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Some Parametric Models on the Simplex 
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A class of new parametric models on the unit simplex in R” is introduced, 
the distributions in question being obtained as conditional distributions of m 
independent generalized inverse Gaussian random variables given their sum. The 
Dirichlet model occurs as a special case. Two other special cases, corresponding 
respectively to the inverse Gaussian model and the reciprocal inverse Gaussian 
model, are studied in some detail. In particular, several exact chi-squared decom- 
positions are found. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

The purpose of this note is to introduce a class of new parametric models 
on the unit simplex in R" and to list some of its properties. The models 
may be useful in studies of compositional data, as encountered, for 
instance, in geology and biology. For a comprehensive account of the 
statistical methodology for such data see Aitchison [3]. 

Referring to the “absence of satisfactory parametric classes of distribu- 
tions on [the simplex],” Aitchison [l] developed the logistic normal 
distribution on the simplex and its statistical analysis. Aitchison [Z] 
introduced a generalization of the logistic normal distribution on the 
simplex that includes the Dirichlet distribution as a special case. See also 
Aitchison [ 31. Other generalizations of the Dirichlet distribution have been 
proposed by Connor and Mosimann [S] and Gupta and Richards [6]. 
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The distributions which constitute the new models are derived as the 
conditional distributions of m independent random variables given their 
sum, the distributional laws of the independent random variables being 
generalized inverse Gaussian. The class of Dirichlet distributions is 
obtained as a special case, due to the fact that the gamma distributions 
constitute a subclass of the generalized inverse Gaussian distributions. All 
the models are exponential models. 

By definition, the models possess basis independence, in the sense of 
Aitchison [ 11. In Section 5 we investigate some of the other concepts of 
independence studies by Aitchison [l, 33. 

Two of the models are of particular interest. They correspond to the 
cases where the random variables, on whose sum we condition, are 
identically distributed according to an inverse Gaussian distribution or a 
reciprocal inverse Gaussian distribution, respectively. We refer to these 
models as S;-, and S,+-, or, briefly, as S and S+. Both models are 
proper dispersion models in the sense of Barndorff-Nielsen and 
Jorgensen [4]. 

The model S;- i has the properties that its marginal and conditional 
distributions are again of the same type. In the case of S,+-, only the 
conditional distributions are of the type S+. 

Various general statistical properties of S and S+ follow from the 
properties of dispersion models [9, lo] and proper dispersion models [4]. 
The particular properties of S and S+ derive from those of the inverse 
Gaussian model and the reciprocal inverse Gaussian model. 

In certain cases, the inference in the S;- 1 model leads to tests based on 
independent X*-variables, in analogy with the linear normal model and 
with certain models for the inverse Gaussian and hyperboloid distributions 
[12, 71. These and other results, derived below, show that the statistical 
properties of the new models have a structure that one would not expect 
to find in any other distributions on the simplex derived as the conditional 
distributions of m independent variables given their sum. 

The discussion of the inferential properties of the models introduced 
in this paper is fairly brief. We hope to take up a more detailed study, 
including analysis of various data sets and a comparison to the alternative 
logistic normal models proposed and studied by Aitchison [3], elsewhere. 
However, it is worth pointing out that the models introduced in the present 
paper do not yet provide a full alternative to the logistic normal distribu- 
tions as far as statistical analysis of compositional data is concerned, prin- 
cipally because the latter family of distributions has m(m - 1)/2 covariance 
parameters, whereas our distributions have only one “variance,” or rather 
“precision,” parameter, namely, the parameter denoted 1 below. 

683/39/l-8 
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2. DEFINITION AND DERIVATION FROM 

THE GENERALIZED INVERSE GAUSSIAN MODEL 

Let V”-’ denote the unit simplex in R”, i.e., 

v--l= ((y1, . ..) y,):y1+ ... +y,=1,y,>o )...) y,>O}. 

For any 6 > 0 we define a parametric model on 6V”- ’ = (6y : y E V”- ’ } 
by its probability density function, with respect to Lebesgue measure on 
SV” - l, 

p(y; a, p, y, 6) = A(cr, p, y, ~?)Z7y~~ 1e-rQ(yir~s)‘2, (1) 

where a = (al, . . . . a,) E R”, ,D=((cL~,...,~~)E~V”-~, and y>O are 
parameters; A(a, CL, y, 6) is a norming constant; and 

Q(Y; ~3 S)=z(Yi-P;J2/Yi 

=.zp;/yi-s. (2) 

It is of interest to rewrite (1) slightly as 

p(y; a, p, 1, 6) = a(~, p, 1, S)ITyq’- ’ e”“-“ifl, ‘), (3) 

where a is another norming constant and 

(4) 

We shall denote the distribution (3) by S, _ l(cl, p, II, 6) and when 6 = 1 
we write S,- ,(a, ~1, A) for S,,- ,(a, p, 1, 1) and Q(y; ,u) for Q(y; p, 1). 

