Σ̂

S T
p,2) already has remarkable finite-sample performance. However, it still has some limitations.

The derivation of (Σ̂S T
p,1, Σ̂

S T
p,2) requires normal distribution of the data while our estimators are distribution free.

Furthermore, the estimator is only defined when p ≤ min(n1, n2) while our estimators also apply to the case when
p > n2. By comparing the limiting loss, we show that our estimators dominate the minimax estimator (Σ̂AU

p,1 , Σ̂
AU
p,2 )

(see [28]) in the limit and are thus also minimax asymptotically. Finally, we also compared the finite-sample risk
performance of our estimators to the one-sample estimator of [22], which estimates Σp,1 and Σp,2 using data from each
population individually. From the simulated results, we see that when Σp,1 is approximately proportional to Σp,2 but
the eigenvalues of both Σp,1 and Σp,2 are far apart, our estimators largely outperform the one-sample estimator. The
remainder of this article is organized as follows.

In Section 2, we present some preliminary results of RMT. In Section 3, we derive two types of the spectrum
estimators using RMT. The main results are presented in Theorem 2 and 4. In Section 4, we focus on the problem
of estimating the whole pair of covariance matrices (Σp,1,Σp,2). We show in Theorem 8 that our estimator is asymp-
totically optimal in minimizing the limiting loss function and present in Section 4.6 some other advantages of our
estimator over the traditional decision-theoretic ones. In Section 5, we evaluate the finite-sample performance of our
proposed estimators using extensive Monte Carlo simulations. The technical proofs are given in the Appendix.

Throughout this article, we use the following notation. The integers, real numbers, complex numbers are denoted
by Z,R,C respectively. For any z ∈ C, Re(z), Im(z) and z̄ are the real part, imaginary part and conjugate of z,
respectively. Furthermore, C+ = {z ∈ C : Im(z) > 0}, C− = {z ∈ C : Im(z) < 0} and Z+ = {1, 2, . . . }. We write
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i =
√−1. For any matrix M, M> represents the transpose of M, ||M|| denote the spectral norm of M which equals

to the largest singular value of M and trM stands for trace of M if M is a square matrix. The identity matrix with
appropriate size according to the context is denoted as I. For a function f (x), f (x+

0 ) is defined as the right limit of
f at x0 whenever the latter exists. For a finite signed measure G on the real line, Supp(G) denotes the support of G.
Given G and a set S ⊂ R, G{S } denotes the mass that G puts on S . In particular, if S is a singleton, say S = {a}, then
G{S } is simply written as G{a}. Moreover if G is a probability distribution supported on (0,∞), we define Ginv as the
probability distribution such that Ginv{[a, b]} = G{[1/b, 1/a]} for all b ≥ a > 0 and G−1(x) is defined as the quantile
function of G for x ∈ [0, 1]. Specifically, G−1(x) = sup{u ∈ R : G(u) < x} for x ∈ (0, 1] and G−1(0) = G−1(0+).
Finally, is the symbol for weak convergence and a.s. is short for almost surely.

2. Some preliminary results

2.1. The Marčenko–Pastur equation
The Marčenko–Pastur equation serves as a very powerful tool for high-dimensional multivariate data analysis. For

overviews, we refer the readers to [1, 30].
Suppose Σp is a p × p real-valued symmetric positive definite matrix with its SD, Hp(t) weakly converging to a

distribution H(t) as p→ ∞. Let X be a p × n real matrix consisting of iid entries with mean 0 and variance 1. Denote
S p = n−1Σ

1/2
p XX>Σ

1/2
p . Then with probability 1, its SD FS p converges weakly to a nonrandom distribution F(t) called

the limiting spectral distribution (LSD) of S p as p, n → ∞ with p/n → c > 0. To quantize the relationship between
H(t) and F(t), we utilize an auxiliary quantity called the Stieltjes transform. For a distribution function G(t) of a finite
signed measure on the real line, its Stieltjes transform is defined for z ∈ C+ as

mG(z) =

∫ ∞

−∞

1
t − z

dG(t).

Sometimes we also need to set z ∈ C−, whence it is easily seen that mG(z) = m̄G(z̄). For any continuity points a, b
of G, the inversion formula of the Stieltjes transform (see Theorem B.8 of [5]) reads

G{[a, b]} = lim
η→0+

∫ b

a
Im{mG(ξ + iη)}dξ.

For a SD G of a symmetric matrix A that can be written as A = PP>, where the matrix P is of size, say p × n, it is
useful to consider the distribution G defined as the SD of P>P. In this definition, G and G are called the companion
distributions of each other. It can be seen that PP> and P>P have the same set of eigenvalues up to |p − n| 0s. Hence
G and G are related by the equality G(t) = (1 − p/n)1(0 ≤ t) + (p/n)G(t), for all t ∈ R. Correspondingly, the Stieltjes
transforms of G and G are called the companion Stieltjes transforms of each other. If G and G converge weakly to
some distributions as p, n → ∞ with p/n → c > 0, we also refer to the limiting distributions as the companion
distributions of each other.

Now we come back to establish the quantitative relationship between the distributions H and F above. Silverstein
[32] shows that for all z ∈ C+, mF(z) is the unique solution in {m ∈ C : −(1 − c)/z + cm ∈ C+} to the equation

m =

∫
dH(t)

t(1 − c − czm) − z
,

and equivalently, mF(z) is the unique solution in C+ to the following Marčenko–Pastur (MP) equation (named after
[29])

z = − 1
m

+ c
∫

t
1 + tm

dH(t), (1)

where integrations without limits are meant to be integrating over the whole range here and after if no ambiguity
occurs.

One may note that in statistics literature, the data are usually given as Σ
1/2
p X whose sample and population covari-

ance matrices are respectively n−1Σ
1/2
p XX>Σ

1/2
p and Σp. Thus the above result provides at least in theory a way to infer

eigenvalues of population covariance matrices using sample covariance matrices.
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Finally, it is important to know that for a Stieltjes transform mG(z) of some distribution G, Silverstein and Choi
[33] have shown that if, for all z in C+, mG(z) is a solution to some Marčenko–Pastur equation

z = − 1
m

+ c
∫

t
1 + tm

dH(t),

with respect to a constant c > 0 and a probability distribution H(t), then mG(z) can be continuously extended to
the whole real line except possibly at the origin. More specifically, it is shown that limz∈C+→x mG(z) exists for all
x ∈ R\{0}. In what follows, we will denote it m̌G(x) as long as it exists. This quantity is useful in finding the density
of G.

2.2. The limiting spectral distribution of S p,2S −1
p,1

Similar to the MP equation (1), which associates the LSD of the sample covariance matrix with that of the popula-
tion covariance matrix, we can also establish a system of equations which associates the LSD of S p,2S −1

p,1 with the LSD
of Σp,2Σ−1

p,1. To facilitate the construction of the estimator (Σ̂p,1, Σ̂p,2), we also consider the matrix S p,2(S p,1 + S p,2)−1.
Denote the sets of ascending eigenvalues of S p,2S −1

p,1 and S p,2(S p,1 + S p,2)−1 as {`p,1, . . . , `p,p} and { fp,1, . . . , fp,p},
respectively. We see that it satisfies that fp,i = `p,i/(1 + `p,i). In the following, we summarize our notation of the
matrices that we will work on frequently in the first two columns of Table 1 below. Under Assumptions 1–3, it is
known from the result of [32] that the LSD of all theses matrices exist. The notation of SD, LSD together with their
Stieltjes transforms (ST) of these matrices are presented in the last two columns of Table 1.

We see that T inv and T inv are associated by the equality mT inv (z) = −(1 − c1)/z + c1mT inv (z), and L and L are
associated by the equality mL(z) = −(1 − c2)/z + c2mL(z). Using the results on MP equations [32], we immediately
have the following results:

a) mT inv (z) is the unique value in C− satisfying, for all z ∈ C−, the MP equation

z = − 1
mT inv (z)

+ c1

∫
t

1 + tmT inv (z)
dDinv(t).

b) mL(z) is the unique value in C+ satisfying, for all z ∈ C+, the MP equation

z = − 1
mL(z)

+ c2

∫
t

1 + tmL(z)
dT (t).

c) It is easy to verify that the above two equations are equivalent respectively to

∀z∈C− z = − 1
mT inv (z)

+ c1

∫
dD(t)

t + mT inv (z)
, (2)

Table 1: Notation of the matrices and their corresponding SD, LSD and Stieltjes transforms.

Notation Definitions SD/ST LSD/ST

MLp S p,2S −1
p,1, Lp/mLp (z) L/mL(z)

MLp
n−1

2 Y>p Σ
1/2
p,2 S −1

p,1Σ
1/2
p,2 Yp, Lp/mLp

(z) L/mL(z)
MFp S p,2(S p,1 + S p,2)−1 Fp/mFp (z) F/mF(z)
MTp S −1

p,1Σp,2, Tp/mTp (z) T/mT (z)
MT inv

p
S p,1Σ

−1
p,2, T inv

p /mT inv
p

(z) T inv/mT inv (z)
MT inv

p
n−1

1 X>p Σ
1/2
p,1 Σ−1

p,2Σ
1/2
p,1 Xp, T inv

p /mT inv
p

(z) T inv/mT inv (z)
MRp S p,2Σ

−1
p,1 Rp/mRp (z) R/mR(z)

MDp Σp,2Σ
−1
p,1, Dp/mDp (z) D/mD(z)

MDinv
p

Σ−1
p,2Σp,1. Dinv

p /mDinv
p

(z) Dinv/mDinv (z)
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and

∀z∈C+ z = − 1
mL(z)

+ c2

∫
dT inv(t)

t + mL(z)
. (3)

The above results associate L, L,T,T inv,T inv,D,Dinv with each other. In practice, the SD of observed data matrix
we have is Lp (or equivalently Lp), and the population parameter we want to estimate is the set of eigenvalues of MDp .
It is necessary that we associate L (or L) directly with D.

In the following, we present a system of equations which associates the Stieltjes transform of L with the one of
D. A recent publication by Zheng et al. [40] has also shown the same result on weaker conditions. Their paper is
more concerned with the theoretical property of the spectrum of S p,2S −1

p,1 from the perspective of probability theory,
whereas, our paper will utilize the result on estimating the spectrum of Σp,2Σ−1

p,1.

Theorem 1. Under Assumptions 1–3 and following the notation in Table 1, let m0(z) = mT inv {−mL(z)}. Then for all
z ∈ C+, m0(z) is the unique solution in C− to the equation

z =
(c1 + c2 − c1c2)

c1

{
− 1

m0
+ c1

∫
dD(t)
t+m0

} +
c2

c1
m0, (4)

and
∀z∈C+ − mL(z) = − 1

m0(z)
+ c1

∫
dD(t)

t + m0(z)
. (5)

According to the relationship between Fp and Lp, we observe that

mFp (z) =

∫
1

y
1+y − z

dFp

(
y

1 + y

)
=

∫
1 + y

(1 − z)y − z
dLp(y) =

1
1 − z

+
mLp ( z

1−z )

(1 − z)2 . (6)

Taking limits on both sides, we obtain the relationship on the Stieltjes transforms of the limiting distributions, viz.

mF(z) = (1 − z)−1 + (1 − z)−2mL

( z
1 − z

)
.

Remark 1. Let G be a probability distribution such that Supp(G) ⊂ (0,∞), and k1 ∈ (0, 1), k2 ∈ (0, 1) ∪ (1,∞) be two
constants. Seen from Theorem 1, if we solve, for any z ∈ C+, the equation

z =
(k1 + k2 − k1k2)

k1

{
− 1

m0
+ k1

∫
dG(t)
t+m0

} +
k2

k1
m0

with respect to m0 in C−, we will obtain a value m0(z) ∈ C−. Letting

m(z) =
1

m0(z)
− k1

∫
dG(t)

t + m0(z)
,

we get that the value m(z) is the Stieltjes transform of a probability distribution.
In the sequel, we use the notation LG,k1,k2

to denote this obtained distribution. Its companion distribution is denoted
as LG,k1,k2 . Recall that LG,k1,k2 satisfies that LG,k1,k2 (x) = k−1

2 LG,k1,k2
(x) − (1 − k2)k−1

2 1(0 ≤ x) for all x ∈ R. Besides, we
define FG,k1,k2 as the distribution such that its Stieltjes transform satisfies

mFG,k1 ,k2
(z) = (1 − z)−1 + (1 − z)−2mLG,k1 ,k2

( z
1 − z

)
. (7)

The companion distribution of FG,k1,k2 is denoted as FG,k1,k2
. We note that with this notation, L = LD,c1,c2 , L = LD,c1,c2

,
F = FD,c1,c2 and F = FD,c1,c2

.
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3. Weakly consistent estimation of population eigenvalues

3.1. A weakly consistent estimator of El Karoui type

3.1.1. Formulation of the estimation problem
Let h = c1 + c2 − c1c2. From (4) and (5), we see that for all z ∈ C+, mL(z) satisfies

− mL(z) = − 1
c1
c2

{
z + h

c1mL(z)

} + c1

∫
dD(t)

t + c1
c2

{
z + h

c1mL(z)

} . (8)

Using (8), we construct the estimator of Dp based on the basis pursuit method proposed by El Karoui [13]. First,
we see that Dp can be approximated by a weighted sum of point masses, viz.

Dp(x) ≈
Np∑

k=1

wk1(tk ≤ x),

where Np is a positive integer depending on p, t1, . . . , tNp are pre-specified fixed points in (0,∞), and w1, . . . ,wNp are
the unknown weights to be optimized over.

Then with L replaced by the observed distribution Lp and c1, c2, h replaced by their finite-sample counterparts
c1,p = p/n1, c2,p = p/n2, hp = c1,p + c2,p − c1,pc2,p, the finite-sample approximation of (8) reads

− mLp
(z) ≈ − 1

c1,p

c2,p

{
z +

hp

c1,pmLp (z)

} + c1,p

Np∑

k=1

wk

tk +
c1,p

c2,p

{
z +

hp

c1,pmLp (z)

} . (9)

Then the strategy is to find w1, . . . ,wNp such that (9) is “best” satisfied across a set of values of {z1, . . . , zJp } ⊂ C+,
where Jp is an integer tending to infinity as p→ ∞.

3.1.2. Convex optimization
We observe that w1, . . . ,wNp are linear in (9), which allows us to reformulate the problem of finding w1, . . . ,wNp

as a convex optimization problem. Denoting, for each j ∈ {1, . . . , Jp}, the approximation error

e j = mLp
(z j) − 1

c1,p

c2,p

{
z j +

hp

c1,pmLp (z j)

} + c1,p

Np∑

k=1

wk

tk +
c1,p

c2,p

{
z j +

hp

c1,pmLp (z j)

} ,

we propose to
Minimize max

j∈{1,...,Jp}
max{|Re(e j)|, |Im(e j)|}. (10)

Observe that the only constraints that w1, . . . ,wNp should satisfy are w1, . . . ,wNp ∈ [0, 1] with w1 + · · · + wNp = 1.
Therefore, (10) is essentially a linear program which can be equivalently expressed as:



Minimize
(w1,...,wNp ,u)

u,

∀ j∈{1,...,Np} − u ≤ Re(e j) ≤ u, −u ≤ Im(e j) ≤ u,

subject to w1, . . . ,wNp ∈ [0, 1] and w1 + · · · + wNp = 1.

3.1.3. Consistency
In this section, we show that the estimator is consistent in the sense of weak convergence of probability distribu-

tions provided that the tks in (9) become dense in Supp(D) as p→ ∞.
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Theorem 2. Let Jp be an integer tending to ∞ as p → ∞, C be a compact subset of C+ and {z1, z2, . . .} ⊂ C be a
sequence of distinct complex numbers. Let D̃EK

p be the probability distribution defined as

D̃EK
p = argmin

D

max
j∈{1,...,Jp}

∣∣∣∣∣∣∣∣∣∣
mLp

(z j) − 1
c1,p

c2,p

{
z j +

hp

c1,pmLp (z j)

} + c1,p

∫
dD(t)

t +
c1,p

c2,p

{
z j +

hp

c1,pmLp (z j)

}

∣∣∣∣∣∣∣∣∣∣
.

