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Considering a large class of tests, we study higher order power in a possibly non-
iid set-up. Optimum properties for the likelihood ratio and score tests are exhibited
under the criteria of second-order local maximinity and third-order local average
power, respectively. The issue of stringency with regard to third-order average
power has been addressed. We also compare the power properties of various
Bartlett-type adjustments for the tests. � 1997 Academic Press

1. INTRODUCTION

Higher order comparison of tests under contiguous alternatives has
received a considerable attention over the last two decades; see Ghosh
(1991) and Mukerjee (1993) for reviews. Most of the results in this area,
including the differential geometric ones for the curved exponential family
(Amari (1985), Ch. 6; Kumon and Amari (1983)), relate to the case of
independently and identically distributed (iid) observations. In particular,
in the iid case and under the absence of nuisance parameters, optimality
results are now know for (a) the likelihood ratio (LR) test in terms of
second-order local maximinity and (b) the score test in terms of third-order
local average power (Mukerjee, 1994).

Under a possibly non-iid set-up involving an unknown scalar parameter,
Taniguchi (1991) considered the problem of third-order comparison of tests.
He worked with a large class of tests that includes the LR, Rao's score and

article no. MV961645

99
0047-259X�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

Received April 26, 1995; revised May 23, 1996.

AMS subject classification: 62F05, 62E20.
Key words and phrases: average power, Bartlett-type adjustment, contiguous alternatives,

likelihood ratio test, local maximinity, Rao's score test, stringency, Wald's test.



File: 683J 164502 . By:CV . Date:06:01:97 . Time:13:31 LOP8M. V8.0. Page 01:01
Codes: 3223 Signs: 2794 . Length: 45 pic 0 pts, 190 mm

Wald's tests (as described in Rao (1973, pp. 415�420), suggested a Bartlett-
type adjustment for the tests in the class and then, on the basis of such
adjusted versions, explored the point-by-point maximization of third-order
power. Consequently, his optimal test is dependent on the alternative hypo-
thesis and his results are not comparable with the ones mentioned in (a) and
(b) above.

We attempt to bridge this gap and show that the results in (a) and (b)
continue to hold in Taniguchi's (1991) possibly non-iid setting. In addition,
we discuss the derivation of a most stringent test with respect to third-
order average power. These results have been represented in Section 3. The
necessary preliminaries are given in Section 2 where a simplified and com-
pact expression for the third-order power function has been derived. This
expression, more informative than what has been known so far even in the
iid case, enables us to study the third-order average power not only locally
but also in its entirety and hence to address the issue of stringency as
indicated above. Finally, we note the availability of two more Bartlett-type
adjustments for each test statistic in Taniguchi's (1991) class, in addition to
the one proposed by Taniguchi himself, and in Section 4 compare such
adjusted versions under the criteria of maximinity and average power. This
substantially strengthens some of the earlier results reported in Rao and
Mukerjee (1995) who compared various Bartlett-type adjustments for the
score statistic. As in Taniguchi (1991), consideration of the possibly non-iid
setting allows us to illustrate the results with models which are important
in time series analysis. It may be noted that our class of tests is slightly
larger than that in Taniguchi (1991). This is needed to cover not only
the tests considered by Taniguchi (1991) but also the various available
Bartlett-type adjustments thereof.

Earlier, Amari (1985, pp. 180�181) considered the issue of stringency
with respect to third-order power. However, unlike him, we consider a
possibly non-iid set-up, make no assumption regarding curved exponen-
tiality and compare the tests in their original forms without any modi-
fication for local unbiasedness. Because of the last reason, our findings
differ from those of Amari (1985); see e.g., Section 3 below. We refer to
Madansky (1989) and Mukerjee (1993, 1994) for more discussion on the
motivation for comparison of tests in their original forms.

