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In this paper, a general form of M-estimation is proposed and some asymptotics
are investigated. The model covers all linear and nonlinear regression models, AR
time series, EIVR models, etc. as its special cases. The dispersion functions may be
convex or differences of convex functions, the later covers almost all useful choices
of the dispersion functions. � 1997 Academic Press

1. INTRODUCTION

In the past three decades, there are considerable works in the literature
devoted to developing statistical procedures that are resistant to outliers
and stable (or robust) with respect to deviations from a given distribu-
tional model. In particular, methods for robust regression, estimation, and
testing on regression models have received much attention. Among these,
procedures based on M-estimators play an important and complementary
role. Reference may be made to papers by Huber (1964, 1967, 1973, 1981),
Bickel (1975), Yohai and Maronna (1979), Heiler and Willers (1988),
Basawa and Koul (1988), Bai, Rao and Wu (1992) and Bai, Rao and Wu
(1997) among others.

In linear models, the regressors are assumed to be linear functions of the
regression coefficients. This assumption may be due to mathematical con-
venience in obtaining the estimates by the traditional Least Squares (LS)
method. For relaxing this probably restrictive assumption and for seeking

article no. MV971694

119
0047-259X�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

Received January 3, 1996; revised May 13, 1997.

AMS 1980 subject classification: 62J05; 62H12.
Key words and phrases: General M-estimation, asymptotics, multivariate linear model.



File: DISTIL 169402 . By:DS . Date:06:10:97 . Time:11:20 LOP8M. V8.0. Page 01:01
Codes: 3043 Signs: 2103 . Length: 45 pic 0 pts, 190 mm

robustness, Huber proposed the well known M-estimation. In M-estima-
tion, for a prechosen dispersion function \, we are considering loss func-
tions \(yi&Xi;). In this case, the mathematical advantage of linear
regressors disappears, but the difficulty is overcome by the modern
computing techniques. Therefore, comparing efforts in computing the
M-estimators, the same amount of effort will be needed for a more general
model of nonlinear regression, i.e., to consider the target functions
\(yi& g(Xi , ;)), as that for linear models. In usual regression models
(linear or nonlinear), the distributions of the errors are assumed to be
independent of the regression coefficients ;. However, in many practical
situations, the distributions of the errors may depend on the regressors. For
example, the distribution of the observation yi is log-normally distributed
with a mean value x$i;. Then, the distribution of the error =i= yi&x$i; will
depend upon x$i;. Because we only need to consider the function
\(yi& g(Xi , ;)) where the form of g(Xi , ;) is not essential, we may simply
consider a more general form of \i (yi , ;). Therefore, in this paper we shall
introduce a more general set-up for M-estimation, which will cover all the
above mentioned models as its special cases.

Let [y1 , ..., yn , ...] be a sequence of random vectors and for each ; # 0,
[\1(y1 , ;), ..., \n(yn , ;), ...] be a sequence of functions which are differen-
tiable about ; for almost all y's, where 0 is an open convex subset of R p

known as the parameter space. Then the general M-estimate ;� is defined as
any value of ; minimizing

:
n

i=1

\i (yi , ;). (1.1)

Let �i (yi , ;) denote the derivative of \i (yi , ;) about ; if the derivative
exists and 0 otherwise. Then, ;� satisfies

:
n

i=1

�i (yi , ;� )=0, (1.2)

if the left side of (1.2) is continuous at ;� , or

} :
n

i=1

�i (yi , ;� ) }=min
; } :

n

i=1

�i (y i , ;) } , (1.3)

otherwise.
To investigate the asymptotics of the estimator, we need to define the

``true parameter.'' Assume that there exists a vector ;0 # 0 and for each i
there are an nonnegative definite matrix Gi and a function 'i (;) such that

E�i (yi , ;)=Gi (;&;0)+' i (;) (1.4)
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with 'i (;)=o(Qi (;&;0)) as ; � ;0 , where Qi is some nonnegative definite
matrix.

Although ;0 may not be uniquely determined by a single Eq. (1.4) for a
fixed i, in practice, one may show that ;0 can be uniquely determined by
all equations of type (1.4) for i=1, 2, ..., n (n�n0), under certain
reasonable conditions.