Then we have D̃EK
p

a.s. D as p→ ∞.

In practice, it is infeasible to perform optimization over the set of all probability distributions. In the following,
we propose an estimator optimizing over a properly chosen subset, but still keeping the consistent property. By saying
a grid, we mean a set of points on R. By saying that a grid covers a set, we mean the set is a subset of the interval
between the smallest and largest points in the grid. The size of the grid is defined as the largest length of the gaps
between adjacent points in the grid.

Corollary 1. Let Jp be an integer tending to ∞ as p → ∞, C be a compact subset of C+, {z1, z2, . . .} ⊂ C be a
sequence of distinct complex numbers, Gp be a grid in a compact subinterval of (0,∞) such that Gp covers Supp(Dp)
and Supp(D) for all large p. Let D̂EK

p be the probability distribution defined as

D̂EK
p = argmin

D∈PGp

max
j∈{1,...,Jp}

∣∣∣∣∣∣∣∣∣∣
mLp

(z j) − 1
c1,p

c2,p

{
z j +

hp

c1,pmLp (z j)

} + c1,p

∫
dD(t)

t +
c1,p

c2,p

{
z j +

hp

c1,pmLp (z j)

}

∣∣∣∣∣∣∣∣∣∣
,

wherePGp is the set of discrete probability distributions supported on Gp. Suppose the size of Gp tends to 0 as p→ ∞.
Then we have D̂EK

p
a.s. D as p→ ∞.

Usually the set of eigenvalues of Σp,2Σ−1
p,1 of finite p is of more practical interest to us. Instead of regarding

D̂EK
p as a consistent estimator of the limiting population spectral distribution D, we can generate an estimator of the

population spectrum dp = {dp,1, . . . , dp,p} from D̂EK
p , and examine its finite-sample performance. Specifically, we have

the following result:

Corollary 2. Under the assumptions of Corollary 1, we define {d̂EK
p,1 , . . . , d̂

EK
p,p } by

d̂EK
p,i = p

∫ i/p

(i−1)/p
(D̂EK

p )−1(x)dx,

where (D̂EK
p )−1 is the quantile function of the distribution D̂EK

p . Then as p→ ∞,

1
p

p∑

i=1

∣∣∣d̂EK
p,i − dp,i

∣∣∣ a.s.→ 0.

Remark 2. We note that our algorithm (10) minimizes

max
j≤Jp

max{|Re(e j)|, |Im(e j)|},

while the theory minimizes max(|e1|, . . . , |eJp |). To see the equivalence of the two, we just need to note that

max{|Re(e j)|, |Im(e j)|} ≤ |e j| ≤
√

2 max{|Re(e j)|, |Im(e j)|}.

By reformulating the optimization problem as a linear programming, we can obtain our estimator fast and efficiently
by using standard linear optimization algorithms. In our case, the problem can be solved in a few seconds by the
linprog routine of MATLAB on a personal laptop.
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3.1.4. Implementation details
Seen from Corollary 1, to implement the El Karoui type estimator, we need to pre-specify the sequence {z1, . . . , zJp }

and the grid of points Gp. Generally speaking, the criterion leading to the optimal choice of {z1, . . . , zJp } and the grid
Gp is still unknown and we leave this question to our future research. At this moment, we suggest the following choice
of {z1, . . . , zJp } and Gp, which according to our simulation study, shows a good result.

Choice of z j In our simulation study, we set Jp = max{2, round(p1/5)} where round(·) is the rounding-off function.
Then the values of z j are set in the following recursive way: z1 = 1i, z2 = 2i and z j = (z j−2 + z j−1)/2 for
j ∈ {3, . . . , Jp}. For instance, if p = 750, then Jp = 4 and the elements in {z1, . . . , z4} are z1 = 1 i, z2 = 2 i,
z3 = 1.5 i and z4 = 1.75 i.

Choice of the grid For a finite set of real numbers S , define the set M(S ) = S ∪{(s j + s j+1)/2 : s j ∈ S , 1 ≤ j ≤ |S |−1},
where |S | is the cardinality of S . Denote hp = {`p,1, . . . , `p,p}. We choose the grid Gp in Corollary 1 to be
Gp = M{M(hp)}.

3.2. A weakly consistent estimator of Ledoit and Wolf type
3.2.1. Quantized eigenvalues sampling transformation

In practice, the limiting quantities D(t), c1, c2 in (4) are not observable to us. Therefore, it is reasonable to assume
for finite n1, n2 and p that D(t) = Dp(t), c1 = c1,p, c2 = c2,p, namely, the LSD D(t) equals the true finite-sample
spectral distribution Dp(t) of Σp,2Σ−1

p,1 and the limiting ratios c1, c2 equal their finite-sample counterparts c1,p, c2,p.
Then following Remark 1, we obtain a probability distribution LDp,c1,p,c2,p which can be regarded as an approximation
of the SD Lp of S p,2S −1

p,1. To construct the spectrum estimator, we define the function referred to as “Quantized
Eigenvalues Sampling Transformation” or QuEST in short, whose name is inherited from [21]. In this article, QuEST
is a generalization of the one in [21], from the one-sample problem to the two-sample problem.

Definition 1. Let t = (t1, . . . , tr) be an r-dimensional vector whose components t1, . . . , tr have empirical distribution
function G and k = (k1, k2) be a pair of numbers satisfying k1 ∈ (0, 1), k2 ∈ (0, 1) ∪ (1,∞). With the notation of
Remark 1, QuEST is defined as the function Qk,r(t) = (q1

k,r(t), . . . , q
r
k,r(t))

> such that

∀i∈{1,...,r} qi
k,r(t) = r

∫ i/r

(i−1)/r
L−1

G,k1,k2
(u)du,

where L−1
G,k1,k2

is the quantile function of LG,k1,k2 .

Despite its complexity, in fact it is not difficult to compute the QuEST function along with its analytic Jacobian
numerically; see Figure 1.

We now proceed to estimating the spectrum of Σp,2Σ−1
p,1.

3.2.2. Constructing the weakly consistent estimator
Theorem 3. Under Assumptions 1–3 and following the notation in Definition 1, let d̃p = (d̃p,1, . . . , d̃p,p) be a vector
such that the empirical distribution D̃p of d̃p,1, . . . , d̃p,p converges weakly to D as p→ ∞ and satisfies that Supp(D̃p) ⊂
K for all large p. Then we have as p→ ∞,

1
p

p∑

i=1

{
qi

cp,p(d̃p) − `p,i

}2 a.s.→ 0,

where `p,i is the ith smallest eigenvalue of S p,2S −1
p,1.

Theorem 4. Under Assumptions 1–3 and following the notation in Definition 1 and Theorem 3, define

d̂p = argmin
τ∈K p

1
p

p∑

i=1

{
qi

cp,p(τ) − `p,i

}2
,

where K p is the p-fold Cartesian product of K. Then as p→ ∞,
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Figure 1: Average computation time of QuEST and its analytic Jacobian. The setting of the population parameters are p ranges from 20 to 1000
with p/n1, p/n2 fixed at 1/3 and the ith smallest eigenvalue of Σp,2Σ−1

p,1 is the (i−0.5)/pth theoretical quantile of the random variable 1+10×B(2, 5),
where B(2, 5) is a random variable following the Beta distribution with parameters (2, 5). The QuEST function and the Jacobian are programmed
in MATLAB. The computer is a 1.7 GHz dual-core laptop.

1
p

p∑

i=1

∣∣∣d̂p,i − dp,i

∣∣∣ a.s.→ 0,

where d̂p,i is the ith smallest component of d̂p.

Remark 3. The convergence result of Theorem 4 requires that we can obtain the global minimizer of the target function
p−1 ∑p

i=1{qi
cp,p(τ) − `p,i}2. While it is hardly possible to guarantee that the solution obtained from any prevailing

optimization algorithms is the global minimizer due to the nonlinearity of the target function. Nonetheless, one way
to still get a weakly consistent estimator in practice is to start from a good enough initial point. In particular, we have
the following result.

Corollary 3. Under Assumptions 1–3 and following the notation in Definition 1 and Theorem 3, suppose d̃p is a p-
variate vector whose components have empirical distribution function D̃p with Supp(D̃p) contained in K for all large
p and D̃p converging weakly to D as p→ ∞. Define d̂LW

p = (d̂LW
p,1 , . . . , d̂

LW
p,p ) to be the vector such that d̂LW

p,1 ≤ · · · ≤ d̂LW
p,p ,

d̂LW
p,1 , . . . , d̂

LW
p,p are uniformly contained in K and

1
p

p∑

i=1

{
qi

cp,p(d̂LW
p ) − `p,i

}2 ≤ 1
p

p∑

i=1

{
qi

cp,p(d̃p) − `p,i

}2
,

for all large p. Then as p→ ∞,
1
p

p∑

i=1

∣∣∣d̂LW
p,i − dp,i

∣∣∣ a.s.→ 0.

3.2.3. Implementation details
Let (Σ̂S T

p,1, Σ̂
S T
p,2) be the Stein type estimator of the pair of population covariance matrices (Σp,1,Σp,2) proposed in

[28]. It is well known that (Σ̂S T
p,1, Σ̂

S T
p,2) already performs very well in estimating (Σp,1,Σp,2). In our simulation study,

we use the constrained nonlinear least square optimization package lsqnonlin in MATLAB to implement the op-
timization procedures. We start from two initial points, of which one is the spectrum of Σ̂S T

p,2(Σ̂S T
p,1)−1, the other is

(d̂EK
p,1 , . . . , d̂

EK
p,p) presented in Corollary 2. Then we choose among the two obtained solutions from the optimization

9



procedures the one with smaller value of the target function as our estimator denoted as (d̂LW
p,1 , . . . , d̂

LW
p,p ). Since it is

proven that (d̂EK
p,1 , . . . , d̂

EK
p,p) is weakly consistent, (d̂LW

p,1 , . . . , d̂
LW
p,p ) is thus also weakly consistent according to Corol-

lary 3.

4. Estimation of (Σp,1,Σp,2)

4.1. Introduction
Since Stein [34, 35] proposed the shrinkage estimator of covariance matrices, many efforts by various statisticians

have been devoted to estimating covariance matrices in this direction. The literature includes [9, 15, 19, 20, 22, 28, 38].
It is well known that the eigenvalues of the sample covariance matrices are far more dispersed than those of the
population eigenvalues. The idea of shrinkage estimation is to correct this distortion. In other words, it pulls down
those large eigenvalues and pulls up the small ones. This shrinkage method gets the most risk savings when the
population eigenvalues are close together. In this section, the problem of estimating two covariance matrices is
examined. Namely, we consider the estimation of a pair of covariance matrices (Σp,1,Σp,2) with the aim of getting
substantial savings in the risk when eigenvalues of Σp,2Σ−1

p,1 are close together. This would be useful, for example, in
estimating (Σp,1,Σp,2), when one has prior information that the eigenvalues of Σp,1, Σp,2 are likely to be far apart but
the eigenvalues of Σp,1 are approximately proportional to those of Σp,2.

4.2. Equivariant estimators
We will base our estimation on the equivariant estimators using the sample covariance matrices S p,1 and S p,2.

Denote a generic estimator to be (Σ̂p,1, Σ̂p,2). We consider the loss function

L(Σ̂p,1, Σ̂p,2; Σp,1,Σp,2) =
1
p

2∑

i=1

{tr(Σ−1
p,iΣ̂p,i) − ln |Σ−1

p,iΣ̂p,i| − p}. (11)

It follows from classic linear algebra (see p. 31 of [14]) that there exists p × p invertible matrix Gp and diagonal
matrix Fp = diag( fp,1, . . . , fp,p) with fp,1 ≤ · · · ≤ fp,p, such that

G−1
p (S p,1 + S p,2)G>−1

p = I, G−1
p S p,2G>−1

p = Fp. (12)

In particular, fp,1, . . . , fp,p are the eigenvalues of S p,2(S p,1 + S p,2)−1, and it satisfies that fp,i = `p,i(1 + `p,i)−1 where `p,i

is the ith smallest eigenvalue of S p,2S −1
p,1.

Then the equivariant estimator has a general from presented in the following theorem:

Theorem 5. Under the transformation S p,1 → AS p,1A>, S p,2 → AS p,2A>, where A is an arbitrary invertible p × p
matrix, and under the loss function (11), (Σ̂p,1, Σ̂p,2) is the equivariant estimator of (Σp,1,Σp,2) if and only if (Σ̂p,1, Σ̂p,2)
can be expressed as

Σ̂p,1(S p,1, S p,2) = GpΨp(Fp)G>p , Σ̂p,2(S p,1, S p,2) = GpΦp(Fp)G>p ,

where ψp and φp are univariate functions referred to as the shrinkage functions, Ψp(Fp) = diag{ψp( fp,1), . . . , ψp( fp,p)},
Φp(Fp) = diag{φp( fp,1), . . . , φp( fp,p)} are two diagonal matrices and Gp is the matrix defined in (12). The mappings
ψp and φp and their arguments may both depend on fp,1, . . . , fp,p.

4.3. The limiting loss
Assumptions 1–3 together with Lemma A.5 in [37] imply that almost surely there exists a compact subinterval

K of (0, 1) containing Supp(Fp)\{0} and Supp(F)\{0} for all large p. In the following, we impose an additional
assumption for the problem of estimating (Σp,1,Σp,2).

Assumption 4. There are two functions ψ and φ defined on K ∪ {0} and continuous and positive on Supp(F), such
that as p → ∞, ψp(x)

a.s.→ ψ(x), and φp(x)
a.s.→ φ(x) uniformly for all x ∈ Supp(F) (Recall the functions ψp and φp are

defined in the statement of Theorem 5). On top of that, there exists a finite nonrandom positive number κ such that
almost surely, |ψp(x)| ≤ κ and |φp(x)| ≤ κ uniformly for all n1, n2, p large enough and x ∈ K.
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Theorem 6. Under Assumptions 1–4 and with the notation of Section 2, the loss function (11) of any equivariant
estimator (Σ̂p,1, Σ̂p,2) proposed in Theorem 5 has the following limit:

L(Σ̂p,1, Σ̂p,2; Σp,1,Σp,2)
a.s.→

∫

Supp(F)\{0}

[1 − c1 + 2c1(1 − x) {1 + xRe m̌F(x)}
1 − x

ψ(x) − ln
{
ψ(x)
1 − x

}

+
1 − c2 + 2c2x {1 − (1 − x)Re m̌F(x)}

x
φ(x) − ln

{
φ(x)
1 − x

} ]
dF(x)

−
∫

ln(x)dT inv(x) −
∫

ln(x)dMc1 (x) − 2 + A, (13)

where F(x) = c2F(x)−(c2−1)1(0 ≤ x) is the companion distribution of F, Mc1 (x) is the Marčenko–Pastur distribution
with parameter c1 (see 3.1.1 of [5]) and A = 0 if c2 ∈ (0, 1) while if c2 ∈ (1,∞),

A =
c2 − 1

c2


(
1 +

c1

c2

)
ψ(0) +

1 − m̌F(0) +
c2

∫
t−1dD(t)

c2 − 1

 φ(0) − ln{ψ(0)} − ln{φ(0)}
 .

4.4. The oracle shrinkage functions

By differentiating the limiting loss over ψ and φ in Theorem 6, we have the following result.