2. PRELIMINARY COMPUTATIONS

Let X (n)=(X1 , ..., Xn)$, n�1, be a collection of possibly vector-valued
random variables with density fn(x(n) ; %), where the parameter % belongs to
an open subset of R1. Consider the null hypothesis H0 : %=%0 against the
alternative %{%0 . We make the assumptions stated in Taniguchi (1991). In

100 RAO AND MUKERJEE



File: 683J 164503 . By:CV . Date:06:01:97 . Time:13:31 LOP8M. V8.0. Page 01:01
Codes: 3121 Signs: 1588 . Length: 45 pic 0 pts, 190 mm

particular, it is assumed that for an appropriate sequence [cn], satisfying
cn � � as n � �, the cumulants, up to the fourth order, of

Zi (%)=c&1
n _ d i

d%i log fn(X (n) ; %)&E% { d i

d%i log fn(X (n) ; %)=& (i=1, 2, 3)

possess asymptotic expansion of the form

cum% [Zi (%), Zj (%)]=k (1)
ij (%)+c&2

n k (2)
ij (%)+o(c&2

n ),

cum% [Zi (%), Zj (%), Zl (%)]=c&1
n kijl (%)+o(c&2

n ),

cum% [Zi (%), Zj (%), Zl (%), Zm(%)]=c&2
n kijlm(%)+o(c&2

n ),

where k (1)
ij (%), k (2)

ij (%), kijl (%), kijlm(%) do not involve n. Let

I=k (1)
11 (%), J=k (1)

12 (%0), K=k111(%0), L=k (1)
13 (%0),

M=k (1)
22 (%0), M� =M&I &1J 2, Zi=Zi (%0) (i=1, 2, 3),

W1=I&1�2Z1 , W2=Z2&JI&1Z1 , W3=Z3&LI &1Z1 .

We shall consider alternatives of the form %n=%0+c&1
n =. Let F be a

class of test statistics for H0 such that every statistic T in F admits an
expansion of the form

T=W 2
1+c&1

n (a1W 2
1 W2+a2 W 3

1)

+c&2
n (b1W 2

1+b2W 2
1W 2

2+b3W 4
1+b4W 3

1W2

+b5W 3
1W3+b6W 6

1)

+o(c&2
n ), (2.1)

over a set with P%n-probability 1+o(c&2
n ) (uniformly on compact subsets

of =), where a1 , a2 and b1 , ..., b6 are constants free from n. Taniguchi (1991)
studied a subclass F0 of F consisting of those members of F for which b6

equals zero. Consideration of the wider class F enables us to compare the
various Bartlett-type adjustments available for the members of F0 . As
noted by Taniguchi (1991), the subclass F0 is a very natural one and
includes, in particular, the LR, score, Wald's and modified Wald's
statistics, the corresponding expressions for a1 and a2 being given respec-
tively by

a1(LR)=I&1, a2(LR)=&1
3 I &3�2K, (2.2a)

a1(score)=0, a2(score)=0, (2.2b)

a1(Wald)=2I &1, a2(Wald)=I &3�2J, (2.2c)

a1(mod Wald)=2I &1, a2(mod Wald)=&I &3�2(J+K). (2.2d)
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Corresponding to any statistic T as in (2.1) we shall consider a critical
region

T>z2+c&2
n dT ,

where z2 is the upper :-point of a central chi-square variate with 1 degree
of freedom (d.f.) and dT is a constant, free from n, to be so determined that
the test has size :+o(c&2

n ). For *�0 and positive integral &, let h&, *( } ) and
G&, *( } ) denote respectively the probability density function and the
cumulative distribution function of a possibly non-central chi-square
variate with & d.f. and non-centrality parameter *. Then, analogously to
Theorem 1 in Taniguchi (1991) but with suitable modification so as to take
care of the extra term b6 W 6

1 in (2.1), it can be shown that

P%n(T>z2+c&2
n dT)=1&G1, $(z2)&c&1

n :
3

j=0

B (T )
j G1+2j, $(z2)

&c&2
n {h1, $(z2) dT+ :

6

j=0

A (T )
j G1+2j, $(z2)=+o(c&2

n ),

(2.3)

where $=I=2,

B (T)
0 =&1

6(3J+K) =3, B(T)
1 = 1

2 J=3& 1
2 I &1(K+3I 3�2a2) =

B (T)
2 =&1

2I 3�2a2=3+ 1
2I &1(K+3I3�2a2) =, (2.4)

B (T)
3 = 1

6 (K+3I3�2a2) =3,

A (T )
0 =C (T)

0 , A (T )
1 =C (T )

1 , A (T )
2 =C (T )

2 & 15
2 b6 ,

A (T )
3 =C (T)

3 + 15
2 b6(1&3$), A (T )

4 =C (T )
4 + 15

2 b6(3$&$2), (2.5)

A (T )
5 =C (T)

5 + 1
2b6(15$2&$3), A (T )

6 =C (T )
6 + 1

2b6 $3,

the C (T )
j (0� j�6) being as in Taniguchi (1991, p. 228).