Comparing the setup described above with that in a fundamental work
of Huber (1967), one finds that our model generalizes Huber's, except that
Huber defines his estimator T(x) as an approximate minimizer of his target
function instead of as the exact one, (see his formula (1)). This assumption
is somewhat more realistic, since the recursive computation can only get
an approximation of the exact M-estimator, however, there are no any
theoretical difference in their asymptotic theory.

In Section 2, we shall give some further assumptions and state and
establish the asymptotic results of the general M-estimation under convex
discrepancy functions. In Section 3, the main results of Section 2 will be
generalized to the general M-estimation under general discrepancy func-
tions. Several examples and some discussions will be given in Section 4.

2. ASYMPTOTICS FOR CONVEX REGRESSION

In this section, we assume that \i (y i , ;) is a convex function when yi is
fixed, i=1, 2, ... and denote by �i a measurable selection of subgradients of
\i . We also assume that only on a set of probability zero �i may have
discontinuities.

Let Di (yi , ;)=\i (yi , ;+;0)&\i (yi , ;0), 2i (yi , ;)=�i (yi , ;+;0)&�i (yi , ;0)
and 2=�n

i=1 2i , Q� (n)=�n
i=1 Qi , G(n)=�n

i=1 Gi , and S(;, A)=;$A;.
For convenience of notation, we shall write 2i , Q� and G for 2i (yi , ;), Q� (n)
and G(n), respectively, when there is no confusion.

We make the following assumptions.

(A1) Let Q=Q(n) be a positive definite matrix and suppose that 0�
a1<inf *min(GQ)�sup *max(GQ)<a2<�, and that 0�a1<inf *min(Q� Q&1)�
sup *max(Q� Q&1)<a2<�, where, and in what follows, GQ=Q&1�2GQ&1�2,
*min(A) and *max(A) denote the smallest and largest eigenvalues of A,
respectively. Q&1 � 0.

Remark. In general, Q can be chosen as Q=E(�n
i=1 � i (yi , ;0))

(�n
i=1 �i (yi , ;0))$ and Qi=E�i (yi , ;0) �$i (yi , ;0). Then Q� =Q when

y1 , y2 , ... are independent.
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(A2) Cov(D� i (yi , ;), D� j (yj , ;))=&i, j (;) ;$(Qi+Qj) ; and max i �n
j=1

|&i, j (;)| � 0, as |;| � 0, where

D� i (yi , ;)=Di (yi , ;)&;$�i (yi , ;0)&E(Di (yi , ;)&;$�i (yi , ;0)).

Remark. We point out that the second part of Condition (A2) is a
consequence if E 2i 2$i�&i (;) Qi with maxi�n &i (;) � 0 (as |;| � 0) and the
sequence [yi] is ,-mixing with � ,1�2

n <�. In fact, by Lemma 1 of Section
20 in Billingsley (1968), we have

|Cov(D� i (yi , ;), D� j (yi , ;))|�2,1�2
|i& j |[Var(D� i (y i , ;)) Var(D� j (yj , ;))]1�2.

Then by the convexity of \i , we have

|Di (yi , ;)&;$� i (yi , ;0)|�|;$2i |.

Hence,

Var(D� i (yi , ;))�;$E2i2$i;.

Then, Condition (A2) is true by choosing &ij�2 - |, |i& j | &i&j |.

(A3) Q(n)&1�2 �n
i=1 �i (yi , ;0) w�D N(0, Ip).

Remark. If yi 's are independent, then �i (yi , ;0)'s are independent.
Hence Assumption (A3) is true under Lindeberg's condition. In many
applications of the main theorems, the independence condition holds.

We have the following theorems.

Theorem 2.1. Under the assumptions (A1) and (A2), for any fixed
+>0,

sup
|Q1�2;|<+ } :

n

i=1

[Di (y i , ;)&;$�i (yi , ;0)]& 1
2S(;, G) }� 0 in probability.

(2.1)

The following lemma is needed in the proof of Theorem 2.1.