Theorem 7. Under Assumptions 1–4 and with the notation of Theorem 6, a covariance matrices estimator (Σ̂p,1, Σ̂p,2)
minimizes, in the class of equivariant estimators proposed in Theorem 5, the asymptotic loss (13) if and only if its
limiting shrinkage functions (ψ, φ) is such that, for all x ∈ Supp(F), (ψ, φ) = (ψor, φor) where as c2 ∈ (0, 1), ψor and
φor are given, for all x ∈ Supp(F), by

ψor(x) =
1 − x

1 − c1 + 2c1(1 − x) {1 + xRe m̌F(x)} , (14)

φor(x) =
x

1 − c2 + 2c2x {1 − (1 − x)Re m̌F(x)} . (15)

When c2 ∈ (1,∞), (14) and (15) are still valid except at x = 0 and

ψor(0) =
c2

c1 + c2
, φor(0) =

{
1 − m̌F(0) +

c2

c2 − 1

∫
t−1dD(t)

}−1

.

Proposition 1. Under Assumptions 1–4 and with the notation of Theorem 7, ψor(x) and φor(x) are positive and
uniformly bounded for all x ∈ {0} ∪K.

Remark 4. We note that the proof of Proposition 1 does not require the distribution F to satisfy any particular property
except that it is obtained from solving the two-sample MP equation in the sense of Remark 1. In particular, if we
replace D by any probability distribution compactly supported on (0,∞) and c1, c2 by any other positive constants
k1, k2 such that k1 ∈ (0, 1), k2 ∈ (0, 1) ∪ (1,∞), the positiveness and boundedness of the resulting shrinkage functions
should still hold. We will see that the shrinkage functions of our bona fide estimator presented later on has the same
structure as ψor and φor except that the limiting population spectral distribution D is substituted for a weakly consistent
estimate D̂p and c1, c2 are substituted for their finite-sample counterparts p/n1, p/n2. This implies that Proposition 1
will still be true for the bona fide shrinkage functions.

4.5. The bona fide estimator

It can be seen that the oracle shrinkage functions ψor and φor depend on the knowledge of the LSD F. In practice,
F is always unknown. Therefore, we need to further estimate it through the data. Now that Section 3 has provided
estimates of D we can make use of them to get estimates of F. Let D̂p be a probability distribution such that almost
surely D̂p weakly converges to D as p → ∞ with Supp(D̂p) uniformly contained in a compact subinterval of (0,∞)
for all large p.
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Let FD̂p,c1,p,c2,p
and F D̂p,c1,p,c2,p

be the distributions defined in Remark 1 with D̂p, c1,p, c2,p in place of G, k1, k2. The
Stieltjes transforms of FD̂p,c1,p,c2,p

and F D̂p,c1,p,c2,p
are denoted respectively as mFD̂p ,c1,p ,c2,p

(z) and mFD̂p ,c1,p ,c2,p
(z).

For each i ∈ {1, . . . , p}, let d̂p,i denote an estimate of the ith smallest population eigenvalue dp,i such that p−1 ∑p
i=1 d̂−1

p,i

converges almost surely to
∫

t−1dD(t) as p→ ∞. We note that in practice, we can use either d̂EK
p,i obtained from Corol-

lary 2 or d̂LW
p,i from Corollary 3 as d̂p,i. Now we propose our bona fide estimator.

Theorem 8. Under Assumptions 1–4 and following the notation above, we define the bona fide shrinkage functions,
for any p, n1, n2 and for all x ∈ K, by

ψBF
p (x) =

1 − x

1 − p
n1

+ 2 p
n1

(1 − x)
{
1 + xRe m̌FD̂p ,c1,p ,c2,p

(x)
} , (16)

φBF
p (x) =

x

1 − p
n2

+ 2 p
n2

x
{
1 − (1 − x) Re m̌FD̂p ,c1,p ,c2,p

(x)
} . (17)

If p > n2, in addition to (16) and (17), the shrinkage functions are also defined at x = 0, viz.

ψBF
p (0) =

p/n2

p/n1 + p/n2
, φBF

p (0) =

1 − m̌FD̂p ,c1,p ,c2,p
(0) +

∑p
i=1 d̂−1

p,i

p − n2



−1

.

Then the covariance matrices estimator (Σ̂BF
p,1, Σ̂

BF
p,2) = (GpΨBF

p G>p ,GpΦBF
p G>p ) minimizes in the class of equivariant

estimators the asymptotic loss (13) as p→ ∞, where

ΨBF
p = diag(ψBF

p,1, . . . , ψ
BF
p,p), ΦBF

p = diag(φBF
p,1, . . . , φ

BF
p,p)

are diagonal matrices and for all i ∈ {1, . . . , p}, ψBF
p,i = ψBF

p ( fp,i), φBF
p,i = φBF

p ( fp,i).

We note that fp,1, . . . , fp,p could be outside Supp(FD̂p,c1,p,c2,p
). Although this does not affect the estimator’s asymp-

totic property, to facilitate computation, we propose the modified random matrix (RM) estimator given by the follow-
ing corollary.

Corollary 4. Under Assumptions 1–4 and with the notation in Theorem 8, the covariance matrices estimator (Σ̂RM
p,1 ,

Σ̂RM
p,2 ) = (GpΨRM

p G>p ,GpΦRM
p G>p ) minimizes in the class of equivariant estimators the asymptotic loss (13) as p → ∞,

where ΨRM
p = diag(ψRM

p,1 , . . . , ψ
RM
p,p ), ΦRM

p = diag(φRM
p,1 , . . . , φ

RM
p,p ) are diagonal matrices and for all i ∈ {1, . . . , p},

ψRM
p,i = p

∫ i/p

(i−1)/p
ψBF

p {F−1
D̂p,c1,p,c2,p

(x)}dx, φRM
p,i = p

∫ i/p

(i−1)/p
φBF

p {F−1
D̂p,c1,p,c2,p

(x)}dx,

where F−1
D̂p,c1,p,c2,p

is the quantile function of the distribution FD̂p,c1,p,c2,p
and the shrinkage functions ψBF

p , φBF
p are defined

in Theorem 8.

4.6. Comparison with other estimators
4.6.1. Compared to the Stein type estimator

By an approximate minimization of the unbiased estimate of risk, Stein [34] (see also [35]) constructed an esti-
mator of the covariance matrix for the one-sample problem whose risk compares very favorably with the minimax
risk. In particular, substantial savings in risk is obtained when eigenvalues of the population covariance matrix are
close together. Extending Stein’s one-sample estimator, Loh [28] proposed the two-sample analogue (Σ̂S T

p,1, Σ̂
S T
p,2) for

the case p ≤ min(n1, n2). Similar to Stein’s one-sample estimator, since the shrunk eigenvalues may not follow the
natural ascending or descending order or may even have negative values, the isotonic regression needs to be applied
to get the positive ordered eigenvalues. Under the diagonalization (12), (Σ̂S T

p,1, Σ̂
S T
p,2) has the form

(Σ̂S T
p,1, Σ̂

S T
p,2) = (GpΨS T

p G>p ,GpΦS T
p G>p ),
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where ΨS T
p and ΦS T

p are two diagonal matrices. Prior to the application of isotonic regression, the unordered diagonal
entries of ΨS T

p and ΦS T
p can be expressed respectively, for each i ∈ {1, . . . , p}, as

ψS T raw
p,i = (1 − fp,i)

/{
1 − p − 1

n1
− 2

n1

∑

j,i

fp, j(1 − fp,i)
fp,i − fp, j

}
,

φS T raw
p,i = fp,i

/{
1 − p − 1

n2
+

2
n2

∑

j,i

fp,i(1 − fp, j)
fp,i − fp, j

}
.

Note that in [28], the simultaneous diagonalization finds the invertible matrix Bp such that

Bp(n1S p,1 + n2S p,2)B>p = I, Bp(n2S p,2)B>p = Fp.

Here we have adjusted the expressions of ψS T raw
p,i and φS T raw

p,i for each i ∈ {1, . . . , p} according to the diagonalization
(12).

For a function g(t), its Cauchy principal value at a point x ∈ R is defined as the limit of the integral

PV
∫ ∞

−∞

g(t)
t − x

dt = lim
ε→0+

{∫ x−ε

−∞

g(t)
t − x

dt +

∫ ∞

x+ε

g(t)
t − x

dt
}
.

Recall the definition of Fp(x) from Table 1. For each i ∈ {1, . . . , p}, ψS T raw
p,i and φS T raw

p,i can be rewritten as

ψS T raw
p,i =(1 − fp,i)

/ [
1 − p − 1

n1
+

2p
n1

(1 − fp,i)
{

p − 1
p

+ fp,iPV
∫ ∞

−∞

1
x − fp,i

dFp(x)
}]
,

φS T raw
p,i = fp,i

/ [
1 − p − 1

n1
+

2p
n1

fp,i

{
p − 1

p
− (1 − fp,i)PV

∫ ∞

−∞

1
x − fp,i

dFp(x)
}]
.

We also note that

Re m̌FD̂p ,c1,p ,c2,p
(x) = PV

∫ ∞

−∞
(t − x)−1dFD̂p,c1,p,c2,p

(t).

So for each i ∈ {1, . . . , p}, the diagonal entries ψBF
p,i and φBF

p,i of our bona fide estimator (Σ̂BF
p,1, Σ̂

BF
p,2) can be rewritten as

ψBF
p,i =(1 − fp,i)

/ [
1 − p

n1
+

2p
n1

(1 − fp,i)
{

1 + fp,iPV
∫ ∞

−∞

1
x − fp,i

dFD̂p,c1,p,c2,p
(x)

}]
,

φBF
p,i = fp,i

/ [
1 − p

n1
+

2p
n1

fp,i

{
1 − (1 − fp,i)PV

∫ ∞

−∞

1
x − fp,i

dFD̂p,c1,p,c2,p
(x)

}]
.

The only substantial difference is that the step function Fp is replaced by the smooth function FD̂p,c1,p,c2,p
.

Despite the similarity, there are some advantages of our proposed estimator. First, it has been shown that our
shrinkage functions are always nonnegative, therefore the ad hoc correction of the negativeness and disorder of the
shrunk eigenvalues via isotonic regression is no longer needed. Second, our estimator is able to deal with the more
challenging singular case where p > n2 while the Stein type estimator is only defined when p ≤ min(n1, n2). Third, the
optimality of our estimator does not require particular distribution assumption on the data matrix, while the Stein type
estimator relies on the unbiased estimate of the risk which is derived only when the two sample covariance matrices
follow Wishart distributions. Finally, simulation results show that the shrinkage functions ψBF

p (x) and φBF
p (x) may

follow neither ascending nor descending order, which suggests that the order correction via isotonic regression on
the Stein type estimator may be misleading. The last point may seem counter-intuitive at the beginning, because it is
expected that the shrinkage function should preserve the monotonicity of the sample eigenvalues fp,1, . . . , fp,p just as
it does in the one-sample case. In the following, we present a justification of it. We recall from Theorem 5 that the
two-sample covariance matrices estimator is constructed to be of the form

(Σ̂p,1, Σ̂p,2) = (GpΨp(Fp)G′p,GpΦp(Fp)G′p),
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Figure 2: Value of the shrinkage functions ψBF
p (x), φBF

p (x) and φBF
p (x)/{ψBF

p (x) + φBF
p (x)} given p = 200, n1 = n2 = 600 and D̂p = 2−11(1 ≤

x) + 2−11(2 ≤ x), where the blue, red and yellow curves are the graphs of φBF
p (x), ψBF

p (x) and φBF
p (x)/{ψBF

p (x) + φBF
p (x)} respectively. As displayed

in the plot, φBF
p (x) is not monotone, ψBF

p (x) is decreasing and φBF
p (x)/{ψBF

p (x) + φBF
p (x)} is increasing.

where Ψp(Fp) = diag{ψp( fp,1), . . . , ψp( fp,p)} and Φp(Fp) = diag{φp( fp,1), . . . , φp( fp,p)}. A crucial difference between
the two-sample and the one-sample shrinkage estimators is that in the two-sample case, since Gp is not an orthogonal
matrix, ψp( fp,i) and φp( fp,i) are not eigenvalues of the covariance matrices estimators Σ̂p,1 and Σ̂p,2. Consequently, the
shrinkage functions may not follow the same order of fp,i as it does in the one-sample case.

We recall from Theorem 8 that the two shrinkage functions ψBF
p and φBF

p are constructed such that (Σ̂BF
p,1, Σ̂

BF
p,2) has

optimal risk performance among the class of equivariant estimators. Except from being positive, continuous, bounded
and uniformly convergent as required by Assumption 4, we do not impose any other restrictions on ψBF

p and φBF
p . In

fact the two functions may even not be monotone; it is possible that φBF
p ( fp,i)/{ψBF

p ( fp,i) + φBF
p ( fp,i)} has the same

order of fp,1, . . . , fp,p because the former is the ith eigenvalue of Σ̂p,2(Σ̂p,1 + Σ̂p,2)−1 which has the same eigenvectors
of S p,2(S p,1 + S p,2)−1. Here we present a concrete example as an illustration.

Consider the case when p = 200, n1 = n2 = 600 and D̂p = 2−11(1 ≤ x) + 2−11(2 ≤ x) where 1 is the indicator
function. In other words, the estimated population spectral distribution D̂p is a discrete distribution which places half
its mass at 1 and the other half at 2. Drawing the result from numerical computation, we obtain the plot in Figure 2.

4.6.2. Minimaxity
Suppose the p × p matrix S follows the Wishart distribution Wp(n−1Σ, n). Under the transformation Σ → UΣU>,

S → US U>,where U is p×p orthogonal, Stein [34] and Dey and Srivinasan [11] independently proposed an estimator
of Σ which is shown to be minimax. Its two-sample analogue (Σ̂AU

p,1 , Σ̂
AU
p,2 ) can be found in [27, 28] wherein this type

of estimator is referred to as the adjusted usual estimator. With respect to the diagonalization (12), (Σ̂AU
p,1 , Σ̂

AU
p,2 ) has the

form (GpΨAU
p G>p ,GpΦAU

p G>p ) where ΨAU
p and ΦAU

p are diagonal matrices whose ith diagonal entries can be expressed
respectively, for each i ∈ {1, . . . , p}, as

ψAU
p,i = (1 − fp,i)

/ (
1 +

p + 1
n1
− 2i

n1

)
, φAU

p,i = fp,i

/ (
1 − p + 1

n2
+

2i
n2

)
.

Note that Loh [28] sorts the eigenvalues fp,1, . . . , fp,p in descending order whereas we sort them in ascending order.
With respect to the interval K in Assumption 4, suppose we define the shrinkage functions, for all x ∈ K, by

ψAU
p (x) =

1 − x

1 +
p+1
n1
− 2p

n1
Fp(x)

, φAU
p (x) =

x

1 − p+1
n2

+
2p
n2

Fp(x)
.

Then we see that ψAU
p,i = ψAU

p ( fp,i), φAU
p,i = φAU

p ( fp,i). One can easily check that under Assumptions 1–3, ψAU
p (x) and

φAU
p (x) respectively converge uniformly almost surely for x ∈ K to

1 − x
1 + c1 − 2c1F(x)

,
x

1 − c2 + 2c2F(x)
,
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which implies that the adjusted usual estimator belongs to the class of estimators satisfying Assumption 4.
We recall that the limiting shrinkage functions of the bona fide estimators equal the oracle shrinkage functions

(ψor, φor) which minimizes the asymptotic loss. This implies that given Wishart distributed sample covariance matrices
S p,1 and S p,2, if we restrict the population covariance matrices in the class satisfying Assumption 3, our bona fide
estimator dominates the adjusted usual estimator in the limit as p, n1, n2 → ∞ with p/n1 → c1 ∈ (0, 1) and p/n2 →
c2 ∈ (0, 1) and thus is minimax. Actually, our estimator minimizes the asymptotic loss for every limiting spectral
distribution D of the ratio of the population covariance matrices. This is a much stronger notion of optimality than
minimax which only minimizes the worst case risk.

