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Mixed Limit Theorems for Pattern Analysis
ULF GRENANDER*

Brown University
AND

JAYARAM SETHURAMAN'

Florida State University

Limit theorems are derived for probability measures of random configurations
over graphs which are used as prior distributions in pattern theory. For one-dimen-
sional graphs, these limits can be viewed as distributions of certain stochastic
processes, while in higher dimensions the limits will in some cases have to be inter-
preted as belonging to Schwartz distributions. Such limit distributions are easy
to use in pattern analysis, and greatly reduce the computing effort required in
comparison with stochastic relaxation methods. 7 1994 Academic Press, Inc.

1. INTRODUCTION

Consider a graph (¥, o) where & is a collection of sites and ¢ is the
collection of edges or segments in . An example of such a graph is the
one-dimensional graph with sites Z,={0, 1, ..., n—1} with pairs of suc-
cessive sites like (i, i+ 1) as edges, wherein we identify n with 0. A con-
figuration x = {(x;,ie &) is a point in £, that is, a map from & into %.
The space 4 is usually called the generator space. This paper is concerned
with distributions of random configurations. Such distributions appear as
both prior and posterior distributions in Bayesian pattern analysis, where
they play an important role.

Consider the simple case when % is the finite set Z,={0,1,..,n—1}
and ¥ =2 the real line. A reasonably general distribution for random
configurations can be described as follows, based on two non-negative
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functions, the acceptor function A: X x X - R and the weight function
Q: % — R. A distribution of random configurations, often used as a prior
distribution, is defined as follows through its density function, with respect
to some fixed measure, (often Lebesgue or counting measure),

1 n--1
Z 140, v TT 06

where the ¢ under the first product sign means that the product is taken
over all pairs (i, i,) which are connected by a segment ¢ in the graph. The
constant Z that normalizes this density function to have mass one is the
so-called partition function.

Such prior measures are known in pattern theory as regularly controlled
probabilities and in physics as Gibbs distributions, and have also appeared
in other applications.

The weight function @ describes how frequent the various values in the
generators space are expected to be. Note that Q need not, in general, be
a marginal density.

The acceptor function 4 expresses the coupling between y, and y,, if i,
and /, are joined by a segment in o. If A4 decreases when y, and y,, become
more distant from each other the coupling is attractive; in the opposite case
the coupling is repellent.

When & is a vector space one often writes A((y, — y,)/e) instead of
A(y,, v,), where & is a coupling parameter. Suppose that A(y) is decreasing
in |ly|l. A small ¢ means strong coupling, and the values at neighboring
sites will tend to be more alike. A large ¢ means weak coupling and
neighboring sites will tend to be more alike.

Probability measures of this type depend upon Q and A4 in a way that
is not very direct. In applications, for example to image processing, one
of the first tasks, after choosing 6, Q, and A, is to synthesize the patterns,
i.e., simulate the prior measure in order to get some insight in how the
assumptions fit the situation one tries to model.

Such simulations can always be done, at least in principle, by stochastic
relaxation which means the following. Using the well known fact that the
prior above describes a Markov process (Y,, i=0, 1, .., n— 1), one can use
a variation of the Metropolis algorithm; see Metropolis et al. (1953). For
any given site i, consider the conditional distribution of Y, given the rest
of the configuration (Y,,Y,, .., Y, ;). The Markovian nature of the pro-
cess tells us that the conditional distribution depends only on the neighbors
of Y,. Simulate the conditional distribution, and go to another site. Repeat
the procedure by sweeping across the whole configuration may times. It is
then known that the random configuration converges in law to the prior
from which we started.



416 GRENANDER AND SETHURAMAN

The advantage of stochastic relaxation is its general applicability. Unfor-
tunately it requires massive computation and may not be feasible when the
following conditions apply:

(1) the size n of the graph is big,
(i) the cardinality of the generator space 4 is large or infinite,
(iii) the couplings are strong, i.e., ¢ is small, or

(iv) the conditional distributions are not of standard (easily
simulated form).