If y - S, ~ l(a, P, A, 6) then 

where a + =a1 + ... +a,. 
Further, it may be noted that in case m = 2 and 6 = 1 the form Q(y; p) 

can be reexpressed as 

Q(r;r)=$$ 

where we have written y for y1 and /A for pl. 
One way of arriving at the distribution S,- i(cx, p, A, 6) is by 

conditioning on the sum of m independent generalized inverse Gaussian 
random variables, in generalization of a standard derivation of the 
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Dirichlet distribution as the conditional distribution given the sum of m 
independent gamma random variates with a common scale parameter. (For 
a comprehensive account of the properties of the generalized inverse 
Gaussian distributions see [S].) Specifically, let N-(a, x, $) denote the 
generalized inverse Gaussian distribution whose probability density func- 
tion is 

(where K, is a Bessel function and where x > 0, x, Ic/ > 0, t( E R). Further- 
more, let y,, . . . . y, be independent random variables such that the distribu- 
tion of yi (i= 1, . . . . m) is NP(a,, xi, $), i.e., the yi have a common $ 
parameter, and let Y+ =y,+ ... +ym. The conditional distribution of 
Y = (VI, . . . . YJ given Y+ = 6 is the same as (1) with 

Id = Xi? 

the parameter $ disappearing by the conditioning due to the sufficiency for 
$ of ,v+ . Note that 

y = 6 -2(Z A,‘. (8) 

3. THE MODELS S- AND S+ 

The two submodules corresponding to tlj= -l/2 (i= 1, . . . . m) and to 
ai= 5 (i’ 1, . ..) m), respectively, are of special interest. 

When the ai equal -l/2 the distribution (6) is the inverse Gaussian 
distribution and in this case the simplex distribution (3) may be given the 
more explicit form 

where 

p(y;p, 1, s)=s’/*{~/(271)}(m-1)l*(nyi)~3’*e””Y;~.6’, (9) 

t(y; p, 6) = -#7pi)-2”“-“Q(y; p, 6). (10) 

This follows from the well-known result that the distribution of the sum y, 
is again an inverse Gaussian distribution, 

Y+ -NT-$, c&i+ ... +&h2, $). (11) 

The distribution (9) will be denoted by S;-,(p, A, 6), and by S;_ 1(~, 1) 
when 6= 1. 
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In case C(~ = 4 (i = 1, . . . . m) the probability density (6) is that of the 
reciprocal inverse Gaussian distribution (in other words, x-l follows the 
inverse Gaussian distribution). The corresponding version of (3), which we 
shall denote by S,+- i(p, A, 6) and by SL- 1(p, A) when 6 = 1, is 

p(y; p, R, 6) = a+(R, S)(ZZyi)p1’2 e’r(r-u.6), 

where 

a+(l,6)=(2~)-‘“~‘“*2”‘*r(m/2)8--~~1)’2jl--’*/zm_1(8~), 

I,-,(A)= jm (1 +Z)~(m-1)/*Z(m-*)/2e--~/*dz 
0 

and 

(12) 

(13) 

The only difficulty in establishing (12) consists in proving that the 
norming constant is as given by (13). To show this we invoke the result, 
due to P. Blasild, that the reciprocal Gaussian distribution can be 
represented as the convolution of an inverse Gaussian distribution and a 
gamma distribution with one degree of freedom; specifically, 

This, in combination with the convolution properties of the inverse 
Gaussian distribution (cf. formula (11) above) and of the gamma distribu- 
tion, implies that the sum y + =yl + ... +ym (where y,wN-($, xi, \cI)) is 
distributed as 

N- (-;,6*y,+- (;SN). 

(Recall that x, y, p and the given 6 are related by (7), (8), and /.L+ = 6.) 
Consequently, the density function of y, may be expressed as 

1 6{A/(2n)}“*2-“‘*T(m/2)- lj5 m/2e~~ (m-3)/2e-(~~*/.~++~~+)/2zm~1(~~2/y ) 
Y+ + 9 

and (13) follows. 
Henceforth we assume that y is distributed according to either (9) or 

(12) with 6 = 1, i.e., either 

- {/?/(27r)}@~ l)‘* (z7y,)- 3/2e -MT&-*‘cm- “Z( y, - rt)*/2y, 3 (14) 
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or 

N (271)-(m~1)/22m/2~(m/2)~-~12~,_,(~)-~ (17y,)-l/2e-“~(~~-~~)2/2.~~. (15) 

We shall refer to the parameters ,u and ;1 of (14) and (15) as the position 
and the precision, respectively. 