4.6.3. Simultaneous estimation vs. estimating individually
Since the data are given as two independent sample covariance matrices S p,1 and S p,2, a natural question is how

the performance of simultaneous estimation compares to that of estimating Σp,1 and Σp,2 individually. We call the esti-
mator simultaneously estimating a pair of covariance matrices the two-sample estimator and the estimator estimating
only one covariance matrix the one-sample estimator. Denoting the one-sample covariance matrix estimators proposed
in [22] as Σ̂one

p,1 and Σ̂one
p,2 respectively for Σp,1 and Σp,2, we can construct an estimator of (Σp,1,Σp,2) as (Σ̂one

p,1 , Σ̂
one
p,2 ). Seen

from the assumptions in [22], the one-sample covariance matrix estimator minimizes the limiting loss only when the
eigenvalues of the population covariance matrices are bounded from both below and above for all large p, thus we may
expect performance depreciation of (Σ̂one

p,1 , Σ̂
one
p,2 ) when the eigenvalues of Σp,1 and Σp,2 are highly dispersed. However,

our two-sample estimator always performs well as long as the eigenvalues of Σp,2Σ−1
p,1 are close together.

5. Simulations

In this section, we compare the performance of our estimators proposed in this article with several existing esti-
mators for different settings of the population parameters.

For the problem of estimating the population spectrum dp = {dp,1, . . . , dp,p}, let d̂p = {d̂p,1, . . . , d̂p,p} such that
d̂p,1 ≤ · · · ≤ d̂p,p denote a generic estimator. The loss function we use is the normalized L1 distance, viz.

1
p

p∑

i=1

∣∣∣d̂p,i − dp,i

∣∣∣ .

The estimators to be compared are

d̂Dey
p : The estimator proposed by Dey [10] which is shown to dominate the scaled eigenvalues of S p,2S −1

p,1 under
the squared error loss

∑p
i=1(d̂p,i − dp,i)2.

d̂S T
p : The spectrum of Σ̂S T

p,2(Σ̂S T
p,1)−1 where the pair (Σ̂S T

p,1, Σ̂
S T
p,2) is the Stein type covariance matrices estimator

proposed by Loh [28]. It is demonstrated by Monte Carlo simulations in [28] that (Σ̂S T
p,1, Σ̂

S T
p,2) has good risk

performance estimating (Σp,1,Σp,2). It can also be seen in our simulation study that the spectrum of Σ̂S T
p,2(Σ̂S T

p,1)−1

as an estimator of dp also performs very well. Therefore, we consider this estimator as a benchmark for our
proposed estimators to compare with.

d̂EK
p : The El Karoui type estimator proposed in Corollary 2.

d̂LW
p : The Ledoit and Wolf type estimator proposed in Corollary 3.

d̂one
p : The spectrum of the matrix Σ̂one

p,2 (Σ̂one
p,1 )−1 where Σ̂one

p,1 , Σ̂one
p,2 , are the one-sample covariance matrices estima-

tors proposed by Ledoit and Wolf [22] based on RMT.

For the problem of estimating (Σp,1,Σp,2), let (Σ̂p,1, Σ̂p,2) denote a generic estimator. The loss function we use is the
Stein’s loss, viz.

L(Σ̂p,1, Σ̂p,2; Σp,1,Σp,2) =
1
p

2∑

i=1

{tr(Σ−1
p,iΣ̂p,i) − ln |Σ−1

p,iΣ̂p,i| − p}.

The estimators to be compared are
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(Σ̂AU
p,1 , Σ̂

AU
p,2 ): The minimax adjusted usual estimator; see [28].

(Σ̂S T
p,1, Σ̂

S T
p,2): The Stein type estimator proposed by Loh [28].

(Σ̂or
p,1, Σ̂

or
p,2): The oracle estimator which is defined as the estimator obtained in Corollary 4 but with the true

population spectral distribution Dp in place of the estimate D̂p. Since (Σ̂or
p,1, Σ̂

or
p,2) incorporates the true population

parameter Dp, theoretically the loss of this estimator is the best that a bona fide estimator can achieve. We use
it as a benchmark for our proposed estimators to compare with.

(Σ̂EK
p,1 , Σ̂

EK
p,2 ): Our random matrix estimator proposed in Corollary 4 with ĎEK

p acting as D̂p, where ĎEK
p is the

empirical distribution of {d̂EK
p,1 , . . . , d̂

EK
p,p } defined in Corollary 2.

(Σ̂LW
p,1 , Σ̂

LW
p,2 ): Our random matrix estimator proposed in Corollary 4 with D̂LW

p acting as D̂p, where D̂LW
p is the

empirical distribution of {d̂LW
p,1 , . . . , d̂

LW
p,p } defined in Corollary 3.

(Σ̂one
p,1 , Σ̂

one
p,2 ): The pair of one-sample covariance matrices estimators proposed by Ledoit and Wolf [22] based on

RMT.

We focus on three scenarios to demonstrate the performance of our proposed estimators. Since the covariance
matrices estimators are equivariant, we may without loss of generality set Σp,1 and Σp,2 to be diagonal matrices. In the
following, we let dp = {dp,1, . . . , dp,p} denote the spectrum of Σp,2Σ−1

p,1. For i ∈ {1, 2}, let λi = {λi,1, . . . , λi,p} such that
λi,1 ≤ · · · ≤ λi,p denote the spectrum of Σp,i. The dimension p ranges in the set {50, 200, 500, 750, 1000}. Each time,
we run 400 Monte Carlo repetitions to get the average loss and standard error.

Scenario 1. We consider three different settings of (Σp,1,Σp,2). In all the settings, we set the matrices Xp, Yp to be
independent, each consisting of iid standard normal N(0, 1) random variables. Then the observed sample covariance
matrices are given as n−1

1 Σ
1/2
p,1 XpX>p Σ

1/2
p,1 and n−1

2 Σ
1/2
p,2 YpY>p Σ

1/2
p,2 . In the id setting, we set λ1, j = λ2, j = dp, j = 1 for

all j ∈ {1, . . . , p} so that Σp,2Σ−1
p,1 is the identity matrix. In the blk setting, λ1, j = 1 and λ2, j = dp, j = 1( j ≤

p/2) + 101(p/2 < j ≤ p) for all j ∈ {1, . . . , p}. In the beta setting, λ1, j = 1 and λ2, j and dp, j equal the ( j − 0.5)/pth
theoretical quantile of the random variable following the distribution 1 + 10 × B(2, 5) for all j ∈ {1, . . . , p}, where
B(2, 5) is the beta distribution with parameters (2, 5). For each dimension p, we consider three different pairs of the
sample sizes (n1, n2): (3p, 3p), (3p, p) and (3p, p/2).

For the last case, S p,2 is singular and d̂Dey
p , d̂S T

p , (Σ̂AU
p,1 , Σ̂

AU
p,2 ) and (Σ̂S T

p,1, Σ̂
S T
p,2) are not defined, so we compare only

d̂EK
p , d̂LW

p , (Σ̂or
p,1, Σ̂

or
p,2), (Σ̂EK

p,1 , Σ̂
EK
p,2 ) and (Σ̂LW

p,1 , Σ̂
LW
p,2 ). The results are summarized in Table 2 for d̂p and Table 5 for

(Σ̂p,1, Σ̂p,2). We see that our high-dimensional estimators both for estimating dp and (Σp,1,Σp,2) outperform the tradi-
tional estimators for all the three settings of (Σp,1,Σp,2) especially when p ≥ 500.

Scenario 2. We focus on the comparison between the two-sample estimators and the one-sample estimators. As
explained in Section 4.6.3, when Σp,1, Σp,2 are approximately proportional but the eigenvalues of each of the population
covariance matrices are far apart, the performance of the one-sample estimators may not be good, whereas our two-
sample estimators still perform well. In this scenario, we still use normally distributed data and set dp to be the same
as those in id and beta settings of Scenario 1. But the individual spectra of Σp,1 and Σp,2 are more spread out. The
ith smallest eigenvalues of Σp,1, Σp,2 are respectively set to be λ1, j = 10−31( j ≤ p/2) + 1031(p/2 < j ≤ p) and
λ2, j, = dp, j × λ1, j for all j ∈ {1, . . . , p}. We set (n1, n2) = (3p, 3p). The results are summarized in Table 3 for d̂p

and Table 6 for (Σ̂p,1, Σ̂p,2). We see that the performance of both d̂one
p and (Σ̂one

p,1 , Σ̂
one
p,2 ) are not satisfying, while our

two-sample estimators are still robust.

Scenario 3. We focus on the case where the data no longer follow normal distribution. Specifically, we set the
matrices Xp, Yp to be independent, each consisting of iid random variables following Student t-distribution with
degrees of freedom 5. Moreover, these t-distributed random variables are multiplied by

√
3/5 so that they have unit

variance. Then the observed sample covariance matrices are given as n−1
1 Σ

1/2
p,1 XpX>p Σ

1/2
p,1 and n−1

2 Σ
1/2
p,2 YpY>p Σ

1/2
p,2 . We set

(Σp,1,Σp,2) to be the same as that in beta setting of Scenario 1. The sample sizes are (n1, n2): (3p, 3p), (3p, p) and
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(3p, p/2). The results are summarized in Table 4 for d̂p and Table 7 for (Σ̂p,1, Σ̂p,2). It is seen that with non-normally
distributed data, our proposed estimators still perform well.

L1, Loss and SE in Tables 2 to 7 respectively stand for the normalized L1 distance p−1 ∑p
i=1 |d̂p,i−dp,i| for estimating

dp, the Stein’s loss (11) and the estimated standard errors from the Monte Carlo repetitions.
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Appendix A. Proofs of mathematical results in Section 2

Appendix A.1. Proof of Theorem 1
Proof. Using the definition of Stieltjes transform, Eq. (3) can be rewritten, for all z ∈ C+, as

z = − 1
mL(z)

+ c2mT inv {−mL(z)}. (A.1)

Using the equality mT inv (z) = −(1 − c1)/z + c1mT inv (z), (A.1) further gives rise to

z = − 1
mL(z)

+
c2

c1
mT inv {−mL(z)} − c2 − c1c2

c1mL(z)
= −c1 + c2 − c1c2

c1mL(z)
+

c2

c1
m0(z). (A.2)

Replacing z by −mL(z) in (2), we obtain, for all z ∈ C+,

− mL(z) = − 1
m0(z)

+ c1

∫
dD(t)

t + m0(z)
, (A.3)

which is the desired Eq. (5).
Plugging (A.3) into (A.2), we obtain Eq. (4).
Next, let z = z1 + iz2 and m0 = m1 + im2, where z1, z2,m1,m2 are respectively the real part, the imaginary part of

z, the real part and the imaginary part of m0. We show the uniqueness of m0 by arguing that for a fixed z ∈ C+, there
is at most one m0 ∈ C− such that

z =
c1 + c2 − c1c2

c1

{
− 1

m0
+ c1

∫
dD(t)
t+m0

} +
c2

c1
m0. (A.4)

Let c1 + c2 − c1c2 = h and rewrite Eq. (A.4) as

h
zc1 − c2m0

= − 1
m0

+ c1

∫
dD(t)
t + m0

. (A.5)

Taking imaginary parts and multiplying 1/m2 on both sides, we obtain

− h(z2c1 − c2m2)
m2|zc1 − c2m0|2 =

1
|m0|2 − c1

∫
dD(t)
|t + m0|2 .

Since z2 > 0, m2 < 0, it follows that

0 <
hc2

|zc1 − c2m0|2 < −
h(z2c1 − c2m2)
m2|zc1 − c2m0|2 =

1
|m0|2 − c1

∫
dD(t)
|t + m0|2 . (A.6)
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Table 2: Comparison of average loss of the proposed spectrum estimators with other existing methods given normally distributed data.

(n1, n2) d̂p
p = 50 p = 200 p = 500 p = 750 p = 1000

L1 SE L1 SE L1 SE L1 SE L1 SE

id

(3p, 3p)

d̂Dey
p 0.534 (0.001) 0.534 (0.000) 0.533 (0.000) 0.533 (0.000) 0.533 (0.000)

d̂S T
p 0.091 (0.001) 0.033 (0.000) 0.016 (0.000) 0.011 (0.000) 0.009 (0.000)

d̂EK
p 0.070 (0.004) 0.023 (0.001) 0.011 (0.001) 0.008 (0.001) 0.007 (0.000)

d̂LW
p 0.097 (0.004) 0.036 (0.002) 0.017 (0.001) 0.013 (0.001) 0.012 (0.001)

(3p, p)

d̂Dey
p 2.387 (0.006) 2.375 (0.001) 2.373 (0.001) 2.370 (0.000) 2.371 (0.000)

d̂S T
p 0.212 (0.002) 0.121 (0.001) 0.083 (0.000) 0.070 (0.000) 0.062 (0.000)

d̂EK
p 0.101 (0.005) 0.032 (0.002) 0.016 (0.001) 0.011 (0.001) 0.009 (0.001)

d̂LW
p 0.135 (0.005) 0.046 (0.002) 0.026 (0.001) 0.017 (0.001) 0.014 (0.001)

(3p, p/2) d̂EK
p 0.158 (0.007) 0.046 (0.002) 0.022 (0.001) 0.015 (0.001) 0.012 (0.001)

d̂LW
p 0.187 (0.008) 0.072 (0.003) 0.041 (0.002) 0.029 (0.002) 0.026 (0.002)

blk

(3p, 3p)

d̂Dey
p 3.440 (0.007) 3.416 (0.002) 3.408 (0.001) 3.405 (0.000) 3.405 (0.000)

d̂S T
p 1.383 (0.009) 1.233 (0.002) 1.192 (0.001) 1.183 (0.001) 1.177 (0.001)

d̂EK
p 0.763 (0.028) 0.124 (0.006) 0.054 (0.003) 0.032 (0.002) 0.024 (0.001)

d̂LW
p 0.615 (0.017) 0.221 (0.010) 0.097 (0.005) 0.072 (0.004) 0.055 (0.003)

(3p, p)

d̂Dey
p 11.671 (0.040) 11.594 (0.010) 11.576 (0.004) 11.565 (0.003) 11.565 (0.002)

d̂S T
p 2.310 (0.008) 2.224 (0.002) 2.196 (0.001) 2.189 (0.001) 2.186 (0.001)

d̂EK
p 1.311 (0.043) 0.281 (0.012) 0.138 (0.007) 0.097 (0.005) 0.070 (0.003)

d̂LW
p 1.122 (0.031) 0.343 (0.013) 0.175 (0.008) 0.118 (0.006) 0.092 (0.005)

(3p, p/2) d̂EK
p 3.132 (0.121) 1.117 (0.045) 0.509 (0.021) 0.352 (0.016) 0.288 (0.013)

d̂LW
p 2.554 (0.076) 1.151 (0.039) 0.651 (0.029) 0.518 (0.025) 0.411 (0.021)

beta

(3p, 3p)

d̂Dey
p 1.492 (0.004) 1.484 (0.001) 1.481 (0.000) 1.480 (0.000) 1.480 (0.000)

d̂S T
p 0.363 (0.003) 0.319 (0.001) 0.335 (0.001) 0.340 (0.000) 0.342 (0.000)

d̂EK
p 0.545 (0.012) 0.420 (0.008) 0.278 (0.005) 0.251 (0.004) 0.230 (0.004)

d̂LW
p 0.716 (0.008) 0.450 (0.007) 0.288 (0.006) 0.235 (0.005) 0.191 (0.004)

(3p, p)

d̂Dey
p 8.172 (0.024) 8.122 (0.006) 8.112 (0.002) 8.103 (0.002) 8.104 (0.001)

d̂S T
p 0.908 (0.005) 0.863 (0.001) 0.849 (0.001) 0.845 (0.000) 0.842 (0.000)

d̂EK
p 1.292 (0.032) 0.977 (0.013) 0.805 (0.008) 0.806 (0.006) 0.773 (0.007)

d̂LW
p 1.001 (0.012) 0.681 (0.011) 0.512 (0.012) 0.447 (0.012) 0.380 (0.011)

(3p, p/2) d̂EK
p 1.463 (0.026) 1.338 (0.018) 1.211 (0.017) 1.052 (0.014) 0.964 (0.012)

d̂LW
p 1.316 (0.018) 1.021 (0.010) 0.924 (0.009) 0.855 (0.009) 0.833 (0.008)
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Table 3: Comparison of average loss of two-sample spectrum estimators with the one-sample estimators given normally distributed data.

d̂p
p = 50 p = 200 p = 500 p = 750 p = 1000

L1 SE L1 SE L1 SE L1 SE L1 SE

id
d̂Dey

p 2.387 (0.006) 2.375 (0.001) 2.373 (0.001) 2.370 (0.000) 2.371 (0.000)
d̂S T

p 0.212 (0.002) 0.121 (0.001) 0.083 (0.000) 0.070 (0.000) 0.062 (0.000)
d̂EK

p 0.101 (0.005) 0.032 (0.002) 0.016 (0.001) 0.011 (0.001) 0.008 (0.001)
d̂LW

p 0.133 (0.005) 0.046 (0.002) 0.026 (0.001) 0.017 (0.001) 0.014 (0.001)
d̂one

p 200.770 (103.920) 54.310 (15.360) 19.287 (3.725) 9.752 (1.853) 6.961 (1.297)
beta

d̂Dey
p 8.172 (0.024) 8.122 (0.006) 8.112 (0.002) 8.103 (0.002) 8.104 (0.001)

d̂S T
p 0.908 (0.005) 0.863 (0.001) 0.849 (0.001) 0.845 (0.000) 0.842 (0.000)

d̂EK
p 1.292 (0.032) 0.976 (0.013) 0.805 (0.008) 0.808 (0.006) 0.774 (0.007)

d̂LW
p 1.006 (0.012) 0.676 (0.011) 0.510 (0.011) 0.445 (0.012) 0.377 (0.011)

d̂one
p 558.820 (219.860) 144.360 (31.900) 50.322 (9.619) 29.734 (5.476) 21.154 (2.434)

Table 4: Comparison of average loss of the proposed spectrum estimators with other existing methods given t5 distributed data.