The quantities C (T )
j (0� j�6) are somewhat involved and we require

a simplified expression for �6
j=0 A (T )

j G1+2j, $(z2) in order to derive our
results. To that effect, for positive integral &, we write h&, $=h&, $(z2),
G&, $=G&, $(z2), and note that

G&, $&G&+2, $=2h&+2, $ ,

$h&+4, $+&h&+2, $=z2h&, $ .

Then by (2.5) and the expressions in Taniguchi (1991, p. 228), the coef-
ficient of, say, b3 in �6

j=0 A (T)
j G1+2j, $(z2) equals
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&[ 3
2 (G3, $&G5, $)+3$(G5, $&G7, $)+ 1

2 $2(G7, $&G9, $)]

=&[3h5, $+6$h7, $+$2h9, $]

=&[$($h9, $+5h7, $)+($h7, $+3h5, $)]

=&z2($h5, $+h3, $)=&z4h1, $ .

Similar calculations eventually yield

:
6

j=0

A (T )
j G1+2j, $(z2)=90(=, z2)&91T (z2) h1, $&RT ($, z2), (2.6)

where 90(=, z2) is free from a1 , a2 , b1 , ..., b6 and hence is the same for all
statistics in the family F, 91T (z2) is a constant which is free from = but
dependent on T, and

RT ($, z2)= 1
2M� $z2(I &1h1, $ a1& 1

2 h3, $a2
1 )

+ 1
2I &3�2 $z2[z2Jh1, $& 1

3$(K+3J) h3, $] a2& 1
4 z4 $h3, $a2

2 . (2.7)

For positive integral &, let h&=h&, 0(z2). Now, taking ==0 in (2.3) and
invoking the size condition up to o(c&2

n ), by (2.4), (2.6), and (2.7),

dTh1+90(0, z2)&91T (z2) h1=0.

Solving for dT , from (2.3) and (2.6), the third order power function of the
test based on T is given by

BT (=, z2)=P%n(T>z2+c&2
n dT)

=1&G1, $(z2)&c&1
n :

3

j=0

B (T )
j G1+2j, $(z2)

+c&2
n [RT ($, z2)&9(=, z2)]+o(c&2

n ), (2.8)

where 9(=, z2) is the same for all statistics in F. By (2.5) and (2.7), the
third order power function (2.8) depends on T only through a1 and a2 .

3. RESULTS ON HIGHER ORDER POWER

First consider the second order power function which is given by the first
three terms in (2.8). By (2.4), the coefficient of = in each B(T )

j (0� j�3) is
zero if and only if a2=&1

3 I&3�2K=a2(LR) (vide (2.2a)). Hence exactly as
in Mukerjee (1992, 1994), under the criterion of second-order local maxi-
minity, the LR test is superior to the test given by any other statistic T in
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F for which a2 {& 1
3I &3�2K. On the other hand, if a2=&1

3I &3�2K for
some statistic T then, by (2.2a), (2.4), the corresponding test will have the
same second order power function as the LR test.

Turning to the criterion of average power, let

B� T ($, z2)= 1
2 [BT (=, z2)+BT (&=, z2)],

where $=I=2, and by (2.4), (2.7), (2.8), observe that

B� T ($, z2)=1&G1, $(z2)+c&2
n [RT ($, z2)&9� ($, z2)]+o(c&2

n ), (3.1)

9� ($, z2) being the same for all statistics in F. Thus, under this criterion,
all statistics in F are equivalent up to the second order and a third-order
comparison, on the basis of RT ($, z2), is warranted. By (2.7),

RT ($, z2)=$VT (z2) h1+O($2), (3.2)

where

VT (z2)= 1
2M� z2(I&1a1& 1

2z2a2
1)+ 1

2z4(I &3�2Ja2& 1
2z2a2

2). (3.3)