Lemma 2.1. We have

EDi (yi , ;)= 1
2S(;, Gi)+o(S(;, Qi)). (2.2)

Proof. The lemma can be proved following the same procedure as the
proof of Lemma 1 in Bai, Rao and Wu (1992).
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Proof of Theorem 2.1. In order to prove (2.1), we only need to show
that for any subsequence [n$] of positive integers, there exists a sub-
sequence [n"] of the subsequence [n$] such that

sup
|Q1�2;|<+ } :

n"

i=1

[Di (yi , ;)&;$�i (y i , ;0)]

& 1
2 S(;, G) }� 0 a.s. as n" � �. (2.3)

Let us make the transformation #=Q1�2;. Then, the assertion (2.1)
becomes

sup
|#|<+ } :

n"

i=1

[Di (yi , Q&1�2#)&#$Q&1�2�i (yi , ;0)]

& 1
2 S(Q&1�2#, G) }� 0 a.s. as n" � �. (2.4)

By (A2) and (A3), we have

Var \ :
n

i=1

(Di (yi , Q&1�2#)&#$Q&1�2�i (y i , ;0))+
=:

i, j

Cov(D� i (yi , ;), D� j (yj , ;))

�2 :
n

i=1

;$Qi ; :
n

j=1

|&ij (;)|

�2#$Q&1�2Q� Q&1�2# max
1�i�n

:
n

j=1

|&ij (Q&1�2#)|

�2a&1
1 |#| 2 max

1�i�n
:
n

j=1

|&ij (Q&1�2#)| � 0, since Q&1 � 0.

Therefore,

:
n

i=1

[Di (yi , Q&1�2#)&#$Q&1�2�i (yi , ;0)

&EDi (yi , Q&1�2#)] � 0 in probability.

By Lemma 2.1,

:
n

i=1

EDi (yi , Q&1�2#)= 1
2 S(Q&1�2#, G)+o(S(Q&1�2#, G))

= 1
2 S(#, GQ)+o(1),
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where GQ is defined in Assumption (A1). By (A1), there is a subsequence
[n$$$] of [n$] such that

GQ(n$$$) � GQ
0 >0 as nij � �,

where GQ
0 is some positive definite matrix of constants. Then, for all fixed

#, we have

:
n$$$

i=1

[Di (yi , Q&1�2#)&#$Q&1�2�i (yi , ;0)]

& 1
2 S(#, GQ

0 ) � 0 in probability as n$$$ � �.

Using diagonalization technique, we can choose a subsequence [n"] of
[n$$$] such that

:
n"

i=1

[Di (yi , Q&1�2#)&#$Q&1�2�i (yi , ;0)]

� 1
2 S(#, GQ

0 ) � 0, a.s. as n" � �,

for each # in any given countable dense set of R p. Since �n"
i=1 [Di (y i , Q&1�2#)

&#$Q&1�2�i (y i , ;0)] is convex in # and 1
2S(#, GQ

0 ) is a continuously
differentiable convex function in #, we obtain, by the generalized Theorem
10.8 of Rockafellar (1970),

sup
|Q1�2;|<+ } :

n"

i=1

[Di (y i , ;)&;�i (yi , ;0)]& 1
2 S(#, GQ

0 ) }� 0 a.s.

Therefore, (2.4) follows and the proof of Theorem 2.1 is complete.

Theorem 2.2. In addition to the assumptions of Theorem 2.1, we assume
the constant a1>0 in the condition (A1), then

;� � ;0 in probability. (2.5)

Theorem 2.3. Under the assumptions of Theorem 2.2, we have, for any
+>0,

sup
|Q1�2;|<+

|Q&1�2(2&G;)| � 0 in probability. (2.6)

Based on Theorem 2.1, Theorems 2.2 and 2.3 can be proved by the same
approach of Bai, Rao and Wu (1992).
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Theorem 2.4. Under the assumptions of Theorem 2.2, we have

;� =;� +op(&Q&1�2&), (2.7)

where

;� =;0+G&1 :
n

i=1

�i (yi , ;0). (2.8)

Consequently, if we further assume (A3) is true, then

Q&1�2G(;� &;0) � N(0, I ). (2.9)

Proof. In order to prove (2.7), we need only to show that

Q1�2(;� &;� ) � 0 in probability. (2.10)

Then (2.9) follows when (A3) is true.
By (A1), we have

Q1�2(;� &;0)=Op(1).