(n1, n2) d̂p
p = 50 p = 200 p = 500 p = 750 p = 1000

L1 SE L1 SE L1 SE L1 SE L1 SE

(3p, 3p)

d̂Dey
p 1.520 (0.004) 1.490 (0.001) 1.484 (0.000) 1.482 (0.000) 1.481 (0.000)

d̂S T
p 0.373 (0.004) 0.299 (0.002) 0.323 (0.001) 0.331 (0.001) 0.336 (0.000)

d̂EK
p 0.543 (0.011) 0.460 (0.009) 0.302 (0.006) 0.322 (0.007) 0.276 (0.005)

d̂LW
p 0.761 (0.008) 0.470 (0.008) 0.301 (0.006) 0.261 (0.006) 0.219 (0.005)

(3p, p)

d̂Dey
p 8.457 (0.040) 8.225 (0.009) 8.166 (0.004) 8.141 (0.003) 8.132 (0.002)

d̂S T
p 0.952 (0.007) 0.861 (0.002) 0.845 (0.001) 0.843 (0.001) 0.840 (0.001)

d̂EK
p 1.490 (0.042) 0.976 (0.012) 0.812 (0.010) 0.801 (0.006) 0.782 (0.007)

d̂LW
p 1.065 (0.015) 0.692 (0.011) 0.494 (0.011) 0.452 (0.012) 0.383 (0.011)

(3p, p/2) d̂EK
p 1.644 (0.038) 1.430 (0.022) 1.198 (0.017) 1.084 (0.015) 0.975 (0.011)

d̂LW
p 1.437 (0.023) 1.052 (0.010) 0.931 (0.009) 0.880 (0.009) 0.845 (0.008)
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Table 5: Comparison of average loss of the proposed covariance matrices estimators with other existing methods given normally distributed data.

(n1, n2) (Σ̂p,1, Σ̂p,2)
p = 50 p = 200 p = 500 p = 750 p = 1000

Loss SE Loss SE Loss SE Loss SE Loss SE

id

(3p, 3p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.1869 (0.0004) 0.1789 (0.0001) 0.1775 (0.0000) 0.1772 (0.0000) 0.1771 (0.0000)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.2584 (0.0004) 0.2526 (0.0001) 0.2513 (0.0000) 0.2511 (0.0000) 0.2510 (0.0000)

(Σ̂or
p,1, Σ̂

or
p,2) 0.1813 (0.0004) 0.1778 (0.0001) 0.1772 (0.0000) 0.1770 (0.0000) 0.1770 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.1822 (0.0004) 0.1780 (0.0001) 0.1772 (0.0000) 0.1771 (0.0000) 0.1770 (0.0000)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.1820 (0.0004) 0.1779 (0.0001) 0.1772 (0.0000) 0.1770 (0.0000) 0.1770 (0.0000)

(3p, p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.4714 (0.0036) 0.3795 (0.0013) 0.3455 (0.0006) 0.3326 (0.0005) 0.3257 (0.0004)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.6563 (0.0033) 0.6200 (0.0010) 0.6109 (0.0004) 0.6077 (0.0003) 0.6065 (0.0002)

(Σ̂or
p,1, Σ̂

or
p,2) 0.2801 (0.0006) 0.2756 (0.0001) 0.2745 (0.0001) 0.2743 (0.0000) 0.2742 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.3303 (0.0054) 0.2938 (0.0023) 0.2837 (0.0013) 0.2822 (0.0010) 0.2805 (0.0008)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.3203 (0.0037) 0.2905 (0.0016) 0.2804 (0.0008) 0.2793 (0.0007) 0.2780 (0.0005)

(3p, p/2)
(Σ̂or

p,1, Σ̂
or
p,2) 0.3252 (0.0006) 0.3196 (0.0002) 0.3183 (0.0001) 0.3181 (0.0000) 0.3180 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.4997 (0.0133) 0.3824 (0.0054) 0.3417 (0.0021) 0.3312 (0.0014) 0.3271 (0.0009)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.4733 (0.0114) 0.3619 (0.0040) 0.3339 (0.0018) 0.3260 (0.0010) 0.3227 (0.0006)

blk

(3p, 3p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.2722 (0.0005) 0.2641 (0.0001) 0.2625 (0.0000) 0.2622 (0.0000) 0.2621 (0.0000)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.3006 (0.0005) 0.2946 (0.0001) 0.2933 (0.0000) 0.2931 (0.0000) 0.2930 (0.0000)

(Σ̂or
p,1, Σ̂

or
p,2) 0.2603 (0.0005) 0.2559 (0.0001) 0.2551 (0.0000) 0.2549 (0.0000) 0.2549 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.2648 (0.0005) 0.2566 (0.0001) 0.2553 (0.0000) 0.2551 (0.0000) 0.2550 (0.0000)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.2617 (0.0005) 0.2562 (0.0001) 0.2552 (0.0000) 0.2550 (0.0000) 0.2549 (0.0000)

(3p, p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.6238 (0.0035) 0.5473 (0.0011) 0.5195 (0.0006) 0.5089 (0.0004) 0.5033 (0.0003)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.7230 (0.0033) 0.6874 (0.0009) 0.6785 (0.0004) 0.6753 (0.0003) 0.6741 (0.0002)

(Σ̂or
p,1, Σ̂

or
p,2) 0.4643 (0.0008) 0.4582 (0.0002) 0.4567 (0.0001) 0.4563 (0.0001) 0.4562 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.4823 (0.0018) 0.4766 (0.0022) 0.4657 (0.0011) 0.4619 (0.0008) 0.4610 (0.0006)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.4941 (0.0027) 0.4710 (0.0014) 0.4627 (0.0008) 0.4602 (0.0006) 0.4590 (0.0005)

(3p, p/2)
(Σ̂or

p,1, Σ̂
or
p,2) 0.6287 (0.0009) 0.6212 (0.0002) 0.6197 (0.0001) 0.6194 (0.0001) 0.6193 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.8904 (0.0168) 0.8067 (0.0123) 0.7266 (0.0079) 0.6885 (0.0056) 0.6707 (0.0044)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.8579 (0.0150) 0.7381 (0.0093) 0.6826 (0.0060) 0.6533 (0.0039) 0.6447 (0.0033)

beta

(3p, 3p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.2348 (0.0004) 0.2282 (0.0001) 0.2270 (0.0000) 0.2267 (0.0000) 0.2266 (0.0000)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.2718 (0.0004) 0.2661 (0.0001) 0.2649 (0.0000) 0.2647 (0.0000) 0.2646 (0.0000)

(Σ̂or
p,1, Σ̂

or
p,2) 0.2179 (0.0004) 0.2146 (0.0001) 0.2139 (0.0000) 0.2138 (0.0000) 0.2137 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.2199 (0.0004) 0.2152 (0.0001) 0.2143 (0.0000) 0.2141 (0.0000) 0.2141 (0.0000)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.2198 (0.0004) 0.2148 (0.0001) 0.2140 (0.0000) 0.2138 (0.0000) 0.2138 (0.0000)

(3p, p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.5313 (0.0036) 0.4524 (0.0012) 0.4244 (0.0006) 0.4137 (0.0004) 0.4079 (0.0004)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.6711 (0.0033) 0.6352 (0.0009) 0.6261 (0.0004) 0.6229 (0.0003) 0.6217 (0.0002)

(Σ̂or
p,1, Σ̂

or
p,2) 0.3348 (0.0006) 0.3304 (0.0001) 0.3293 (0.0001) 0.3291 (0.0000) 0.3290 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.4012 (0.0058) 0.3618 (0.0030) 0.3468 (0.0017) 0.3417 (0.0012) 0.3399 (0.0011)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.3873 (0.0040) 0.3501 (0.0016) 0.3407 (0.0010) 0.3375 (0.0008) 0.3361 (0.0007)

(3p, p/2)
(Σ̂or

p,1, Σ̂
or
p,2) 0.3950 (0.0007) 0.3897 (0.0002) 0.3883 (0.0001) 0.3880 (0.0000) 0.3880 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.6604 (0.0168) 0.5727 (0.0109) 0.5298 (0.0081) 0.4911 (0.0063) 0.4771 (0.0056)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.5904 (0.0138) 0.5054 (0.0091) 0.4580 (0.0061) 0.4334 (0.0041) 0.4262 (0.0035)
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Table 6: Comparison of average loss of two-sample covariance matrices estimators with the one-sample estimators given normally distributed data.

(Σ̂p,1, Σ̂p,2)
p = 50 p = 200 p = 500 p = 750 p = 1000

Loss SE Loss SE Loss SE Loss SE Loss SE

id
(Σ̂S T

p,1, Σ̂
S T
p,2) 0.1869 (0.0004) 0.1789 (0.0001) 0.1775 (0.0000) 0.1772 (0.0000) 0.1771 (0.0000)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.2584 (0.0004) 0.2526 (0.0001) 0.2513 (0.0000) 0.2511 (0.0000) 0.2510 (0.0000)

(Σ̂or
p,1, Σ̂

or
p,2) 0.1809 (0.0004) 0.1778 (0.0001) 0.1772 (0.0000) 0.1770 (0.0000) 0.1770 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.1822 (0.0004) 0.1780 (0.0001) 0.1772 (0.0000) 0.1770 (0.0000) 0.1770 (0.0000)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.1824 (0.0004) 0.1779 (0.0001) 0.1772 (0.0000) 0.1770 (0.0000) 0.1770 (0.0000)

(Σ̂one
p,1 , Σ̂

one
p,2 ) 1649.1000 (61.3000) 348.9300 (15.2770) 133.7000 (5.9688) 85.1220 (3.6893) 63.3150 (2.5022)

beta
(Σ̂S T

p,1, Σ̂
S T
p,2) 0.2348 (0.0004) 0.2282 (0.0001) 0.2270 (0.0000) 0.2267 (0.0000) 0.2266 (0.0000)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.2718 (0.0004) 0.2661 (0.0001) 0.2649 (0.0000) 0.2647 (0.0000) 0.2646 (0.0000)

(Σ̂or
p,1, Σ̂

or
p,2) 0.2179 (0.0004) 0.2146 (0.0001) 0.2139 (0.0000) 0.2138 (0.0000) 0.2137 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.2199 (0.0004) 0.2150 (0.0001) 0.2141 (0.0000) 0.2140 (0.0000) 0.2139 (0.0000)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.2198 (0.0004) 0.2148 (0.0001) 0.2140 (0.0000) 0.2138 (0.0000) 0.2138 (0.0000)

(Σ̂one
p,1 , Σ̂

one
p,2 ) 1579.5000 (50.5130) 326.5000 (13.7870) 179.4600 (7.2440) 152.9500 (5.0493) 143.6200 (3.3201)

Table 7: Comparison of average loss of the proposed covariance matrices estimators with other existing methods given t5 distributed data.

(n1, n2) (Σ̂p,1, Σ̂p,2)
p = 50 p = 200 p = 500 p = 750 p = 1000

Loss SE Loss SE Loss SE Loss SE Loss SE

(3p, 3p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.2512 (0.0005) 0.2334 (0.0001) 0.2291 (0.0000) 0.2281 (0.0000) 0.2276 (0.0000)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.2917 (0.0005) 0.2725 (0.0001) 0.2677 (0.0001) 0.2665 (0.0000) 0.2659 (0.0000)

(Σ̂or
p,1, Σ̂

or
p,2) 0.2317 (0.0004) 0.2191 (0.0001) 0.2158 (0.0000) 0.2150 (0.0000) 0.2147 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.2344 (0.0005) 0.2195 (0.0001) 0.2159 (0.0000) 0.2152 (0.0000) 0.2148 (0.0000)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.2345 (0.0005) 0.2194 (0.0001) 0.2158 (0.0000) 0.2151 (0.0000) 0.2147 (0.0000)

(3p, p)

(Σ̂S T
p,1, Σ̂

S T
p,2) 0.5595 (0.0038) 0.4598 (0.0011) 0.4266 (0.0006) 0.4173 (0.0005) 0.4107 (0.0004)

(Σ̂AU
p,1 , Σ̂

AU
p,2 ) 0.7031 (0.0035) 0.6451 (0.0009) 0.6304 (0.0004) 0.6272 (0.0003) 0.6253 (0.0002)

(Σ̂or
p,1, Σ̂

or
p,2) 0.3566 (0.0008) 0.3366 (0.0002) 0.3321 (0.0001) 0.3309 (0.0001) 0.3303 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.4368 (0.0062) 0.3685 (0.0028) 0.3507 (0.0016) 0.3438 (0.0013) 0.3417 (0.0011)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.4192 (0.0042) 0.3588 (0.0017) 0.3439 (0.0010) 0.3384 (0.0008) 0.3364 (0.0006)

(3p, p/2)
(Σ̂or

p,1, Σ̂
or
p,2) 0.4208 (0.0010) 0.3965 (0.0003) 0.3917 (0.0001) 0.3901 (0.0001) 0.3895 (0.0000)

(Σ̂EK
p,1 , Σ̂

EK
p,2 ) 0.7222 (0.0183) 0.5942 (0.0119) 0.5382 (0.0083) 0.5077 (0.0069) 0.4762 (0.0054)

(Σ̂LW
p,1 , Σ̂

LW
p,2 ) 0.6646 (0.0160) 0.5060 (0.0091) 0.4545 (0.0055) 0.4386 (0.0043) 0.4301 (0.0037)
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Suppose m0 = m1 + im2 ∈ C− is another solution different from m0 to (A.5). Substituting m0 and m0 in (A.5) and
taking difference, we obtain

hc2(m0 −m0)
(zc1 − c2m0)(zc1 − c2m0)

=
(m0 −m0)

m0m0
− c1

∫
(m0 −m0)dD(t)
(t + m0)(t + m0)

. (A.7)

Dividing both sides of (A.7) by m0 −m0, we get

hc2

(zc1 − c2m0)(zc1 − c2m0)
=

1
m0m0

− c1

∫
dD(t)

(t + m0)(t + m0)
. (A.8)

Applying the Cauchy–Schwarz inequality to the right-hand side of (A.8) and using (A.6), we find
∣∣∣∣∣

1
m0m0

− c1

∫
dD(t)

(t + m0)(t + m0)

∣∣∣∣∣ ≥
∣∣∣∣∣

1
m0m0

∣∣∣∣∣ −
∣∣∣∣∣c1

∫
dD(t)

(t + m0)(t + m0)

∣∣∣∣∣

≥ 1
|m0||m0| −

{
c1

∫
dD(t)
|t + m0|2

}1/2 {
c1

∫
dD(t)
|t + m0|2

}1/2

≥
{

1
|m0|2 − c1

∫
dD(t)
|t + m0|2

}1/2 {
1
|m0|2 − c1

∫
dD(t)
|t + m0|2

}1/2

>

∣∣∣∣∣
hc2

(zc1 − c2m0)(zc1 − c2m0)

∣∣∣∣∣ ,

which contradicts (A.8).
To verify the second last inequality, we claim for any x1 ≥ y1 ≥ 0, x2 ≥ y2 ≥ 0 ,

x1x2 − y1y2 ≥ (x2
1 − y2

1)1/2(x2
2 − y2

2)1/2.