In view of (3.1) and (3.2), up to the third order of approximation and for
small $, the behaviour of the average power function B� T ($, z2) depends on
T only through VT (z2), i.e., VT (z2) can be interpreted as a measure of
third-order local average power associated with T. By (2.2b) and (3.3),
VT (z2)=0 for the score statistic. Now, as noted in Taniguchi (1991), the
quantity M� can be interpreted in terms of Efron's (1975) statistical cur-
vature and is non-negative. If M� =0 then, by (3.3), for any statistic T with
a2 {0, VT (z2) will be negative for large z2 (i.e., for small :) provided a2 is
free from z2 and, therefore, the test associated with T will be inferior to the
score test, with regard to third-order local average power, for small test
size. If M� >0 then, by (3.3), the same conclusion will hold for any statistic
T with (a1 , a2){(0, 0) and a1 , a2 free from z2. In particular, then by (2.2)
for small : the score test will be superior to the LR, Wald's and modified
Wald's tests in terms of third-order local average power.

Note that unlike Amari (1985) or Taniguchi (1991), we are comparing
the tests in their original forms and not via their bias-corrected or Bartlett-
type adjusted versions. Consequently, under the present approach and up
to the third order of comparison, one can discriminate among the members
of F even under models with M� =0. This may be contrasted with the
findings in Amari (1985) or Taniguchi (1991). In the last two paragraphs
we have noted some desirable properties of the LR and score tests which
were earlier known to hold in the iid case (Mukerjee, 1994). The expression
for RT ($, z2), as in (2.7), is in fact more informative than the corresponding
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expression known so far in the iid setting when the tests are compared in
their original forms��see e.g., Mukerjee (1994) who obtained only an
expression analogous to (3.2). This enables us to study the third-order
average power function (3.1) from another standpoint.

Specifically, we bring in the criterion of stringency with respect to third-
order average power and, in view of (3.1), for each T in F consider the
function

QT ($, z2)=[sup
T

RT ($, z2)]&RT ($, z2),

where, for fixed $ and z2, the supremum is over the class F. By (2.7),

QT ($, z2)= 1
4M� $z2[I &1(h1, $�h3, $)&a1]2 h3, $

+ 1
4$z4[I &3�2[J(h1, $�h3, $)& 1

3$z&2(K+3J)]&a2 ]2 h3, $ . (3.4)

A most stringent test in F, with respect to third order average power, is
one which minimizes the supremum of QT ($, z2), with respect to $>0,
over F. The analytical derivation of such a test is difficult but, as
illustrated below, for a given model, using (3.4) and well-known closed-
form expression for h1, $ and h3, $ , a numerical solution can be obtained.
One can as well employ (2.2) and (3.4) to study the performance of
standard tests under this criterion.

Interestingly, the first term in (3.4) agrees with the corresponding expres-
sion in Amari (1985, pp. 180�181) while the second term is attributable to
consideration of tests in their original forms as done here. Because of this
second term, the ``universal'' nature of the most stringent solution that was
observed in Amari's (1985) set-up holds no more in the present context.

Example 3.1. Let X (n) represent a stretch of a Gaussian autoregressive
process of order 1 with mean zero and spectral density

8% (+)=_2�[2?(1&2% cos ++%2)], + # [&?, ?],

where _2 (>0) is known and %( |%|<1) is an unknown parameter. With
Cn=n1�2, from Proposition 1 in Taniguchi (1986) here

I=(1&%2
0)&1, K=&3J=6%0(1&%2

0)&2, M� =2(1&%2
0)&2. (3.5)

(i) By (2.2) and (3.5), the LR and Wald tests have identical second-
order power and, if %0 {0, they are superior to the score and modified
Wald tests in terms of second-order local maximinity. On the other hand,
if %0=0 then all the four tests are equivalent up to the second order of
comparison.
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(ii) Consider next the criterion of third-order local average power.
Let VLR(z2), VWald(z2) and Vm Wald(z2) denote the expressions for VT (z2)
when T represents the LR, Wald and modified Wald statistics respectively.
Using (2.2) and (3.5) in (3.3), it can be seen that in this example, each of
these three quantities is negative whenever z2>2. Thus for :=0.10, 0.05 or
0.01, the score is better than the LR, Wald and modified Wald tests with
regard to third-order local average power.