To deal with situations where these conditions hold, attempts have
been made to prove limit theorems when n — oo, or £ — 0, or the so-called
mixed case when n and ¢ tend to their respective limits simultaneously.
The first result, see Chow and Grenander (1985), assumed ¢ to be a
linear chain, # =#, and used an acceptor function like a rectangular
window

Lo y<,
A(y)= — 1.1
) {o, if |yl > 1. (-

It showed, under conditions that will not be stated here, that Y,-/\/E
tends in distribution to a non-degenerate Gaussian distribution.

Attempts have been made, so far without success, to extend this
to more general graphs, in particular to lattice type connectors that
are used in image processing. The method in Chow and Grenander {1985)
employed singular perturbation methods for integral operators. Here
we shall use a more probabilistic method that extends to all the lattice
connectors that we have examined. It uses the acceptor function A(x)=
exp( —x?) and some of its simple extensions. The choice of acceptor func-
tion is probably not essential as has been shown in Chow and Grenander
(1985).

We shall prove not only that marginal distributions converge but that
the entire joint distribution converges to the joint distribution of a par-
ticular stochastic process. In some cases, however, it will be necessary to
interpret the sample “functions” of the limiting stochastic process as
Schwartz distributions.

This paper will only deal with pattern synthesis, but it is known that the
understanding of the limiting behavior of the priors will have consequences
for analysis, for example, recognition of patterns, and facilitate the com-
puting needed.

A reader who is not familiar with the background of the paper may con-
sult Grenander (1976, pp. 63-92), Grenander (1981, pp. 194-317), and
Geman and Geman (1984).
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2. CONVERGENCE OF (GAUSSIAN MARKOV RANDOM FIELDS

Let the joint distribution of Y, =(Y,, Y,,.., Y,_ ) in #” be given by a
pdf (w.r.t. Lebesgue measure) which is proportional to

1 n-1 ) q »n—1 N
exp {—282 EO i =2 =3 EO }/,},
where y,=y,. We will consider the normalized configuration X, defined

by X, = (Yo/</ s ¥,_//€). The joint distribution of X,, will be denoted
by P, and its pdf p,(x) is given by

1 n-1 qg n -1
pPalx)= ¢Xp {‘”2_ Z (xi+1—xi}2“”' Z V,z} (2.1)
£, 2.

|
Z,(q,¢)

An explicit expression for the partition function Z, (g, &) is given by

n—1

1 n-1 ,
Z,,(q,s):jexp {—Z Y (x,-H—xi)z_fIzE Y x;} dx. (2.2)
i=0

i=0

Let M be the circle of unit circumference. Define a map g,(x) from the
space of configurations x=(x,, .., x,_,) into C(M), the space of con-
tinuous functions on M, as

[nt]
g"(x’ 1= Xine] +n (f _T (x[m]+ 1 X[,H]), (23)

where, as before, we identify x, with x,. Consider the process {X,(1)=
g.X,, 1), teM}. Let 2, =P g~ be the distribution of {X, (1), 1e M}
in C(M).

Let {X(¢),re M} be a stationary Gaussian Markov process with zero
means and with covariance function R(s, t} given by

_cosh((s—7—1/2) /q)
2./q sinh(\/a/Z) '

We will denote the distribution of this process by #.
Theorem 1 below will show that {X,(r), te M} will converge, under
some conditions, to the process {X(1),te M}, ie., P, g, ' — 2 weakly.
Throughout this paper we will be taking limits as § - 0, n — oc such that
ne — 1. Such limits are known as mixed limits. For simplicity, we will just
say n—cc to mean this kind of mixed limit, except n the formal
statements of theorems.