If the claim is true, we take x1 = 1/|m0|, x2 = 1/|m0|, y1 = {c1
∫
|t + m0|−2dD(t)}1/2, y2 = {c1

∫
|t + m0|−2dD(t)}1/2, and

the proof is done. To show the claim, we use the symbol ⇐⇒ for equivalence and see that

x1x2 − y1y2 ≥ (x2
1 − y2

1)1/2(x2
2 − y2

2)1/2 ⇐⇒ (x1x2 − y1y2)2 ≥ (x2
1 − y2

1)(x2
2 − y2

2)

⇐⇒ (x2
1x2

2 + y2
1y2

2 − 2x1x2y1y2) ≥ (x2
1x2

2 + y2
1y2

2 − x2
1y2

2 − x2
2y2

1)

⇐⇒ − 2x1y2x2y1 ≥ −x2
1y2

2 − x2
2y2

1

⇐⇒ 0 ≥ −(x1y2 − x2y1)2,

which is obviously true.

Appendix B. Proofs of mathematical results in Section 3

Lemma 1. Let x = (x1, . . . xp) be a p-variate real vector with nonnegative components. Then

p−1
p∑

i=1

xi ≤
√√

p−1
p∑

i=1

x2
i .

Proof. Let 1 = (1, . . . , 1) be the p-variate vector with all components 1. Then it follows from the Cauchy–Schwarz

inequality that |1 · x| ≤
√

p
∑p

i=1 x2
i . Dividing both sides by p, we get the result.

Appendix B.1. Proofs of Theorem 2 and Corollary 1

We refer the readers to the proofs of Theorem 3.1 and Corollary 3.1 in Part I of [37] for the details.
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Appendix B.2. Proof of Corollary 2

It is shown in Corollary 3.2 in Part I of [37] that p−1 ∑p
i=1(d̂EK

p,i − dp,i)2 a.s.→ 0. We note that it is assumed that
c2 ∈ (0, 1) in [37] whereas the arguments actually also apply to the case c2 ∈ (1,∞). Therefore, the desired result
follows from Lemma 1 and p−1 ∑p

i=1(d̂EK
p,i − dp,i)2 a.s.→ 0.

Appendix B.3. Proof of Theorem 3
The proof is the same as the one of Theorem 3 in Part I of [37].

Appendix B.4. Proof of Theorem 4

It is shown in Theorem 3.3 in Part I in [37] that p−1 ∑p
i=1(d̂p,i−dp,i)2 a.s.→ 0. We note that it is assumed that c2 ∈ (0, 1)

in [37] whereas the arguments actually also apply to the case c2 ∈ (1,∞). Therefore, the desired result follows from
Lemma 1 and p−1 ∑p

i=1(d̂p,i − dp,i)2 a.s.→ 0.

Appendix B.5. Proof of Corollary 3

It is shown in Theorem 3.4 in Part I [37] that p−1 ∑p
i=1(d̂LW

p,i − dp,i)2 a.s.→ 0. We note that it is assumed that c2 ∈ (0, 1)
in [37] whereas the arguments also apply to the case c2 ∈ (1,∞). Therefore, the desired result follows from Lemma 1
and p−1 ∑p

i=1(d̂LW
p,i − dp,i)2 a.s.→ 0.

Appendix C. Proofs of mathematical results in Section 4

With the notation of Assumptions 1–4, let qk = n−1/2
2 Σ

1/2
p,2 Y·k for each k ∈ {1, . . . , n2}, where Y·k is the kth column

of Yp, S (k)
p,2 = S p,2 − qkq>k , Wp = S p,1 + S p,2 and W (k)

p = Wp − qkq>k . We note that since p/n1 → c1 ∈ (0, 1), S p,1 is

invertible for all large p, n1. Therefore Wp and W (k)
p are invertible for all large p, n1, n2.

Denote (W (k)
p )−1/2 as the square root of (W (k)

p )−1 , S̃ (k)
p,2 = (W (k)

p )−1/2S (k)
p,2(W (k)

p )−1/2 and Σ̃
(k)
p,2 = (W (k)

p )−1/2Σp,2(W (k)
p )−1/2.

It follows from Assumptions 3 that the spectral norms of S̃ (k)
p,2 and Σ̃

(k)
p,2 satisfy that ||S̃ (k)

p,2|| and ||Σ̃(k)
p,2|| are uniformly

bounded for all large p and k ∈ {1, . . . , n2}. Then we have the following results.

Lemma 2. Let Θp(z) = p−1tr{(S p,2 − zWp)−1Σp,2}, z ∈ C+. Then under Assumptions 1–3, Θp(z) converges almost
surely to a nonrandom limit, viz.

Θ(z) =
1 + zmF(z)

1 − c2(1 − z) − c2z(1 − z)mF(z)
,

where mF is defined in Table 1.

Proof. Observe that S p,2W−1
p − zI + zI = S p,2W−1

p =
∑n2

k=1 qkq>k W−1
p . Multiplying p−1(S p,2W−1

p − zI)−1 on both sides
of S p,2W−1

p − zI + zI =
∑n2

k=1 qkq>k W−1
p and taking trace, we get

1 + z
1
p

tr
(
S p,2W−1

p − zI
)−1

=
1
p

n2∑

k=1

q>k W−1
p

(
S p,2W−1

p − zI
)−1

qk =
1
p

n2∑

k=1

q>k
(
S p,2 − zWp

)−1
qk.

It follows from Eq. (2.2) of [3] that

1
p

n2∑

k=1

q>k
(
S p,2 − zWp

)−1
qk =

1
p

n2∑

k=1

(1 − z)−1q>k (S (k)
p,2 − zW (k)

p )qk

(1 − z)−1 + q>k (S (k)
p,2 − zW (k)

p )qk

=
n2(1 − z)−1

p
− 1

p

n2∑

k=1

(1 − z)−2

(1 − z)−1 + q>k (S (k)
p,2 − zW (k)

p )qk
.

=
n2(1 − z)−1

p
− n2 p−1(1 − z)−2

(1 − z)−1 + n−1
2 tr{(S p,2 − zWp)−1Σp,2}

+ δp, (C.1)
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where

δp =
1
p

n2∑

k=1

(1 − z)−2
[
q>k (S (k)

p,2 − zW (k)
p )qk − n−1

2 tr{(S p,2 − zWp)−1Σp,2}
]

{
(1 − z)−1 + q>k (S (k)

p,2 − zW (k)
p )qk

}[
(1 − z)−1 + n−1

2 tr{(S p,2 − zWp)−1Σp,2}
] .

It follows from Lemma B.26 of [5] that there exists a constant αp depending only on p such that

E
∣∣∣∣q>k (S (k)

p,2 − zW (k)
p )qk − n−1

2 tr{(S (k)
p,2 − zW (k)

p )−1Σp,2}
∣∣∣∣
6 ≤ αp p3n−6

2 ||Σ̃(k)
p,2||6||(S̃ (k)

p,2 − zI)−1||6

≤ αp p3(Im z)−6n−6
2 ||Σ̃(k)

p,2||6

for all k ∈ {1, . . . , n2}. From the uniform boundedness of ||Σ̃(k)
p,2|| and Borel–Cantelli Lemma, it follows that

max
k∈{1,...,n2}

∣∣∣∣q>k (S (k)
p,2 − zW (k)

p )qk − n−1
2 tr{(S (k)

p,2 − zW (k)
p )−1Σp,2}

∣∣∣∣
a.s.→ 0. (C.2)

We observe that (S (k)
p,2 − zW (k)

p )−1 − (S p,2 − zWp)−1 = (1− z)(S p,2 − zWp)−1qkq>k (S (k)
p,2 − zW (k)

p )−1. Using Eq. (2.2) of
[3], we have

n−1
2

∣∣∣∣∣tr
[{

(S (k)
p,2 − zW (k)

p )−1 − (S p,2 − zWp)−1
}
Σp,2

] ∣∣∣∣∣ = n−1
2 |1 − z|−1

∣∣∣∣∣tr
{
(S p,2 − zWp)−1qkq>k (S (k)

p,2 − zW (k)
p )−1Σp,2

} ∣∣∣∣∣

= n−1
2 |1 − z|−1

∣∣∣∣∣
q>k (S (k)

p,2 − zW (k)
p )−1Σp,2(S (k)

p,2 − zW (k)
p )−1qk

(1 − z)−1 + q>k (S (k)
p,2 − zW (k)

p )−1qk

∣∣∣∣∣

= n−1
2 |1 − z|−1

∣∣∣∣∣
q>k (W (k)

p )−1/2(S̃ (k)
p,2 − zI)−1Σ̃

(k)
p,2(S̃ (k)

p,2 − zI)−1(W (k)
p )−1/2qk

(1 − z)−1 + q>k (W (k)
p )−1/2(S̃ (k)

p,2 − zI)−1(W (k)
p )−1/2qk

∣∣∣∣∣

≤ n−1
2

|1 − z|−1 ||Σ̃(k)
p,2|| ||(S̃ (k)

p,2 − zI)−1(W (k)
p )−1/2qk ||22

Im
{
(1 − z)−1 + q>k (W (k)

p )−1/2(S̃ (k)
p,2 − zI)−1(W (k)

p )−1/2qk

} ,

where || · ||2 is the Euclidean norm of vectors.
Writing S̃ (k)

p,2 =
∑p

i=1 θieie>i , where the eis are the orthonormal eigenvectors of S̃ (k)
p,2 and the θis are the eigenvalues,

we have

||(S̃ (k)
p,2 − zI)−1(W (k)

p )−1/2qk ||22 =

p∑

i=1

|e>i (W (k)
p )−1/2qk |2
|θi − z|2 ,

and

Im
{
(1 − z)−1 + q>k (W (k)

p )−1/2(S̃ (k)
p,2 − zI)−1(W (k)

p )−1/2qk

}
=

Im z
|1 − z|2 + Im z

p∑

i=1

|e>i (W (k)
p )−1/2qk |2
|θi − z|2

≥ Im z
p∑

i=1

|e>i (W (k)
p )−1/2qk |2
|θi − z|2 .

Then it follows that

n−1
2

∣∣∣∣∣tr
[{

(S (k)
p,2 − zW (k)

p )−1 − (S p,2 − zWp)−1
}
Σp,2

] ∣∣∣∣∣ ≤ n−1
2 (Im z)−1|1 − z|−1||Σ̃(k)

p,2||. (C.3)

From (C.2), (C.3) and the uniform boundedness of ||Σ̃(k)
p,2||, we get that, for z ∈ C+, and as p→ ∞,

max
k∈{1,...,n2}

∣∣∣∣q>k (S (k)
p,2 − zW (k)

p )qk − n−1
2 tr{(S p,2 − zWp)−1Σp,2}

∣∣∣∣
a.s.→ 0.

Hence, taking limits on both sides of (C.1) we get

1 + zmF(z) = c−1
2 (1 − z)−1 − c−1

2 (1 − z)−2

(1 − z)−1 + c2Θ(z)
. (C.4)

The desired result follows from algebraic transformation of (C.4).
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Lemma 3. Let Gp be the matrix in (12). Write Gp = (g1, . . . , gp) with the column vectors g1, . . . , gp. Define the
function ∆p(x) = p−1 ∑p

i=1{g>i Σ−1
p,2gi1( fp,i ≤ x)}. Let Ωp(z) for z ∈ C+ be the Stieltjes transform of ∆p. Then under

Assumptions 1–3, Ωp(z) converges almost surely to

Ω(z) = z−1
[
mF(z) {1 − c2 + 2c2z − c2z(1 − z)mF(z)} − 1 + c2 −

∫
t−1dD(t)

]
,

where mF and D are defined in Table 1.

Proof. We observe that

Ωp(z) =
1
p

p∑

i=1

g>i Σ−1
p,2gi( fp,i − z)−1 =

1
p

tr
{
Σ−1

p,2Gp(Fp − zI)−1G>p
}

=
1
p

tr
{
Σ−1

p,2WpG>−1
p (Fp − zI)−1G−1

p Wp

}
=

1
p

tr
[
Σ−1

p,2Wp

{
S p,2 − z(S p,1 + S p,2)

}−1
Wp

]

=
1
p

tr
{
WpΣ−1

p,2

(
S p,2W−1

p − zI
)−1}

.

Multiplying p−1WpΣ−1
p,2(S p,2W−1

p − zI)−1 on both sides of S p,2W−1
p − zI + zI =

∑n2
k=1 qkq>k W−1

p , taking trace and
using Eq. (2.2) of [3] , we get

1
p

tr
(
WpΣ−1

p,2

)
+ z

1
p

tr
{
WpΣ−1

p,2

(
S p,2W−1

p − zI
)−1}

=
1
p

n2∑

k=1

q>k Σ−1
p,2

(
S p,2W−1

p − zI
)−1

qk =
1
p

n2∑

k=1

q>k Σ−1
p,2Wp

(
S p,2 − zWp

)−1
qk

=
1
p

n2∑

k=1

q>k Σ−1
p,2(W (k)

p + qkq>k )
{
S (k)

p,2 − zW (k)
p + (1 − z)qkq>k

}−1
qk

=
1
p

n2∑

k=1

q>k Σ−1
p,2(W (k)

p + qkq>k )


(S (k)

p,2 − zW (k)
p )−1qk

1 + (1 − z)q>k (S (k)
p,2 − zW (k)

p )−1qk



and hence

1
p

tr
(
WpΣ−1

p,2

)
+ z

1
p

tr
{
WpΣ−1

p,2

(
S p,2W−1

p − zI
)−1}

=
1
p

n2∑

k=1

q>k Σ−1
p,2W (k)

p (S (k)
p,2 − zW (k)

p )−1qk + q>k Σ−1
p,2qkq>k (S (k)

p,2 − zW (k)
p )−1qk

1 + (1 − z)q>k (S (k)
p,2 − zW (k)

p )−1qk
. (C.5)

Let Θ(z) be the Stieltjes transform defined in Lemma 2. Analogous to the arguments in the proof of Lemma 2,
taking limits on both sides of (C.5), we get

∫
tdT inv(t) + 1 + zΩ(z) =

mF(z) + c2Θ(z)
1 + (1 − z)c2Θ(z)

,

where T inv is defined in Table 1.
We note that since p−1trS p,1Σ−1

p,2 converges to
∫

tdT inv(t) whereas Ep−1trS p,1Σ−1
p,2 converges to

∫
t−1dD(t), which

implies
∫

t−1dD(t) =
∫

tdT inv(t). Therefore, plugging in the expression of Θ(z) from Lemma 2, we get the final
result.