(iii) We next illustrate the issue of stringency taking :=0.05 and
%0=0. Then by (3.5), I=1, K=J=0, M� =2 so that by (2.2),

a1(LR)=1, a1(Score)=0, a1(Wald)=a1(mod Wald)=2, (3.6)

and a2 equals zero for each of these statistics. Also, by (3.4),

QT ($, z2)= 1
2$z2[(h1, $�h3, $)&a1]2 h3, $+ 1

4$z4a2
2h3, $ (3.7)

where z2=3.8416. Hence, in order to find a most stringent test with respect
to third-order average power, it is enough to restrict to statistics for which
a2=0. Numerical methods show that for such statistics the optimal choice
of a1 so as to minimize sup QT ($, z2) over $>0 is a1=1.24. Table 3.1 sum-
marizes some more related calculations. In this table, $* represents the
value of $ which maximizes QT ($, z2) for given T.

The entries in column (4) of Table 3.1 are proportional to the corre-
sponding entries in Table 6.1 of Amari (1985). In view of the discussion just
preceding this example, this is expected for %0=0 since then we are effec-
tively ignoring the second term in the expression for QT ($, z2) and the
findings can be quite different for %0 {0. Incidentally, if :=0.05, %0=0,
then by (2.7), (3.5) and (3.6), one can check that the score test in superior,
with regard to third-order average power, to the LR test for 0<$�0.86
and to Wald or modified Wald tests for 0<$�3.83. Consequently,
Table 3.1 (see column under $*) is not in conflict with what has been
stated under (ii) above.

TABLE 3.1

Values of sup QT ($, z2) over $>0 under the AR(1) Model
(:=0.05, %0=0)

T a1 a2 sup
$>0

QT ($, z2) $*

LR 1 0 0.253 12.41
Score 0 0 1.569 8.82

Wald�modified Wald 2 0 0.804 2.82
Most stringent 1.24 0 0.131 14.04
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Example 3.2. Let X (n) represent a stretch of a Gaussian moving
average process of order 1 with mean zero and spectral density

8*% (+)=[_2�(2?)](1&2% cos ++%2), + # [&?, ?],

where _2 (>0) is known and %( |%|<1) is an unknown parameter. With
cn=n1�2, by Proposition 1 in Taniguchi (1986) here

I=(1&%2
0)&1, J=&2

3K=4%0(1&%2
0)&2, M� =(6&2%2

0)(1&%2
0)&3. (3.8)

(i) By (2.2) and (3.8), the LR and modified Wald tests have identi-
cal second-order power and, if %0 {0, they are superior to the score and
Wald tests in terms of second-order local maximinity. On the other hand,
if %0=0 then these four tests are equivalent up to the second order of com-
parison.

(ii) By (2.2), (3.4), and (3.8), it can be seen that VLR(z2), VWald(z2)
and Vm Wald(z2) are all negative for :=0.05 or 0.01. Thus for these values
of :, the superiority of the score test, with regard to third-order local
average power, follows.

(iii) If :=0.05 and %0=0 then by (3.4) and (3.8),

QT ($, z2)= 3
2$z2[(h1, $�h3, $)&a1]2 h3, $+ 1

4$z4a2
2h3, $ .

Comparing the above with (3.7), as before a statistic with a1=1.24, a2=0
gives a most stringent test with respect to third-order average power.
Furthermore, Table 3.1 continues to remain valid provided each entry in its
last but one column is multiplied by 3.

4. COMPARISON OF BARTLETT-TYPE ADJUSTMENTS

As indicated earlier, Taniguchi (1991) considered a subclass F0 of F
consisting of those statistics T for which b6 equals zero (vide (2.1)). For
each member of F0 he suggested a Bartlett-type adjustment. At about the
same time, Chandra and Mukerjee (1991) and Cordeiro and Ferrari (1991)
proposed Bartlett-type adjustments which are applicable to each statistic in
F0 . For any statistic T in F0 the Bartlett-type adjusted versions due to
Chandra and Mukerjee (1991), Cordeiro and Ferrari (1991) and Taniguchi
(1991) will be denoted by T1 , T2 and T3 respectively. While the null dis-
tribution, up to o(c&2

n ), of each of T1 , T2 and T3 is central chi-square with
1 d.f., their power properties may not be identical up to that order. There-
fore, given T, a comparative power study will help in choosing one of the
adjusted versions depending on the context. Rao and Mukerjee (1995) con-
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sidered this problem when T represents the score statistic. The present
general framework enables us to handle all members of F0 .