R(s, 1) (2.4)
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THEOREM 1. Let ¢ > 0 and n— oo such that nge — 1. Then
(X (1), re MY =5 (X(1), te M ).
Proof. We will first show that
R,(s,t) > R{(s, 1) uniformly in s, 1, (2.5)

where R, (s, 1) is the covariance function of { X, (1), te M} and R(s, ¢) is the
covariance function of {X(¢), ¢e M}. This will establish that the finite
dimensional distributions converge.

The pdf of X,, given in (2.1) can be rewritten as

1 1
| s

where
i
~+ge —- 0 —=
e
+ ! 0
2 Zhge -
A= £ 1
1 2
-~ 0 0 - —+4ge
e £
and
Z,(q, e)=(2m)"? |A] 172 (2.6)

To evaluate limiting values of Z,(q, ¢) and the limit distribution of 2, we
wil need the following standard results on the inverses of some matrices;
see, ¢.g., Davis (1979).

Let

1 —p 0 0

e 0 1 — 0

D, p
—p 0 0 1
Its inverse D, ' is given by
L p p pm !
D“l _ pn —1 ] p pn 2 }
o . (1—p™
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and further more the matrix B, = def D, D, is given by

l+p> —-p 0 - —p
_ P40 —p ...

B,- p +p P 0
—p 0 0 .- 1+4p°

Finally B, '=D_(D,)"" is given by 1/((1—p*)(1—p")) E, where the
(r, s)th element of E, is given by

Ep(r’ S):p\ —r+pn~s+r

for0<r, s<n
Using the definitions of B, above, we may write

A=uaB,,
where
2 2
ol +p )=;+qs (2.7)
! (2.8)
ap—g. .
Thus
def 1 1
C=A4'=— B '=—vo———F_,
x ¢ a(l—p*)l—p")

where E, is as defined above. Thus, if 0<s, 1< 1, then the ([ar], [ns])th
element of C is

1
a1 —p?)(1 - p")

[p[,,s]-[m]+pn7[m‘]+["']]_ (29)

Solving for « and p from (2.7) and (2.8), we get
p=1—¢e./q+0(c*)~ 1

and

1 1
a~;(1+£\/¢})~;.
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Thus the limits of (2.9) as # — o0 becomes

e[(1—e/g+0(E))™) T4 (1 ¢ Jq+ 0@y 1+ 0]
(1= (1—& g+ 01— (1 —& Jg+ 0())")

_exp(—(s—1) /g) +exp(—(1 —s+1) /q)

- 2/q (1 —exp((/q))

_cosh((s—1—1/2) /q)

2 /gsinh(Jq/2)

= R(s, ¢).

lim

This shows that R,([nsl/n, [nit]/n) — R(s, t) uniformly in s, 1. To show
that R, (s, t) = R(s, 7), we note that

IXM(S) _Xn([nS]/n)I = In(s— [nS]/n)l IX[IL)']+I —X[m']|
<Xy 1= Xpal = 1Xo— X

and hence

E|X,(s)= X, ([ns)/n)> <2[Cop— Cii ]

_21+p"—p—p" "]
(1 —p*)(1 —p")
_21-pmY)
a(l +p)1—p")
o 2(-(1-eJ9" )
(1+1—e /g1 —(1—¢/q)")

~&

-0
uniformly in s as n — oo0. This proves that
R"(S’ ’) i R(S’ t)

uniformly for all s, # and completes the proof of (2.5).
We next show that the distributions of {X,(¢), 1€ M} are tight. This will
complete the proof of the theorem.
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Since the distributions are Gaussian, it follows from (2.5) that
ELIX, (1) = X,()*] = 3(E[1X,(1) — X,,(s))*])°
=3[R, (1, 1) —2R,(s5, 1)+ R, (5, 5) )}
— 3[R(1,t)—2R(s, t) + R(s, 5)1? uniformly in (s, 1)
_ 5 [cosh(/4/2) ~ cosh((s — 1 = 1/2) /9)?
q[sinh(,/4/2)]?