Hence, by (2.1) and the definition of ;� , it follows that

:
n

i=1

Di (yi , ;� &;0)& 1
2 S(;� &;0 , G) � 0 in probability. (2.11)

Take {>0. For a sequence [+n] with +n � �, by (2.1), we have

sup
|Q1�2;|�+n+{ } :

n

i=1

[Di (yi , ;)&;$� i (yi , ;0)]& 1
2 S(;, G) }� 0 in probability,

which, together with (2.11), implies that

sup
|Q1�2(;&;� )|={ } :

n

i=1

[\i (yi , ;)&\i (yi , ;� )

& 1
2 S(;&;� , G)) }� 0 in probability. (2.12)

Since for |Q1�2(;&;� )|={,

S(;&;� , G)�*min(GQ) {2,
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by (2.12), we get

P( |Q1�2(;� &;� )|�{) � 0.

Then, (2.10) and hence the theorem is proved.

Now, consider a test of the hypothesis H0 : H$;=!0 , where H is a p_q
matrix of rank q. Let ;� denote the solution of

min
H$;=!0

:
n

i=1

\i (yi , ;)

and ;� be defined as before. Then we have the following theorem.

Theorem 2.5. Suppose the assumption (A3) holds in addition to the
assumptions of Theorem 2.2. Then, under the null hypothesis,

} :
n

i=1

[\i (yi , ;� )&\i (yi , ;� )]& 1
2 }K$ :

n

i=1

�i (yi , ;0) }
2

}� 0 in probability,

(2.13)

and

(H$;� &!0)$ (H$G&1QG&1H)&1 (H$;� &!0) � /2
q , (2.14)

where

K=G&1H(H$G&1H)&1�2,

is a p_q matrix and /2
q denotes a chi-square random variable with q degrees

of freedom.

Proof. By (2.8) and (2.10), it follows that

Q1�2(;� &;0)=Q1�2G&1 :
n

i=1

�i (yi , ;0)+op(1). (2.15)

By (2.1), we get

:
n

i=1

[\i (yi , ;� )&\i (yi , ;0)]=&1
2 }G&1�2 :

n

i=1

�i (y i , ;0) }
2

+op(1). (2.16)

Let W be a p_( p&q) matrix such that K$W=0 and W$W=Ip&q (with
two extreme cases where we define K=0, W=Ip if q=0 and K=Ip , W=0
if p=q). Then

H$(;&;0)=0 � ;=;0+W:.
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That means, under null hypothesis, we may assume

;=;0+W:.

Let :̂ be the M-estimator of : with respect to the dispersion functions
\i (yi , ;0+W:). Note that the gradient of \i (yi , ;0+W:) with respect to
: is W$�i (yi , ;0+W:) with

EW$�i (yi , ;0+W:)=W$GiW(:&:0)+o(W$Qi W(:&:0)).

Let ;� =;0+W:̂. Similar to (2.16), we obtain

:
n

i=1

[\i (y i , ;� )&\i (yi , ;0)]=&1
2 } (W$GW)&1�2 W$ :

n

i=1

�i (yi , ;0) }
2

+op(1),

under the null hypothesis. Hence,

:
n

i=1

[\i (yi , ;� )&\i (yi , ;0)]= 1
2 }K$ :

n

i=1

�i (yi , ;0) }
2

+op(1), (2.17)

by noticing that

KK$=G&1&W(W$GW)&1 W$

=G&1H(H$G&1H)&1 H$G&1.

By Theorem 2.4 and (2.15), it follows that

(;� &;0)$ H(H$G&1QG&1H)&1 H$(;� &;0) � /2
q .

The proof of the theorem is finished.

3. COMMENTS ON NON-CONVEX DISPERSIONS

In many situations of robust estimation, the dispersion functions may
not be convex. However, the results in Section 2 can be easily extended to
the case that each dispersion function is a difference of two convex func-
tions, which covers almost all useful cases of M-estimation by the following
fact.

Theorem 3.1 (See Theorem 4.2 of Bai, Rao and Wu (1997)). Every
function which is continuously twice differentiable can be written as a dif-
ference of two convex functions which are strictly convex.

Therefore, we shall devote this section to some general comments on
M-estimation defined by dispersion functions each of which is a difference
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of two convex functions. We shall only state the main results without
detailed mathematics.