Given any statistic T in F0 , it can be seen that each of T1 , T2 and T3

belongs to F and that the expressions for a1 and a2 associated with them
are given by

a1(T1)=a1(T ), a2(T1)=&1
3I &3�2K, (4.1a)

a1(T2)=a1(T ), a2(T2)=a2(T ), (4.1b)

a1(T3)=a1(T ), a2(T3)=&1
3I &3�2K, (4.1c)

where a1(T) and a2(T ) correspond to T. The relations (4.1b) and (4.1c)
follow from Cordeiro and Ferrari's (1991) equation (14) and Taniguchi's
(1991) equation (3.5) respectively. The relation (4.1a) can be proved essen-
tially along the line of Chandra and Mukerjee's (1991) Theorem 2.1 and we
omit the details. By (4.1), T2 differs from T by O(c&2

n ) while this may not
be the case with T1 or T3 in general. Hence, compared to T1 or T3 the
adjustment T2 perturbs T to a smaller extent (cf. Rao and Mukerjee, 1995).
From Cordeiro and Ferrari's (1991) equation (14), note that T2 may
belong to F&F0 and this justifies our consideration of the wider class F.

From (2.4), (2.7) and (2.8), recall that the third-order power function
depends on any statistic only via a1 and a2 . Hence by (4.1), the third-order
power functions corresponding to T3 and T are identical with those
associated with T1 and T2 respectively. Thus, it will suffice to compare T1

and T2 . In fact, if a2(T)=&1
3I &3�2K then, by (4.1), T, T1 , T2 and T3 will

lead to identical power functions up to the third order. Therefore, to avoid
trivialities, let a2(T ){& 1

3I&3�2K. Then by (2.2a), (4.1), a2(T1)=
a2(LR){a2(T2) so that, as in the first paragraph of Section 3, T1 (or
equivalently, T3) is superior to T2 with regard to second-order local maxi-
minity. Furthermore, by (3.3) and (4.1),

VT1
(z2)&VT2

(z2)= 1
36z4I &3sT (z2),

where

sT (z2)=z2[9I 3a2
2(T )&K2]&6J[K+3I3�2a2(T)], (4.2)

and, under the criterion of third-order local average power, T1 is superior
(inferior) to T2 if sT (z2) is positive (negative). One can as well employ
(2.7), in conjunction with (4.1), to compare the entire third order average
power functions of T1 and T2 .

Some of the results in Rao and Mukerjee (1995), which relate to the
scalar parameter case, follow from the above considerations. For further
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elucidation, let T represent the Wald statistic for the rest of this section.
Then by (2.2c) and (4.2), a2(T ){& 1

3 I&3�2K if and only if K+3J{0, and

sT (z2)=z2(9J 2&K2)&6J(K+3J). (4.3)

Example 3.1 (continued). By (3.5), here K+3J=0 and T, T1 , T2 and
T3 lead to identical power functions whatever %0 might be.

Example 3.2 (continued). By (3.8), here K+3J{0 for %0 {0. Hence
for %0 {0, T1 (or T3) is better than T2 in terms of second-order local maxi-
minity. Also, then by (3.8) and (4.3), sT (z2)=9J2( 3

4 z2&1), which is
positive for :=0.10, 0.05 or 0.01. Thus, for these values of :, T1 (or T3) is
superior to T2 also under the criterion of third-order local average power.
In fact, by (2.2c), (2.7), (3.8) and (4.1),

RT1
($, z2)&RT2

($, z2)=$z2%2
0(1&%2

0)&1[(2$+3z2) h3, $&4z2h1, $]

and if :=0.10, 0.05 or 0.01 and %0 {0 then this is seen to be positive for
every $>0. Hence, for these values of :, T1 (or T3) dominates T2

uniformly in $ (>0) with respect to third order average power. Conse-
quently, in this example, if %0 {0 then there is enough reason to prefer the
adjustment T1 (or T3) for the Wald statistic to T2 .

In the present paper, we have worked under the framework of con-
tiguous alternative. It will be of interest to compare the tests from con-
sideration of Bahadur efficiency. It is, however, likely that such a study will
involve the use of entirely different tools.
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