<3(M)2@—”2 s =<1z
sinh(,/g/2)

by using the fact that sinh(x), the derivative of cosh(x), is increasing in x.
This shows that there is a K< oo and an s, such that

E[1X, (1) = X, (NI < K(t —5)°

for |t—s|<1/2 and for n=n,. From Thm. 123 on p.95 of Bilingsley
(1968), it follows that the distributions of {X,(¢), e M} are tight.
This completes the proof of Theorem 1. ||

Since the matrix 4 appearing in (2.1) is a circulant, its eigen values are
(2/e) + qe — (2/e) cos(2nr/n), r=0, 1, .., n— 1. The following corollary is an
immediate consequence from this observation and (2.6).

COROLLARY 1.

canr-or [ (ro=Ton ()

0 n

One can use the following representation to define the process {X(r),
te M} in terms of a Wiener process { W(t), te M} which we state below
as a theorem.

THEOREM 2. The process {X(1), te M} can be expressed as

€ \"/;"’2

X(1) = ——————
2 sinh(,/4/2)
where {W(t), te M} is standard Wiener process in C(M).

! -
f e VAl mod 1T gy (2.10)
o

Proof. Consider the stationary Gaussian process {Z,(1), e M} defined
by

Z,(t)zL] exp(—a[ (1 —s) mod 17) dW(s)
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and denote its convariance function by S,(r, s). By a direct evaluation we
see that

1
Sz((),t)zj exp(—af1 —s+ (1 —s)mod 1) ds
[¢]
I3 1
=f exp(—a[l+t]+2as)ds+f exp{—a[2+ 1]+ 2as) ds
(] !
z_l_ {e— a(l+/i(e2ar_ 1)+e~rx(2+t)(€2m_€2w)}

— {eal_€/a1+em/rzl_e/1+al}

-

— {eal+e2 1!}{l_e a}

— {eau - a2 + e + /2 } {eu‘e? —e” a,c’Z}

2e % o l
== smh(§>cosh((t~§)a).

Since
NPT

e
=— 7 (1),
g 2 sinh(\/q/2) vt

we obtain

e‘]
Cov(X(0), X(1)) = ——F———=5(0,
U0, X)) = e = S (0.1

e? 2e~ VY 1 ) \/5
= h{{r—= h(¥2
4(sinh(\/g/2)* /q cos ((t 2>\/(;)sm <2>
_ 1 cosh((1—1/2) \/q)
2/q  sinh(\/q/2)

= R(0, 1)

This completes the proof of Theorem 2. |
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3. CONVERGENCE OF SOME NON-GAUsSIAN RaNDOM FIELDS
We will now consider a more general joint distribution for Y, =
(Yo, Yy, .., Y,_,) than the simple Gaussian distribution used in Section 2.

Let the joint probability distribution of Y, in #” be given by its pdf (w.r.t.
Lebesgue measure) which is proportional to

l:I A((}H—] )1—[ Q()’

where
A(x)=exp(—3a(x)),  a(x)=x (3.1)
Q(x)=exp(—3[gx’+b(x)]), and (3.2)
b(x)=x%(x), c(x)—0 as x—0,

and
—d<ge(x)<x? for some &€ (0, q). (3.3)

As before we will consider the normalized configuration X, =
(Yo/\/z, s Yo l/\/E). Then the joint probability distribution Q, of X, in
AR, has pdf g,(x) w.r.t. Lebesgue measure) given by

Z(A4,Q.¢)

1 n--1 . n—1
g (x)=7————[] 4 (by___) I1 o(/z x). (34)

The following theorem, which generalizes Theorem 1, gives the weak
convergence of the distributions of the process { g,(X,, 1), 1€ M }, where g,
is as defined in (2.3).

THEOREM 3. Let X,, have distribution given by (3.4) and let the functions
A(x), Q(x) and b(x) satisfy conditions (3.1), (3.2), and (3.3). Then, as
n— o0, £ -0 such that ne — 1, the distribution of g(X,,, -) converges weakly
to the distribution % of X(-) given in Theorem 1.