To begin with, we need to clarify the following concept of the M-
estimators. When \i is not convex, the global minimizer of (1.1) may not
exist or may not be consistent even when it exists. See Bai, Rao and Wu
(1997) for examples. However, it can be shown that the minimization
problem (1.1) must have at least one local minimizer around the true value
of the regression parameter even when the global minimizer does not exist.
At the same time, there arises another problem that (1.1) may have many
local minimizers in such case. Therefore, we have to clarify which mini-
mizer satisfies the asymptotic properties discussed in this section.

For this end, let $ be a positive constant and denote by ;� ($) the absolute
minimizer of (1.1) in the neighborhood [; : |Q1�2(;&;0)|�$], where Q is
defined in (B1). In case that the solution is not unique, ;� ($) denotes either
one of the solutions. If there is a sequence [$n : $n � �] such that
Q1�2(;� ($n)&;0)=O(1), then we denote ;� =;� ($n). It should be noted that
the definition of ;� is actually independent of the choice of the sequence
[$n] because of the fact that |Q1�2(;� ($2)&;0)|�$1�$2 implies that
;� ($1)=;� ($2). In the present section, we shall show that such a sequence
always exists.

Let \i (yi , ;)=\i1(y i , ;)&\i2(yi , ;), where \i1 , \i2 are strictly convex
as functions of ; with fixed yi , and have derivatives �i1(y i , ;) and
�i2(y i , ;) about ;, respectively, for i=1, 2, ... . It is assumed that the union
of discontinuity set of �i1 , � i2 , i=1, 2, ..., has zero probability and
E�ij (yi , ;)=Gij (;&;0)+'ij (;), with Gij�0 and 'ij (;)=o(Qi (;&;0)) as
; � ;0 , j=1, 2.

As in Section 2, for each j=1 and 2, define Dij=Dij (y i , ;)=\ij (yi ,
;+;0)&\ij (yi , ;0), 2ij=2ij (yi , ;)=�ij (yi , ;+;0)&�ij (yi , ;0), 2( j)=�n

i=1 2ij ,
and G j=G j (n)=�n

i=1 Gij . And denote � i (yi , ;)=�i1(yi , ;)&� i (yi2 , ;),
2=2(1)&2(2) and G=G(n)=G1&G2.

We make the following assumptions.

(B1) Suppose that G satisfies the Assumption (A1) with a1>0 and
G2 satisfies (A1) with a1�0, where G=G1&G2.

(B2) The Assumption (A2) is true for both \i1 and \i2 .

(B3) Same as (A3).

Theorem 3.2. Under the assumptions (B1) and (B2), for any fixed +>0,

sup
|Q1�2;|<+ } :

n

i=1

[Di (y i , ;)&;$�i (yi , ;0)]& 1
2 S(;, G) }� 0 in probability.

(3.1)
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Proof. By Theorem 2.1, both Di1 associated with �i1(yi , ;0) and Di2

associated with �i2(y i , ;0) satisfy (2.1). Thus, (3.1) follows.

Theorem 3.3. Under the assumptions of Theorem 3.2, we have a local
minimizer ;� such that

;� � ;0 in probability.

The proof of this theorem is completely the same as that of Theorem 2.2.
Here, we would like to remind the reader that the local absolute minimizer
is isolated in a small ball with center ;� , where ;� is similarly defined as in
(2.8). Concretely speaking, we have the following:

Remark. Since (3.1) is true for all +>0, there exists a sequence of
+n � � such that (3.1) is still true when + is replaced by +n . Using similar
arguments as in the proof of Theorem 2.2, one can prove that with a
probability tending to one, there is no local minimizer in the hyper ring
0<$<|;&;� |<+n .

Theorem 3.4. Under the assumptions of Theorem 3.2, we have, for any
+>0,

sup
|Q1�2(;&;0)|<+

|Q&1�2(2&G(;&;0))| � 0 in probability.

This theorem follows from the fact that the above convergence is true for
both 2(1) and 2(2).

Theorem 3.5. Under the assumptions (B1), (B2) and (B3), we have

Q&1�2G(;� &;0) � N(0, I ).