4. RELATIONS TO SOME GENERAL MODEL TYPES 

The models S;- ,(p, A) and S,+- ,(p, 2) are proper dispersion models in 
the sense of Barndorff-Nielsen and Jorgensen [4]; i.e., (14) as well as (15) 
are of the form 

for certain functions a, 6, and t. 
It is, however, very noteworthy that neither S;_ ,(p, 2) nor S,+- 1(p, 2) 

is a transformation model, not even for 2 fixed. Also, they are not exponen- 
tial dispersion models (in the sense of Jorgensen [l 1 ] ). 

On the other hand, as is apparent from (1) and (2), both models are 
exponential models with canonical statistic (y ; ‘, . . . . y; I), the canonical 
parameter of (14) being 

e= -;~(z7pi)-2’(m-‘yp~, . ..) pg. 

while that of (15) is 

I9 = - $A@;, . ..) pg. 

Under both models the parameter p may be expressed in terms of the 
coordinates of 0 by 

p;=s(e)-’ Jm, 

while for S;- , , 

A= {s(e)-lliTJ~jp-~) 

and for S,+_ 1 

2 = s( e)z, 

where 

s(e) = z J-j. 
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The cumulant function of the exponential model (14) is, consequently, 

Jc(@ = -.?I log Jm + log s(e) - &s(e)‘, 

while that of (15) may be written 

I = i0g I,- ,(.7(e)*) + i0g s(e) - g(e)*. 

5. MARGINAL AND CONDITIONAL DISTRIBUTIONS, AND AMALGAMATION 

It follows from the interpretation of S;- ,(p, 2,6) as a conditional dis- 
tribution under an inverse Gaussian specification that both the konditional 
distributions and the marginal distributions of S;_ i(p, A, 6) are of the 
type S-. 

To be more specific, with y distributed according to (14), let 
j = (Yl, ..., yk) and 9 = (yk+ 1, . . . . y,), for some k with 1~ k < m, and let /i 
and fi be the defined similarly. Then the conditional distribution of j given 
y” is 

where j+=yl+ ... +yk, p+=pr+ . . . +pk. This appears from the 
sequence of distributional equivalences, 

“Yl 3, p, = 1 -j+ 

-jip+ = 1 -y”+. (17) 

Furthermore, by division of the conditional density of j given y in 
(14) we obtain that the marginal distribution of j+ = (3, 1 -J + ) = 
(Y 1, ..*> y,, 1 -p+) is given by 

Y -+ -S,(jl’, /l(z7ipi)-*‘(m-1) {(nifii)(l ++)}*‘k), (18) 

where j?’ =(P, l-8+)=(cL1,.-, &, 1 -j&). Note that, by (4), the y 
parameter corresponding to the distribution (18) equals the y parameter for 
y. In other words, the y parameter is invariant under marginalization 
(whereas the I parameter is not). 

Repeated application of (18) shows that if y = (y’i, . . . . y,) - S;- i(p, A) 
and if Zi=yi •k ... +J’il, Z2=J’i,+l + .*. +yj,, ...v Zk=yik-,+r + ... +y,, 
where l<i,<i,< ... < ik _ I <m - 1, then 2 = (zr , . . . . zk) follows again an 
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S- distribution, with the same y as that for y. This is a useful amalgama- 
tion property. However, the S- distributions and the Dirichlet distribu- 
tions differ in that, for the latter, the 1 + n vectors (z,, . . . . zk) and 
(y,,- ,+1Z, -l, . . . . yi,z;‘), v= 1, . . . . k, iO=O, ik =m, are stochastically inde- 
pendent. This independence property makes the Dirichlet distribution 
unrealistic for most problems of compositional analysis, as emphasized by 
Aitchison [3]. Like the S distributions, the logistic normal distributions 
do not have such an independence property. On the other hand, the 
logistic normal distributions differ from the S distributions by not con- 
stituting an invariant system under amalgamation [3, Section 6.61. Thus, 
in this respect, the S distributions occupy a middle ground between the 
Dirichlet distributions and the logistic normal distributions. 