Prosf. Let P, be the probability measure defined in (2.1). The proof of
this theorem will compare the measures ¢, and P, and use the arguments
of contiguity due to Le Cam (1960).

From Theorem 1, the distribution of X, under P, is normal with mean
0 and variance Cgo= (1 + p")/a(1 — p?)(1 — p"), and this variance converges

to
cosh(\/4/2)
2. /qsinh(\/¢/2)

683/51,/2-15
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Since x2 Ic(\/;xo)l < dx)+ exy from (3.3), it follows that X2 lc(\/g X,)| is
uniformly integrable under P,. Once again, since x; IC(\/E xg)| =0 as
n— oo for each x; from (3.3), it follows that

Ep(XZle(Je X)) =0  as n— . (3.5)
Define
] n—1
,,:52b\/2x)——ZX2 ol /e X)), (3.6)
Note that
g” )] s
DI<5 L X} le(/e X)) (37)
0
and
58 n—1 5
exp(—D,) <exp (—5 Y X (3.8)
4

From (3.7) and (3.5), we obtain

EnID,I<5 ¥ En (X7 1el/s X)) =5 Er, (X3 1e(/% Xo))
0

Thus D, — 0 in probability under P, as n— o0.

Let 6> 1 be such that 66 < ¢. Such a § exists in view of (3.3). By examining
the identity for the partition function in (2.2) and using the bound in (3.8),
we obtain

Ep (exp(—0D,)) < Ep, <e"p< > "ilX )) ﬂ%ﬁ'

Using the closed form expression for Z,(g, ¢) in Corollary 1, we obtain
0<log Z,(q—19,¢)—log Z (g, ¢)

_ l"zl ((2/£)+(q—65)£*(2/a)cos(2nr/n)
T (2/¢) + g& — (2/e) cos(2nr/n) >

n~l

_ 1 Z log( B¢ )
{ge + (2/e)(1 — cos(2mr/n)))

- 06
~ _5 % ‘°g<1 _(q+2n2(1—cos(2nr/n))))
1
—= Z [...]+ Z [...] (say),

2Jr10|<na Ir — 0] > nx

I
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where the index r is taken mod n and =« is a positive number which will be
chosen later.
For any « and for |r—0| > na,

n? (1 —cos (3:—’» > n?( — cos(2mx))
and thus
1 05 c,
L2 s —5"'°g(1 T+ —cos(zm)))>< "

where C, is a finite constant.
There is a sufficiently small o > 0 such that, for |r— 0| < na and large »,

n? (1 —cos (372)) >n2r?
n

1 05 = 1
2.0z zgn,log<l—q+n2r2)<czgﬁ

|r—0] < na Ir—0|

and

for some finite constant C,.
This shows that exp(—D,) is uniformly integrable under P,. We had
already shown that D, — 0 in probability. Thus

E;,(exp(—D,))— 1. (39)

Comparing the distributions in (2.1) and (3.4), we obtain the likelihood
ratio

d_ef dQn _ Zn(q5 8)

L,(x) = ap, (x)_Z,,(A, 0.%) exp(—D,). (3.10)
Since Ep (L,)=1, we also have
Z,(A4,Q,
Epn(exp(—Dn))=~———-—~"Z( (ng)s). (3.11)

Comparing (3.9) with (3.11), we obtain

Z,(4,0,¢)
AR S A SN
Z.(q, ¢)
This shows that L, — 1 in probability under P,. Hence {Q,} is contiguous

with respect to {P,}. Thus Q,g,"' and P,g, ' have the same limiting
distributions, namely, 2. This completes the proof of Theorem 3. |
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4. GAussiIAN RANDOM FIELDS ON d-DIMENSIONAL GRAPHS