For testing the hypothesis H0 : H$;=!0 , where H is a p_q matrix of
rank q. Let ;� denote the solution of

min
H$;=!0

:
n

i=1

\i (yi , ;)

and ;� be defined as before. Then, under the assumptions (B1), (B2) and
(B3), Theorem 2.5 is still true when the dispersion functions \i 's are
replaced by differences of convex functions. Since its mathematical expres-
sions are exactly the same as those in Theorem 2.5, we do not write it out
as a theorem.
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4. SOME EXAMPLES

In this section, we implicitly assume that \ or \i are convex functions or
differences of convex functions without stating. For most well known
results in the literature, Assumptions (A1�3) or (B1�3) are trivially satisfied
without verification, which is even not clearly stated here. We only give a
bit more details to cases which to not follow from the usual M-estimation.

4.1. The usualM-estimation in linear regression models.

Consider a general multivariate regression model

yi=X$i;+ei , i=1, ..., n (4.1)

where ei , i=1, ..., n, are vectors of random errors, Xi , i=1, ..., n, are design
matrices and ; is a p-vector of unknown parameters.

In Bai, Rao and Wu (1992) and Bai, Rao and Wu (1997), a general
asymptotic theory of M-estimation is developed under dispersions formed
by a convex function and a difference of convex functions, respectively.
That means, the M-estimator ;� is defined by minimizing

:
n

i=1

\(yi &X$i;) (4.2)

for a suitable choice of the function \, or solving the equations

:
n

i=1

Xi�(yi&X$i;)=0 (4.3)

for a suitable choice of the � function. A well known example for the
convex and robust choice of � is Huber's example. The following are some
examples of non-convex dispersions:

1. �(x)=2x�(1+x2). Then, we can choose �1(x)=2x�(1+x2) for
|x|�1 and =sign(x) for |x|>1, whereas �2(x)=0 for |x|�1 and
=sign(x)&2x�(1+x2) for |x|>1.

2. Hampel's �, i.e., for constants, 0<a<b<c, �(x)=x for |x|�a,
=a sign(x) for a<|x|�b, =a sign(x)(c&|x| )�(c&b) for b<|x|�c and
=0 otherwise. In this case, we can choose �1(x)=x for |x|�a and
=a sign(x) for |x|>a whereas �2(x)=0 for |x|�b, =a sign(x)
( |x|&b)�(c&b) for b<|x|�c and =a sign(x), otherwise.

For these choices, the Gi and Qi are defined by the expectation of
�( yi&x$i;) and the covariance of �( yi&x$i;0), for i=1, ..., n. Under very
general and mild regularity conditions, the assumptions (A1)�(A3) or
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(B1)�(B3) are satisfied. For details, see Bai, Rao and Wu (1992) and Bai,
Rao and Wu (1997).

4.2. The usual M-estimation in nonlinear regression models.

Consider a general multivariate nonlinear regression model

yi=fi (;)+ei , i=1, ..., n (4.4)

where ei , i=1, ..., n, are vectors of random errors, fi , i=1, ..., n, are given
functions and ; is a p-vector of unknown parameters. As a special case,
fi (;)=f(Xi , ;) with given f and design matrices Xi , i=1, ..., n.

In M-estimation of ;, one takes \i (yi , ;)=\(yi&f i (;)) and �i (yi , ;)=
&(d f t

i �d;) �(yi&fi (;)).
Under the conditions that E(�(e+c))=Ac+o(c) (or =Ac+O( |c| 2))

with A>0 and E(�(e) �(e)t)=B>0 and some minor conditions, say,
the derivatives d fi �d; are equi-continuous at ;0 , we have Gi=
(d f t

i �d;)A(d fi �d;)| ; = ;0
and Qi=(d f t

i �d;)B(d fi �d;)| ; = ;0
. Furthermore, if

some regularity conditions on the growth rate and nonsingularity condi-
tions on (d fi �d;)| ; = ;0

are met, say

max
1�i�n

d f t
i

d; \ :
n

j=1

d fj

d;

d f t
j

d;+
&1 d fi

d; } ;=;0

� 0,

one can verify that the conditions of Sections 2 or 3 are satisfied.