Lemma 4. Under Assumptions 1–3 and with the notation in Section 2 and Lemma 3, ∆p converges almost surely
vaguely (see p. 85 of [8] for the definition of vague convergence) to a finite measure denoted as ∆. Furthermore,
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defining F(x) = c2F(x) − (c2 − 1)1(0 ≤ x) as the companion distribution of F, we have that the distribution function
∆(x) satisfies ∆(x) =

∫ x
−∞ δ(y)dF(y) for all x ∈ R, where

δ(y) =



{
1 − m̌F(0) +

c2
∫

t−1dD(t)
c2−1

}
1(y = 0, c2 > 1) if y ≤ 0,

1 − c2 + 2c2y {1 − (1 − y)Rem̌F(y)}
y

if y > 0.

Proof. The first assertion follows from Lemma 3 and Theorem B.9 of [5]. Using Theorem B.10 of [5], the density of
the continuous part of ∆ can be calculated as follows:

d∆(x) =
1
π

Im lim
z∈C+→x

Ω(z)dx

=
1
π

Im lim
z∈C+→x

z−1
[
mF(z) {1 − c2 + 2c2z − c2z(1 − z)mF(z)} − 1 + c2 −

∫
t−1dD(t)

]
dx

=
1 − c2 + 2c2x {1 − (1 − x)Rem̌F(x)}

x
× 1
π

Im m̌F(x)dx

=
1 − c2 + 2c2x {1 − (1 − x)Rem̌F(x)}

x
dF(x).

We note that the Stieltjes transform of F satisfies mF(z) = c−1
2 (1 − c2)z−1 + c−1

2 mF(z). Therefore, Ω(z) can be
rewritten as

Ω(z) = z−1
[{

c−1
2 (1 − c2) + c−1

2 zmF(z)
} {

1 + c2 − (1 − z)mF(z)
}
− 1 + c2 −

∫
t−1dD(t)

]
.

When c2 > 1, F has 1 − c−1
2 point mass at 0 and meanwhile F is a continuous probability distribution. Applying

the Inversion formula of Stieltjes transform (see Theorem B.8 of [5]) and Lemma 9 of [18], we get that

∆{0} = (1 − c−1
2 ){1 − m̌F(0)} +

∫
t−1dD(t).

From the fact that F has 1 − c−1
2 point mass at 0, it follows that for x in a neighborhood of 0,

∆(x) =

∫ x

−∞

1 − m̌F(0) +
c2

∫
t−1dD(t)

c2 − 1

 dF(y).

Thus the proof is complete.

Proposition 2. Under Assumptions 1–4 and with the notation of Lemma 4, for any equivariant estimator (Σ̂p,1, Σ̂p,2)
proposed in Theorem 5, we have as p→ ∞,

1
p

tr
(
Σ−1

p,2Σ̂p,2

)
− 1

p
ln det

(
Σ−1

p,2Σ̂p,2

)
− 1

a.s.→
∫

Supp(F)\{0}

[
1 − c2 + 2c2x {1 − (1 − x)Re m̌F(x)}

x
φ(x) − ln

{
φ(x)
1 − x

}]
dF(x)

−
∫

ln(x)dT inv(x) − 1 + A,

where A = 0 if c2 ∈ (0, 1),

A =
c2 − 1

c2



1 − m̌F(0) +
c2

∫
t−1dD(t)

c2 − 1

 φ(0) − ln{φ(0)}


if c2 ∈ (1,∞), and T inv is the distribution defined in Table 1.
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Proof. Recall that K denotes the compact subinterval of (0, 1) containing Supp(Fp)\{0} and Supp(F)\{0} for all large
p. With the notation of Lemmas 3–4, we have

1
p

tr
(
Σ−1

p,2Σ̂p,2

)
=

1
p

trG>p Σ−1
p,2GpΦp =

1
p

p∑

i=1

g>i Σ−1
p,2giφp( fp,i) =

∫

K∪{0}
φp(x)d∆p(x).

Since by Assumption 4, φ = limp→∞ φp is continuous on the compact set Supp(F), using the result from Lemma 4
that ∆p converges vaguely to ∆ almost surely, we have as p→ ∞,

∫

Supp(F)
φ(x)d∆p(x)

a.s.→
∫

Supp(F)
φ(x)d∆(x). (C.6)

We observe that
∆p{R} =

1
p

tr(S p,1Σ−1
2 ) ≤ λmax(S p,1Σ−1

2 ),

where λmax(S p,1Σ−1
2 ) stands for the largest eigenvalue of S p,1Σ−1

2 . Assumption 3 and Theorem 1.1 of [4] imply that
with probability 1, ∆p{R} is uniformly bounded for all large p, namely, there exists N1 ∈ Z+ and κ1 > 0 such that, for
all p ≥ N1, ∆p{R} ≤ κ1.

For ε > 0, from the uniform convergence of φp to φ on Supp(F) as assumed in Assumption 4, it follows that there
exists N2 ∈ Z+ such that

∀p≥N2 ∀x∈Supp(F) |φp(x) − φ(x)| ≤ ε

2κ1
.

Then, as p ≥ max(N1,N2)
∣∣∣∣∣∣

∫

Supp(F)
φp(x)d∆p(x) −

∫

Supp(F)
φ(x)d∆p(x)

∣∣∣∣∣∣ ≤
∫

Supp(F)

∣∣∣φp(x) − φ(x)
∣∣∣ d∆p(x) ≤ ε

2
. (C.7)

The boundedness condition of φp assumed in Assumption 4 implies that almost surely there exists N3 ∈ Z+ such
that as p ≥ N3, |φp(x)| ≤ κ for all x ∈ K.

Applying Portmanteau Theorem (see Theorem 2.1 of [6]), we conclude that there exists N4 ∈ Z+ such that

∀p≥N4 ∆p{K ∪ {0}\Supp(F)} ≤ ε

2κ
.

Hence as p ≥ max(N3,N4), we get
∣∣∣∣∣∣

∫

K∪{0}
φp(x)d∆p(x) −

∫

Supp(F)
φp(x)d∆p(x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣

∫

K∪{0}\Supp(F)
φp(x)d∆p(x)

∣∣∣∣∣∣ ≤
ε

2
. (C.8)

Then, it follows from (C.6), (C.7) and (C.8) that as p→ ∞,
∫

φp(x)d∆p(x) =

∫

K∪{0}
φp(x)d∆p(x)

a.s.→
∫

Supp(F)
φ(x)d∆(x). (C.9)

For the second term of the loss function, as p→ ∞ we have

1
p

ln det
(
Σ−1

p,2Σ̂p,2

)
=

1
p

ln det
(
Σ−1

p,2GpΦpG>p
)

=
1
p

ln det
{
Σ−1

p,2Gp(I − Fp)G>p Φp(I − Fp)−1
}

=
1
p

p∑

i=1

ln
{
φp( fp,i)
1 − fp

}
+

1
p

ln det
(
Σ−1

p,2S p,1

)
=

∫
ln

{
φp(x)
1 − x

}
dFp(x) +

∫
ln(x)dT inv

p (x),

where T inv
p is define in Table 1.

Arguments analogous to (C.6)–(C.9) yield that as p→ ∞,
∫

ln
{
φp(x)
1 − x

}
dFp(x) +

∫
ln(x)dT inv

p (x)
a.s.→

∫

Supp(F)
ln

{
φ(x)
1 − x

}
dF(x) +

∫
ln(x)dT inv(x).

Putting all the limits together, using Lemma 4, we get the desired result.
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Proposition 3. Under Assumptions 1–4, for any equivariant estimator (Σ̂p,1, Σ̂p,2) proposed in Theorem 5, we have as
p→ ∞,

1
p

tr
(
Σ−1

p,1Σ̂p,1

)
− 1

p
ln det

(
Σ−1

p,1Σ̂p,1

)
− 1

a.s.→
∫

Supp(F)\{0}

[
1 − c1 + 2c1(1 − x) {1 + xRe m̌F(x)}

1 − x
ψ(x) − ln

{
ψ(x)
1 − x

}]
dF(x)

−
∫

ln(x)dMc1 (x) − 1 + A,

where A = 0 if c2 ∈ (0, 1),

A =
c2 − 1

c2

[(
1 +

c1

c2

)
ψ(0) + ln{ψ(0)}

]

if c2 ∈ (1,∞), and Mc1 (x) is the Marčenko–Pastur distribution with parameter c1 (see 3.1.1 of [5]).

Proof. With the notation of Proposition 2, we define the measure ∆̄p(x) = p−1 ∑p
i=1 g>i Σ−1

p,1gp1(1 − fp,i ≤ x) and the
probability distribution functions F̄(x) = 1− limy→x+ F(1− x), F̄(x) = 1− limy→x+ F(1− x). From the same arguments
of the proof of Lemmas 2–4 with the roles of S p,1 and S p,2 interchanged, it follows that as p → ∞, ∆̄p(x) converges
vaguely to a nonrandom measure ∆̄(x) whose Stieltjes transform denoted as Ω̄(z) is given by

Ω̄(z) = z−1
[
mF̄(z) {1 − c1 + 2c1z − c1z(1 − z)mF̄(z)} − 1 + c1 −

∫
tdD(t)

]
.

Analogous to Proposition 2, one can show that ∆̄{1} = (c2 − 1)c−1
2 (1 + c1c−1

2 ) > 0. We note that for a, b ∈ [0, 1],
F̄{[a, b]} = F{[1 − b, 1 − a]} and thus

mF̄(z) =

∫
1

x − z
dF̄(x) =

∫
1

1 − x − z
dF(x) = −mF(1 − z).

Applying the same arguments of the proof of Proposition 2, it follows that

1
p

tr
(
Σ−1

p,1Σ̂p,1

)
− 1

p
ln det

(
Σ−1

p,1Σ̂p,1

)
− 1

a.s.→
∫

Supp(F̄)\{1}

[
1 − c1 + 2c1x {1 − (1 − x)Re m̌F̄(x)}

x
ψ(1 − x) − ln

{
ψ(1 − x)

x

}]
dF̄(x)

+ 1(c2 > 1)
c2 − 1

c2

[(
1 +

c1

c2

)
ψ(0) − ln{ψ(0)}

]
−

∫
ln(x)dMc1 (x) − 1.

Changing measures from F̄ to F, the final result follows.

Appendix C.1. Proof of Theorem 5
Suppose (Σ̂p,1(S p,1, S p,2), Σ̂p,2(S p,1, S p,2)) is an equivariant estimator of (Σp,1,Σp,2). Then, for each i ∈ {1, 2},

Σ̂p,i(S p,1, S p,2) = AΣ̂p,i(A−1S p,1A>−1, A−1S p,2A>−1)A>

for all invertible p × p matrix A. Plugging in the matrix Gp, we get

Σ̂p,i(S p,1, S p,2) = GpΣ̂p,i(G−1
p S p,1G>−1

p ,G−1
p S p,2G>−1

p )G>p = GpΣ̂p,i(I − Fp, Fp)G>

for each i ∈ {1, 2}. Let H be a p × p diagonal matrix such that its diagonal entries are either 1 or −1. By equivariance,

Σ̂p,i(I − Fp, Fp) = HΣ̂p,i(I − Fp, Fp)H> (C.10)

for each i ∈ {1, 2}.
Since (C.10) holds for all such matrix H, this implies Σ̂p,i(I − Fp, Fp) is diagonal for each i ∈ {1, 2}. Writing

Ψp(Fp) = Σ̂p,1(I − Fp, Fp), Φp(Fp) = Σ̂p,2(I − Fp, Fp),

proves the necessity part of the equivariance. For the sufficiency part, the proof is straightforward and is omitted.
Furthermore, since the diagonal matrices Ψp(Fp) and Φp(Fp) only depend on Fp, we can just express them using
some generic functions ψp and φp depending on Fp such that Ψp(Fp) = diag{ψp( fp,1), . . . , ψp( fp,p)} and Φp(Fp) =

diag{φp( fp,1), . . . , φp( fp,p)}. �
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Appendix C.2. Proof of Theorem 6
Summing up the limiting loss obtained from Propositions 2 and 3, the result follows.

Appendix C.3. Proof of Proposition 1
Letting z converge to y ∈ (0,∞), we get from (3) that

∀y∈(0,∞) y = − 1
m̌L(y)

+ c2

∫
dT inv(t)

t + m̌L(y)
. (C.11)

Denoting m̌L(y) = m1(y) + im2(y) and taking imaginary parts on both sides of (C.11), we get, for all y ∈ (0,∞),

0 =
m2(y)
|m̌L(y)|2 − c2

∫ m2(y)dT inv(t)
|t + m̌L(y)|2 . (C.12)

Then it follows from (C.12) that, for all y ∈ {w : m2(w) > 0},

1 = c2

∫ |m̌L(y)|2dT inv(t)
|t + m̌L(y)|2 . (C.13)

Since m̌L(y) is continuous on (0,∞) and {w : m2(w) > 0} is dense in Supp(L)\{0} (see [33]), it follows that (C.13)
holds for all y ∈ Supp(L)\{0}. Applying the equation m̌L(y) = −(1 − c2)/y + c2m̌L(y), we have from (C.11) that

1 − c2 − 2c2ym̌L(y) = 1 − c2 + 2c2

∫
tdT inv(t)
t + m̌L(y)

(C.14)

for all y ∈ (0,∞). Sending p→ ∞ and z→ x ∈ (0,∞) , we get from (6)

m̌F(x) = (1 − x)−1 + (1 − x)−2m̌L

( x
1 − x

)
. (C.15)

Denoting x/(1 − x) = y, it follows from (C.13), (C.14) and (C.15) that, for all y ∈ {w : m2(w) > 0},

1 − c2 + 2c2x {1 − (1 − x)Re m̌F(x)} = 1 − c2 − 2c2yRe m̌L(y) = c2

∫
t2dT inv(t)
|t + m̌L(y)|2 > 0. (C.16)

Suppose y ∈ (0,∞)\Supp(L). It it shown in [33] that Re m̌L(y) = m̌L(y), −m̌L(y) < Supp(T inv) and ∂y/∂m̌L(y) > 0.
Calculating the derivative using (C.11), we get

∫ [
m̌L(y)/{t + m̌L(y)}

]2
dT inv(t) < c−1

2 ,

for y ∈ (0,∞)\Supp(L). By Jensen’s inequality,

{∫ m̌L(y)
t + m̌L(y)

dT inv(t)
}2

≤
∫ {

m̌L(y)
t + m̌L(y)

}2

dT inv(t) < c−1
2 ,

which implies that, for all y ∈ (0,∞)\Supp(L),

−
√

c−1
2 ≤

∫ m̌L(y)
t + m̌L(y)

dT inv(t) ≤
√

c−1
2 .

It then follows from (C.14) that, for all y ∈ (0,∞)\Supp(L),

1 − c2 − 2c2ym̌L(y) = 1 + c2 − 2c2

∫ m̌L(y)dT inv(t)
t + m̌L(y)

≥ 1 + c2 − 2
√

c2 = (1 − √c2)2 > 0 (C.17)
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This shows that φor(x) > 0 when x ∈ (0, 1) and c2 ∈ (0, 1) ∪ (1,∞). The boundedness of φor(x) on K follows from
the continuity of φor(x).

When c2 > 1, one can check that 1 − m̌F(0) = −m̌L(0) and m̌L(0) > 0. Also we note that
∫

t−1dD(t) =
∫

tT inv(t).
It follows from (C.11) that

1 − c−1
2 =

∫
tdT inv(t)
t + m̌L(0)

.