We will now extend the results of Sections?2 and 3 to graphs which
are d-dimensional lattices. Consider the graph & =Z¢ where Z,=
{0,1,..,n—1}. A point in & is of the form i= (i, {5, .., {,) with i,eZ,,
r=1,.,d Let 0=(0,..,0) and let ¥, be a neighborhood of 0 which is
symmetric, that is, No=M,u(—M,), where M, is a subset of &\0.
Several straight forward but interesting generalizations of the results of the
first two sections of this paper can be made as follows. Let ¢>0 and
¢=(c;, j€ Ny) be constants. These constants can depend on n, and when
necessary, we will indicate the dependence by using symbols like ¢(n), ¢;(n),
etc. The vector ¢ specifies the strength of the coupling between the site 0
and its neighbors in M,. Consider a probability distribution for random
configurations Y(n) = (Y;(n), je &) given by a pdf (with respect to Lebesgue
measure) which is proportional to

I i ,
P <_ i[qz ita X i yig)’ "i])
i & e je Ny

We will consider the normalized configuration, X;(n)=¢’Y;(n), where
the power p will be chosen suitably later in (4.7). The joint distribution of
X(n) is given by the pdf

1
pu(x)=2,(q. ¢, p,a)exp<* E[a(n)zsz+ Z ('xj_'xj+j'}2 bj'(”)])

i jes\ie M

1
—Z.(q.c.p. e)exp( - 5X’QX>,

where
a(n)=qe %, (4.1)
by(n)=cje * 7%, 4.2)
0, j))=0(0,j—i)  and
Q(0, j) = La(n) + 2B(n)] {0 =)) —2b;I(je Ny), (4.3)

where /(-) is the usual indicator function. For j, ke & define the inner
product (k,j> =3, <,<uj.k,. The matrix Q is a circulant matrix and its
eigen values are given by

2ridk, j
) =% 000, exp Z502)

=a(n)+2 Y. by(n)— y b,(n) exp <2ni<nk,j>>

je No jeM
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:a(n)+2 z bj(n)._z Z bj(n)COS <2n<’l:aj>>

jeNo je My
=a(n)+2 ) bj(n)(l—cos(g-%I&iZ)) (4.4)
jie My

since No=Myu (—M,).
Let #»* = n?, From the Karhunen-Loéve representation, we have

1 2nilk, ])) 1
X.(n)= Z, 4.5
(n) pr .EL: exp < p AT (4.5)

where {Z,,k} e ¥ are iid. standard normal random variables. Thus the
covariance function of {Xj(n), je &} is given by

1 2midk, j—j >\ 1
ri.j'=;: % exP( );k

ke n - (’l).

We will use the test function
S () =exp(—2milk, t)), teM, ke?

to interpolate X(n) to obtain a random function X(n,t) on C(M9) as
follows:

1 1
X(n t)=—7= Z o (t) ———=2,. (4.6)
n* ke Ak(n)

The random function X(n, t) can also be defined directly in terms of X(n),
by combining (4.5) and (4.6). The covariance function of { X{(n, t), te M“}
is given by

1
tt)y=— 2ridk, t—t')) - .
b €) =5 ¥ exp(2nick, t—t'3)

Thus the finite dimensional distributions of {X(n, t), te M?} converge if
and only if

n*i, — By where O0<f< o0,

The tightness of the distributions of {X(n, t)}, te M“} can be established
in the same way as in Section 2. The limiting distribution of {X(n, t)},
te M4} is thus Gaussian and will be in C(M?) if and only if
S (1/B,) < co. When this sum is infinite, the limiting distribution will have
to be interpreted as a distribution of the space of Schwartz distributions.
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As before consider the mixed limits as n — oo, ¢ =+ 0 so that ne — 1. We
will therefore let n = 1/¢. The appropriate choices of p will be

d
= ——. 4.7
P=-3 (4.7)
Suppose that
2ndk, §
lim2n® Y ¢ (1 —cos (fﬁgﬂ}_)) =0,. (4.8)
je My

By reworking the expression for A, (n) in (4.4), we find

n*iy(n)=n* {a(n)+2 > bj(ﬂ)(l —cos <____2n<}l;,j>))}

je My
1 5 2n<k,j

=g *n* {q+ —2n Yy cj<1—cos<u)>}
&n” je My n

- B

=g+ %.