4.3. The general M-estimation in linear models.

In linear models, the general M-estimation ;� of ; is defined by a value
which minimizes

:
n

i=1

wi (Xi) \(yi&Xi;)

or a solution of the equation

:
n

i=1

wi (Xi) Xi�(y i&Xi;)=0,

where [wi (Xi)] is a set of weights depending on the design. Then, this is
equivalent to select \i (yi , ;)=wi (Xi) \(yi&Xi;) and �i (yi , ;)=&wi (Xi)
Xi �(yi&Xi;).

This is the well known Mallow estimation. For general results and the
choices of [wi (Xi)], see Hampel et al. (1986).
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4.4. The M-estimation in AR model.

Consider the AR time series

xn=;1 xn&1+ } } } +;pxn& p+=n ,

where ;=(;1 , ..., ;p)$ is a vector of unknown autoregressive coefficients
and [=1 , =2 , ...] is a sequence of iid. random errors. Then, M-estimator ;� of
; is defined by choosing \i (yi , ;)=\(xi&;1xi&1& } } } &;pxi& p), where \
is a suitably chosen dispersion function and yi=(xi , ..., xi& p)$ for p<i�n.
If � is the derivative of \ satisfying E�(=+a)=*a+o(a) and E�2(=)=_2,
then we have �i (yi , ;)=&xi�(=i&x$i (;&;0)), where xi=(xi&1 , ..., xi& p)$.

Let 7=E(x ix$i). Then, one can verify that

E(�i (yi , ;))=*7(;&;0)+o( |;&;0 | ) (4.5)

and

E(�i (yi , ;0) �i (yi , ;0)$)=_27. (4.6)

Since an AR time series is ,-mixing whose , function is exponentially
decaying, by (4.5), (4.6) and the remark below Assumption (A2), Assump-
tion (A2) is true. Hence, the conditions of Section 2 are true and conse-
quently

- n(;� &;0) w�
D N(0, A),

where A=*&2_27&1.
This has been studied by R. D. Martin (1980, 1981), to which the readers

are referred for more details.

4.5. The MLE of regression coefficients of means of exponential
variables.

Let yi be exponentially distributed with a mean x$i ;, where xi is known.
We may write this model as

yi=x$i ;+=i ,

where =i has a zero mean and variance 2(x$i ;)2. That means, the error
distributions depend on the unknown parameters.

Let y1 , ..., yn be independent. The MLE ;� of ; is to minimize

:
n

i=1
\ yi

x$i;
+log(x$i ;)+ ,

under the restriction that mini x$i ;>0.
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Corresponding to our model, we have \i (yi , ;)=( yi�x$i;)+log(x$i;),
and then �i (yi , ;)=&(x i ( yi&x$i;)�(x$i;)2). By elementary calculation, we
obtain

E�i (yi , ;)=
x ix$i (;&;0)

(x$i ;)2

and

E�i (yi , ;0) �$i (y i , ;0)=2x ix$i .

Then, it is easy to verify that the assumptions (A1�3) hold under the
conditions

inf
n

min
i�n

x$i;0 �|xi |�$>0

and

max
i�n _x$i \ :

n

i=1

x ix$i+
&1

xi \max \1,
1

x$i;0++&� 0, as n � �.

Similar consideration may apply to other parametric models, such as
inverse Gaussian regression (see Chhikara and Folks (1989)).

4.6. The nonlinear regression in EIVR models.

There is much work in Error In Variables Regression models. For an
application to this model, we refer to Gleser (1990) and Stefanski (1985).
The EIVR (structural) model is given by

y=h(!, ;)+=, x=!+$,

where !, $ and = are independent random vectors of dimensions s, s and t,
respectively and ; is unknown vector of dimension p. Suppose that (yi , xi),
i=1, 2, ..., n, are n independent observations on this model.

As Gleser pointed out, a naive approach which simply substitutes ! by
x usually leads to inconsistent estimators of ;. Now let x� be a function of
x which will be determined later. We consider the M-estimator of ; by
minimizing

:
n

i=1

\(yi&h(x� i , ;)).
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In this case, we have �i (yi , ;)=&H(x� i , ;) �(yi&h(x� i , ;)) with
H(x� , ;)=(���;) h$(x� , ;). Under the condition on the \ function made in
Section 1, we should have

E�i (yi , ;)=EH(x� i , ;)[G(h(x� i , ;)&h(!i , ;0))+o(h(x� i , ;)&h(! i , ;0))].