Then we see that

φor(0) = −m̌L(0) +

{∫
tdT inv(t)

} /∫ tdT inv(t)
t + m̌L(0)

.

Therefore, φor(0) > 0 follows from ∫
tdT inv(t)
t + m̌L(0)

<

∫
tdT inv(t)

m̌L(0)
.

Next we show the result for ψor. First we observe that the denominator of ψor(x) equals 1 + c1 + 2c1x(1 −
x)−1Re m̌L{x/(1 − x)}. Denote y = x/(1 − x).

If c2 < 1, by changing the distribution from L to Linv, the denominator of ψor can be rewritten as 1 − c1 −
2c1y−1Re m̌Linv (y−1), where Linv is the LSD of S p,1S −1

p,2 and it satisfies that Linv{[a, b]} = L{[1/b, 1/a]} for all b ≥ a > 0.
By symmetry, the positiveness and boundedness of ψor can be shown using arguments similar to those for φor.

When c2 > 1, more caution is needed as L has point mass at 0 and thus Linv is not well defined. In this case, we pro-
ceed by perturbing S p,2 by a small amount. Define for a small number ε > 0, Lp,ε and Rp,ε as the spectral distributions
of (S p,2 + εΣp,1)S −1

p,1 and Σ
−1/2
p,1 (S p,2 + εΣp,1)Σ−1/2

p,1 with Stieltjes transforms mLp,ε (z) and mRp,ε (z), respectively.
We observe that under Assumptions 1–3, the weak limit of Rp,ε exists as p→ ∞. Denote the weak limit of Rp,ε as

Rε with Stieltjes transform mRε (z). With the notation in Table 1, it satisfies with probability 1 that, for all z ∈ C+,

mRε (z) = lim
p→∞

1
p

tr
{
S p,2Σ−1

p,1 − (z − ε)I
}−1

= mR(z − ε).

From the result of [32], the SD of the matrix S p,1(S p,2 + εΣp,1)−1 also converges weakly to some nonrandom
distribution almost surely as p→ ∞. Since each eigenvalue of (S p,2 +εΣp,1)S −1

p,1 is the reciprocal of that of S p,1(S p,2 +

εΣp,1)−1, it follows that Lp,ε which is the SD of (S p,2 + εΣp,1)S −1
p,1 converges weakly almost surely.

Moreover, denoting Š p,2 = S −1/2
p,1 S p,2S −1/2

p,1 and Σ̌p,1 = S −1/2
p,1 Σp,1S −1/2

p,1 , we obtain from the inequality that tr(AB) ≤
p × ||A|| × ||B|| for any p × p matrices A, B and the inequality ||(A − zI)−1|| ≤ 1/Im z for any real symmetric matrix A
and z ∈ C+ that, for all p ∈ Z+ and z ∈ C+,

∣∣∣∣mLp,ε (z) − mLp (z)
∣∣∣∣ =

1
p

∣∣∣∣tr{(S p,2S −1
p,1 + εΣp,1S −1

p,1 − zI)−1 − (S p,2S −1
p,1 − zI)−1}

∣∣∣∣

=
ε

p

∣∣∣∣tr{(S p,2S −1
p,1 − zI)−1Σp,1S −1

p,1(S p,2S −1
p,1 + εΣp,1S −1

p,1 − zI)−1}
∣∣∣∣

=
ε

p

∣∣∣∣tr{(Š p,2 − zI)−1Σ̌p,1(Š p,2 + εΣ̌p,1 − zI)−1}
∣∣∣∣

≤ ε (Im z)−2||Σ̌p,1||. (C.18)

Let Lε denote the weak limit of Lp,ε as p→ ∞ whose Stieltjes transform is denoted as mLε (z). Eq. (C.18) implies
that, for all z ∈ C+,

lim
ε→0+

mLε (z) = mL(z).

We define Linv
ε to be the probability distribution satisfying Linv

ε {[a, b]} = Lε{[1/b, 1/a]} for any b ≥ a > 0. We note
that Linv

ε is also the LSD of S p,1(S p,2 + εΣp,1)−1 as p→ ∞.
Denote, for x > 0, y = x/(1 − x). Let {z1, z2, . . . } ⊂ C+ and {ε1, ε2, . . . } ⊂ (0,∞) be sequences converging in

appropriate rates to y−1 and 0 respectively such that

lim
k→∞

mLεk
(z−1

k ) = m̌L(y),

30



where we get the complex conjugate m̌L(y) instead of m̌L(y) because z−1
k converges from the lower half complex plane

to y.
Then it follows that

1 + c1 + 2c1yRe m̌L(y) = Re lim
k→∞
{1 + c1 + 2c1z−1

k mLεk
(z−1

k )} = Re lim
k→∞
{1 − c1 − 2c1zkmLinv

εk
(zk)}.

Define the companion Stieltjes transform mLinv
ε

(z) = −(1 − c1)/z + c1mLinv
ε

(z). Similar to (3), it holds that for all
k ∈ {1, 2, . . . },

zk = − 1
mLinv

εk
(zk)

+ c1

∫
dRεk (t)

t + mLinv
εk

(zk)
. (C.19)

Taking imaginary parts on both sides of (C.19), we get that

Im zk

Im mLinv
εk

(zk)
|mLinv

εk
(zk)|2 + c1

∫ |mLinv
εk

(zk)|2dRεk (t)

|t + mLinv
εk

(zk)|2 = 1. (C.20)

Using the equation mLinv
εk

(zk) = −(1 − c1)/zk + c1mLinv
εk

(zk), we get again from (C.19) that

1 − c1 − 2c1zkmLinv
εk

(zk) = 1 − c1 + 2c1

∫
tdRεk (t)

t + mLinv
εk

(zk)
. (C.21)

It then follows from (C.20) and (C.21) that

Re{1 − c1 − 2c1zkmLinv
εk

(zk)} =
Im zk

Im mLinv
εk

(zk)
|mLinv

εk
(zk)|2 + c1

∫
t2dRεk (t)

|t + mLinv
εk

(zk)|2 ≥ c1

∫
t2dRεk (t)

|t + mLinv
εk

(zk)|2 .

Therefore, the denominator of ψor(x) satisfies that

1 − c1 + 2c1(1 − x){1 + xRe m̌F(x)} = 1 + c1 + 2c1yRe m̌L(y) ≥ lim inf
k→∞

c1

∫
t2dRεk (t)

|t + mLinv
εk

(zk)|2 > 0,

where the last inequality follows from the fact that the mass of Rεk does not all escape to 0 as k → ∞ and mLinv
εk

(zk) =

−(1 − c1)/zk + c1mLinv
εk

(zk) = −z−1
k − c1z−2

k mLεk
(z−1

k ) is uniformly bounded for all k.
The proof is complete. �

Appendix C.4. Proof of Theorem 8
Recall K is the compact interval containing Supp(Fp)\{0} and Supp(F)\{0} for all large p. According to Assump-

tion 4 and Theorem 6, we only need to show that almost surely the two functions ψBF
p (x) and φBF

p (x) are uniformly
bounded for all large p on K and uniformly converge to ψor(x) and φor(x) (see (14) and (15)) on Supp(F) as p → ∞.
We show in the following a stronger result that the uniform convergence is true on any compact subinterval of (0, 1).
Thus the conditions for ψBF

p (x) and φBF
p (x) are naturally satisfied provided that ψBF

p (0) and φBF
p (0) also converge to

ψor(0) and φor(0) respectively when c2 > 1. Observe from (16) and (17) that on any compact subsets of (0, 1), to show
the uniform convergence of ψBF

p (x) and φBF
p (x) to ψor(x) and φor(x), it suffices to show the uniform convergence of

m̌FD̂p ,c1,p ,c2,p
(x) to m̌F(x).

Let T̂
inv
p be the probability distribution having Stieltjes transform mT̂ inv

p
(z) such that for z ∈ C+, mT̂ inv

p
(z) is the

unique value in C+ satisfying

z = −{mT̂ inv
p

(z)}−1 + c1,p

∫ ∞

0
{t + mT̂ inv

p
(z)}−1dD̂p(t).

Let T̂ inv
p be the probability distribution function such that T̂

inv
p (t) = (1 − c1,p)1(0 ≤ t) + c1,pT̂ inv

p (t) for t ∈ R and T̂p be
the probability distribution such that T̂p{[a, b]} = T̂ inv

p {[1/b, 1/a]} for any b ≥ a > 0.
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With the notation in Table 1, it follows from Lemma A.4 in [37] that T̂
inv
p almost surely converges weakly to T inv,

and thus T̂ inv
p and T̂p converge weakly respectively to T inv and T almost surely. By Lemma A.6 in [37], we get that

almost surely Supp(T̂p) are uniformly bounded away from 0 and∞ for all large p.
Let LD̂p,c1,p,c2,p

be the distribution defined in Remark 1 with D̂p, c1,p, c2,p in place of G, k1, k2. It follows from [32]
that mLD̂p ,c1,p ,c2,p

(z) is the unique value in C+ satisfying, for all z ∈ C+,

z = − 1
mLD̂p ,c1,p ,c2,p

(z)
+ c2,p

∫ ∞

0

tdT̂p(t)
1 + tmLD̂p ,c1,p ,c2,p

(z)
.

Let m̌LD̂p ,c1,p ,c2,p
(x) = limz∈C+→x mLD̂p ,c1,p ,c2,p

(z) which exists for all x ∈ R\{0}. Applying Theorem A.2 in [37], we
have, as p→ ∞,

m̌LD̂p ,c1,p ,c2,p
(x)→ m̌LD,c1,c2 (x)

uniformly on any compact subset of (0,∞) almost surely. Letting z ∈ C+ → x, it follows from (7) that

m̌FD̂p ,c1,p ,c2,p
(x) =

c2,px + 1 − c2,p

c2,px(1 − x)
+

m̌LD̂p ,c1,p ,c2,p
{x/(1 − x)}

c2,p(1 − x)2 .

Therefore, the uniform convergence of m̌FD̂p ,c1,p ,c2,p
(x) on compact subsets of (0, 1) follows from the uniform conver-

gence of m̌LD̂p ,c1,p ,c2,p
(x) on compact subsets of (0,∞).

When c2 > 1, the convergence of ψBF
p (x) and φBF

p (x) at x = 0 follows from the weak convergence of F D̂p,c1,p,c2,p
to

F and the almost sure convergence of p−1 ∑p
i=1 d̂−1

p,i to
∫

t−1dD(t). �

Appendix C.5. Proof of Corollary 4
We only have to show that as p→ ∞, the difference of the loss function vanishes asymptotically, i.e.,

L(Σ̂RM
p,1 , Σ̂

RM
p,2 ; Σp,1,Σp,2) − L(Σ̂BF

p,1, Σ̂
BF
p,2; Σp,1,Σp,2)

a.s.→ 0.

Observe that

L(Σ̂RM
p,1 , Σ̂

RM
p,2 ; Σp,1,Σp,2) − L(Σ̂BF

p,1, Σ̂
BF
p,2; Σp,1,Σp,2)

=
1
p

2∑

i=1

[{
tr(Σ−1

p,iΣ̂
RM
p,i ) − ln |Σ−1

p,iΣ̂
RM
p,i | − p

}
−

{
tr(Σ−1

p,iΣ̂
BF
p,i ) − ln |Σ−1

p,iΣ̂
BF
p,i | − p

}]

=
1
p

2∑

i=1

[
tr

{
Σ−1

p,i(Σ̂
RM
p,i − Σ̂BF

p,i )
}
− ln |Σ̂RM

p,i | + ln |Σ̂BF
p,i |

]
.

We show that p−1tr{Σ−1
p,i(Σ̂

RM
p,i − Σ̂BF

p,i )} a.s.→ 0 and p−1(ln |Σ̂RM
p,i | − ln |Σ̂BF

p,i |)
a.s.→ 0 for i = 2. When i = 1, the result

follows similarly.
With the notation of Lemma 3, we obtain from the diagonalization (12) that

W−1/2
p S p,2W−1/2

p = W−1/2
p GpFpG>p W1/2

p ,

which implies there exists an orthogonal matrix Ep such that W−1/2
p Gp = Ep. Writing Ep = (e1, . . . , ep) such that

e1, . . . , ep are the orthonormal columns of Ep, we get that the ith column of Gp, gi = W1/2
p ei. Thus under Assump-

tions 1–3, it follows that with probability 1, there exists a constant C1 > 0 such that for all large p

1
p

tr
{
Σ−1

p,2(Σ̂RM
p,2 − Σ̂BF

p,2)
}

=
1
p

tr
{
G>p Σ−1

p,2Gp(ΦRM
p − ΦBF

p )
}

=
1
p

p∑

i=1

g>i Σ−1
p,2gi(φRM

p,i − φBF
p,i )

≤ 1
p

p∑

i=1

∣∣∣e>i W1/2
p Σ−1

p,2W1/2
p ei

∣∣∣
∣∣∣φRM

p,i − φBF
p,i

∣∣∣ ≤ C1
1
p

p∑

i=1

∣∣∣φRM
p,i − φBF

p,i

∣∣∣ .
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We also note that φBF
p,i = p

∫ i/p
(i−1)/p φ

BF
p {F−1

p (x)}dx, for all i ∈ {1, . . . , p}. Therefore,

1
p

p∑

i=1

∣∣∣φRM
p,i − φBF

p,i

∣∣∣ =
1
p

p∑

i=1

∣∣∣∣∣∣p
∫ i/p

(i−1)/p

[
φBF

p {F−1
D̂p,c1,p,c2,p

(x)} − φBF
p {F−1

p (x)}
]

dx

∣∣∣∣∣∣

≤
∫ 1

0

∣∣∣∣φBF
p {F−1

D̂p,c1,p,c2,p
(x)} − φBF

p {F−1
p (x)}

∣∣∣∣ dx. (C.22)

By the proof of Theorem 3.2.2 in [12], F−1
D̂p,c1,p,c2,p

(x) − F−1
p (x) converges almost surely to 0 for all but a countable

number of x in [0, 1] as p→ ∞.
According to the almost sure uniform convergence of the function φBF

p (x) to φor(x) on any compact subset of (0, 1)
(see the proof of Theorem 8), the almost sure uniform boundedness of F−1

D̂p,c1,p,c2,p
(x) and F−1

p (x) for all x ∈ [0, 1] and
all large p (from Assumption 3, Lemma A.6 in [37] and Lemma 2.1 in Part I of [37]) and Lebesgue’s Dominated
Convergence Theorem, we get (C.22) converges almost surely to 0, which implies that, as p→ ∞,

1
p

tr
{
Σ−1

p,2(Σ̂RM
p,2 − Σ̂BF

p,2)
} a.s.→ 0.

For p−1(ln |Σ̂RM
p,2 | − ln |Σ̂BF

p,2|)
a.s.→ 0, using the inequality ln(x) ≤ x − 1 for x > 0, we get

1
p

(
ln |Σ̂RM

p,2 | − ln |Σ̂BF
p,2|

)
=

1
p

p∑

i=1

ln
(
φRM

p,i /φ
BF
p,i

)
≤ 1

p

p∑

i=1

∣∣∣∣
(
φRM

p,i − φBF
p,i

)
/φBF

p,i

∣∣∣∣ . (C.23)

Again using almost sure uniform convergence of the function φBF
p (x) to φor(x) on any compact subset of (0, 1) and

Proposition. 1, we can conclude that |φBF
p,i | are almost surely uniformly bounded away from 0 and ∞ for all large p

and all i ∈ {1, . . . , p}. Therefore, continuing with (C.23) and using the convergence result of (C.22), we have almost
surely as p→ ∞,

1
p

(
ln |Σ̂RM

p,2 | − ln |Σ̂BF
p,2|

)
≤ C2

1
p

p∑

i=1

∣∣∣φRM
p,i − φBF

p,i

∣∣∣ a.s.→ 0,

where C2 > 0 is a constant independent with p, n1, n2.
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