Thus we have a limiting Gaussian distribution for the process {X,(t),
te M“} if ¥, (1/8,) < oo, which is equivalent to

Z-l—<oc, (4.9)

k %k

where «, are given by (4.8). When (4.9) is not satisfied, we will have to
interpret the limiting distribution to be in the space of Schwartz distribu-
tions on M“.

We will now look at several examples and verify conditions (4.8) and
(4.9).

ExaMPLE 1. Suppose that the constant c¢;(n)=c¢; do not depend on n.
In this case, (4.8) reduces to

2r<k,j
lim 2n* Y c'j(l—cos<—nin-’1~>>=4n2 Y ok, i =1y

je My jie My

Suppose further that =1, M,= {1} and ¢, = 1. This is the example con-
sidered in Section 2. Then a, =4n°k? and (4.9) is satisfied. In this case we
get a genuine Gaussian process on C(M) and re-establish another version
of Theorem 1.
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ExamPLE 2. Let d=1, My=1{1,2}, ¢,=4n’, ¢c,= —n>. Then (4.8)
reduces to

m? [4112 (1 — cos (2—:5)) - (1 o (#»J
- o (1con (28 - (1-cn (22
-t (1-en(3F)

— 16m%%4,

In this case a, = 167n*k* and (4.9) is satisfied. Once again, in this case we
get a genuine Gaussian process on C(M ).

ExaMpLE 3. Letd=2, My o= {(0,1),(1,0)}, co ,=c, o=1. Then (4.8)
reduces to

2n? l:(l —cos (2%]&> + <l —cos <—2-7:112)] —d4n’(k7 +k3).

Thus a, =4n’(k3 +k3), ¥ (1/2,) = oc and (4.9) is not satisfied. In this case
we do not have a limiting Gaussian process in C(M?) but on the space of
Schwartz distributions on M2,

ExampLE 4. Let d=2, M, ,={(0,1), (1,0), (1, 1), (1, —=1)}, ¢¢,=
ci.0=cy1=¢y _=1. Then (4.8) reduces to

(12 ()
(1o (8 o (10

> Anl(ki+ k34 (ky+ ko)  + (ky —ky)P)

= 12n%(ki +k3).

Thus a, = 12a%(k] +k32), 3 (1/2,)=o0 and (4.9) is satisfied. In this case
also we do not have a limiting Gaussian process in C(M?) but on the space
of Schwartz distributions on M?,
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ExaMpLE 5. Let d=2, M, ,=1{(0,1),(1,0), (1,1), (1, =1)}, ¢ .=
¢y 0=n ¢, =c, _ = —n?/2. Then (4.8) reduces to

20 [ (1 ems (510) o (1-con (52))
(1o (D) 2 (b))
<[ (1o () (1o ()]

— 8k k3.

Thus «, = 8n*k7k2 and (4.9) is satisfied. Thus in this case, we do have a
limiting Gaussian process in C(M?).

5. REMARKS

One can use the ideas of contiguity and uniform integrability, as done
Section 3, to study more general Markov random fields and obtain similar
limiting Gaussian processes.

Kurien and Sethuraman (1993b) examined other examples of Gaussian
random fields like the above with different couplings, and have shown that,
under mixed limits, the limiting Gaussian process can exhibit a phase
transition based upon a constant of proportionality, namely, temperature,
that multiplies the parameters ¢ and the coupling constants c.

In another direction, Chow (1990) and Kurien and Sethuraman (1993a)
have extended our model in Theorem 1 to more general Markov random
fields and obtained the limit distributions. In Kurien and Sethuraman
(1993a) this limiting process is a stable process.
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