Thus, if we can choose x� such that

E(h(!, ;0) | x)=h(x� , ;0), (4.7)

then, under some minor continuity conditions on H and h, we shall have

E�i (yi , ;)=E(H(x� , ;0) GH$(x� , ;0))(;&;0)+o(;&;0)

and

E�i (yi , ;0) �$i (yi , ;0)=7,

where

7=E(H(x� , ;0) �(=+h(!, ;0)&h(x� , ;0)) �$(=+h(!, ;0)

&h(x� , ;0)) H$(x� , ;0)).

Consequently, the conditions of the main theorems are satisfied and hence
the main theorems hold true.

Remark. When h(!, ;) is a linear function in both ! and ; and the
underlying distributions are multivariate normal, the condition (4.7) is

x� =E(! | x)=4x+(I&4) +.

which is independent of the parameter ; to be estimated. In case that 4
and + are unknown, they can be estimated from the x observations. Then,
these quantities can be replaced by their consistent estimates. We shall not
give further details in this remark. We only want to remind the reader that
the estimator or ; defined here are consistent to the true value of the inter-
esting parameter, unlike those defined by Gleser which would converge to
something else (see his Theorem 3.1). A key reason to guarantee our
approach is applicable is that the function x� (see (4.7)) should be inde-
pendent of ;0 , that is, the function x� =x� (x) is either completely known, or
involves with parameters which is estimable by only the x-sequence. For
the least squares approach in linear case, this is possible.

134 BAI AND WU



File: DISTIL 169417 . By:DS . Date:06:10:97 . Time:11:21 LOP8M. V8.0. Page 01:01
Codes: 6599 Signs: 2498 . Length: 45 pic 0 pts, 190 mm

ACKNOWLEDGMENTS

The authors thank the referee for his helpful comments. Y. Wu's research was partially sup-
ported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

[1] Bai, Z., Rao, C. R., and Wu, Y. (1992). M-estimation of multivariate linear regression
parameters under a convex discrepancy function. Statistica Sinica 2 237�254.

[2] Bai, Z., Rao, C. R., and Wu, Y. (1997). M-estimation of multivariate linear regression
by minimizing the difference of two convex functions. In Handbook of Statistics, Vol. 15,
to appear.

[3] Basawa, L. V., and Koul, H. L. (1988). Large-sample statistics based on quadratic dis-
persion. Internat. Statist. Rev. 56 199�219.

[4] Bickel, P. J. (1975). One-step Huber estimates in the linear model. J. Amer. Statist.
Assoc. 70 428�433.

[5] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
[6] Chhikara, R. S., and Folks, J. L. (1989). The Inverse Gaussian Distribution; Theory,

Methodology and Applications. Dekker, New York.
[7] Gleser, L. J. (1990). Improvements of the Naive approach to estimation in nonlinear

Error-in-variables regression models. Contemporary Mathematics 112 99�114.
[8] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust

Statistics��The Approach Based on Influence Functions. Wiley, New York.
[9] Heiler, S., and Willers, R. (1988). Asymptotic normality of R-estimates in the linear

model. Statistics 19 173�184.
[10] Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35

73�101.
[11] Huber, P. J. (1967). The behavior of maximum likelihood estimates under non-standard

conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, Vol. 1, Univ. Calif. Press, pp. 221�233.

[12] Huber, P. J. (1973). Robust regression. Ann. Statist. 1 799�821.
[13] Huber, P. J. (1981). Robust Statistics. Wiley, New York.
[14] Martin, R. D. (1980). Robust estimation in autoregressive models. In Directions in Time

Series Vol. (D. R. Brillinger and G. C. Tiao, Eds.), pp. 228�254. IMS Publication,
Haywood CA.

[15] Martin, R. D. (1981). Robust methods for time series. In Applied Time Series II
(D. F. Findley, Ed.), pp. 683�759. Academic Press, New York.

[16] Stefanski, L. A. (1985). The effects of measurement error on parameter estimation.
Biometrika 72 585�592.

[17] Yohai, V. J., and Maronna, R. A. (1979). Asymptotic behavior of M-estimators for the
linear model. Ann. Statist. 7 258�268.

135GENERAL M-ESTIMATION