The reasoning expressed in the sequence of relations (17) applies equally 
to the model S,+-, ; i.e., the conditional distributions of S,+-, are again of 
the type S+. However, the marginal distributions of Sz-, are not S+ 
distributions as they involve ratios of functions of the form (15). 

6. SOME INFERENTIAL PROPERTIES 

Again, let y N S;- 1(p, n). From (10) and (14) it follows that the Laplace 
transform of -2t(y; p) is given by 

(1 -2u/~}-(“-‘)/2; 

i.e., we have 

(m4) - 2’(m-‘)Q(y;~)~IZ~‘~2(m- 1) 

or, equivalently, 

Q(Y;P)=Y-‘x*(m- l), (19) 

where x2(m - 1) indicates the chi-squared distribution on m - 1 degrees of 
freedom. 

Further, let (yI., . . . . yka), where yj* = ( yjl, . . . . yjn,) for j= 1, . . . . k, be a 
partition of y; let (pI*, . . . . pk*) be the corresponding partition of p; and let 
Yj+ =Yjl + ... +yjn, and pj+ =pjl+ 
find that 

... +,u~~,. Because of (16) and (5) we 

where 
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and combining this with (19) shows that, conditionally on y*+ = 
(Y 1 + 9 . . . . Yk+ 1, 

“1 p?” 

Y j+  CL,-,” .C, f - l wYj+PJ~2Yp1X2(nj-1) 
JV 

or, equivalently, that 

Q(yje;pj., yJ<1p;+)=$-$-y-1x2(nj-l). (20) 

Since the right-hand side of (20) does not depend on y,, we have that 
(20) holds marginally, as well as conditionally given y, + , that 

Q(YI*;PI*~ Y;:P;+)YY Q(Yk*;Pk*, Y,;‘P:+) and Y*+ 

are mutually independent and that 

Q(YI*; PI*, Y;:P;+), ...T Q(Y/c*; pk*, Y,&!Pf+, and Q(Y *+;cL*+ ) 

constitute an exact X2-decomposition of Q(y; p) into k + 1 independent 
components. 

Next, let y,, h = 1, . . . . n, denote a random sample from either (14) or 
(15). We introduce the notation p for the vector of the m harmonic means 
of the coordinates of yh, h = 1, . . . . n, i.e., 5 = ( 3 1, . . . . F,) where 

Furthermore, we let 

f+=L+ ... +;,, 
M+)=l-$+, 

and 

(21) 

Note that R( F + ) 2 0, in consequence of the fact that the harmonic mean 
is always less than or equal to the arithmetic mean. 

Suppose now that the model is given by (14), i.e., y, w  S;- I (p, A) 
(h = 1, . . . . n). 

The log likelihood function is 
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In view of the definitions (2) and (21) we may reexpress the log likelihood 
function as 

or, equivalently, as 

It follows, in particular, that (3 + , 3 .) is a minimally sufficient statistic and 
that the likelihood equations for p and A may be transformed to 

(m-l)Pf/F.i+ {Q(P.;P)-m3+ +l}~i-Q(;.;~)-R(~+)=o (22) 

and 

Equation (22) does not involve II; however, to yield the maximum 
likelihood estimate ji for p it must be solved numerically. The maximum 
likelihood estimate for A then emerges by inserting fi for p on the right- 
hand side of (23). 

Furthermore, in extension of (19), we have 

~T’(Q(~.;/*,+~(~+))-~-‘x*(~(~--~)). 

The proof is a direct generalization of that for (19). 
Turning now to the model S,+- r we find that the log likelihood function 

based on y,, h = 1, . . . . IZ, is 

~(~L,~)=(~/2)C-log~~-2log~,~,(~)-~~~’{Q(~.;,,+~(~+)}l. 

Thus in this case, too, (5 + , $.) is a minimally sufficient statistic. Further- 
more, the maximum likelihood estimates for p and A are given by 

b=F.; 

i.e., ji is the vector of harmonic means, and 

H’(A)=$+‘R($+) 
#-1 

=Y + - 1, 

where 
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If Iz is large then H(I) may be approximated by (m - 1) log 1 and, 
correspondingly, we have the distributional approximations 

n$;‘R(~+) L Ar1x2((n- l)(m- 1)) (24) 

nf ;‘Q(ji;p) k 1p1~2(m- 1). (25) 

The result (24) may be used for testing homogeneity of n values of p, and 
(25) provides a test for a point hypothesis concerning ,u. 

These results follow from the theory of small-dispersion (i.e., A large) 
asymptotics discussed in Jorgensen [lo]. Similar results hold for the SP 
model. 
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