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Abstract

We consider a kernel-type nonparametric estimator of the intensity function of a cyclic

Poisson process when the period is unknown. We assume that only a single realization of the

Poisson process is observed in a bounded window which expands in time. We compute the

asymptotic bias, variance, and the mean-squared error of the estimator when the window

indefinitely expands.
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1. Introduction, main assumptions and definitions

In [4] we constructed a consistent estimator (cf. (1.3) and Theorem 1.1 below) of a
cyclic Poisson intensity function l under the following assumptions:

(a) The period (i.e., cycle) of the intensity function l is unknown.

ARTICLE IN PRESS

�Corresponding author. Fax: 519-661-3813.

E-mail addresses: r.helmers@cwi.nl (R. Helmers), zitikis@stats.uwo.ca (R. Zitikis).
1Supported by a cooperation project between The Netherlands and Indonesia on ‘‘Applied

Mathematics and Computational Methods’’ of the Royal Netherlands Academy of Sciences (KNAW).
2Supported by an NSERC of Canada individual research grant at the University of Western Ontario,

and by the Netherlands Organization for Scientific Research (NWO).

0047-259X/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0047-259X(03)00082-4



(b) Only a single realization of the Poisson process X is available in a window
WnCR:

(c) The window Wn is bounded for any ‘‘time’’ instance n but expands when n

increases.

There are many practical situations where estimating cyclic Poisson intensity
functions under assumptions (a)–(c) is of importance. In [4] we presented a review of
such applications, and a number of them can also be found in the monographs by
Cox and Lewis [2], Lewis [8], Daley and Vere-Jones [3], Karr [6], Snyder and Miller
[11], Reiss [10], and Kutoyants [7].
We shall now introduce and discuss further notations and assumptions to be used

throughout the paper.
Let X be a Poisson point process on the real line R with (unknown) locally

integrable intensity function l: We assume throughout that l is periodic with
(unknown) period

t40; ð1:1Þ
that is, lðz þ ktÞ ¼ lðzÞ for any real zAR and any integer kAZ:
Let the windows W1;W2;yCR be intervals of finite length jWnj such that

jWnj-N

when n-N: (Unless confusion is likely, we shall suppress n-N throughout the
paper.)
Assume that the Poisson process X has been observed in Wn and a consistent

estimator #tnX0 of t has been constructed. That is, let

#tn-Pt; ð1:2Þ
where-P stands for the convergence in probability. For example, one may consider
using the estimators constructed by Vere-Jones [12], Mangku [9], Bebbington and
Zitikis [1].
For estimating the intensity l at a point s; in [4] we suggested the following

estimator:

#ln;KðsÞ :¼
#tn

jWnj
XN

k¼�N

1

hn

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ: ð1:3Þ

In order to demonstrate that #ln;KðsÞ is a consistent estimator of lðsÞ; we need to

impose several assumptions. Namely, let s be a Lebesgue point of the intensity
function l: Furthermore, let h1; h2;y be (strictly) positive real numbers such that

hn-0; ð1:4Þ

hnjWnj-N: ð1:5Þ

Finally, let the kernel function K be a bounded probability density function with
(closed) support suppðKÞD½�1; 1	: If it is not stated otherwise (cf., e.g., Section 5
below), we also assume that K has only a finite number of discontinuities. Under the
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assumptions above, in [4] we proved consistency of the estimator #ln;KðsÞ; as well as
obtained a rate of consistency. In particular, we proved the following theorem.

Theorem 1.1 (Helmers et al. [4]). Let the following assumption

P
jWnj

hn

j#tn � tjXd
� �

¼ oð1Þ ð1:6Þ

hold for any d40: Then the estimator #ln;KðsÞ is (weakly) consistent.

In the present paper we focus on further statistical properties of the estimator
#ln;KðsÞ: asymptotic unbiasedness (cf. Section 2 below), asymptotic behaviour of the

variance and the mean-squared error (cf. Section 3 below). In fact, in our

considerations below we shall use the following modification of the estimator #ln;KðsÞ:
#l}n;KðsÞ :¼ If#ln;KðsÞpDng#ln;KðsÞ þ If#ln;KðsÞ4DngDn; ð1:7Þ

where ‘‘truncating’’ constants Dn are deterministic and converge to infinity when
n-N: We shall see from the main results below that the choice of Dn depends on
how well the estimator #tn estimates t: Specifically, the closer the estimator #tn is to t;
the large the value of Dn can be taken. This is natural since errors made when
estimating the period t are accumulated and enlarged a number of times when
estimating the intensity function lðsÞ itself. In the extreme case when t is known, we
can certainly choose #tn :¼ t and thus, in turn and somewhat formally, Dn ¼ N for

any n: The latter reduces the estimator #l}n;KðsÞ to #ln;KðsÞ considered in [4]. The

asymptotic unbiasedness of #ln;KðsÞ is easy:

E#ln;KðsÞ ¼
t

jWnj
XN

k¼�N

1

hn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
lðxÞ dx

E
Z
R

KðxÞlðhnx þ sÞ dx

- lðsÞ: ð1:8Þ

We note that the convergence to lðsÞ in (1.8) is due to the assumptions that K is a
probability density function and s is a Lebesgue point of l: For more details on the
case when the period t is known (but in more complicated than purely periodic
situations) we refer to Helmers and Zitikis [5].

2. Results: asymptotic unbiasedness

In this section we present two main results: Theorems 2.1 and 2.2. In the first

theorem we prove the asymptotic unbiasedness of #l}n;KðsÞ; whereas in Theorem 2.2

we consider the rate of convergence of E#l}n;KðsÞ to lðsÞ: Naturally, the performance
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of #l}n;KðsÞ depends on the performance of #tn; the fact that is reflected by assumptions

(2.1) and (2.4).

Theorem 2.1. Assuming that, for any d40;

P
jWnj

hn

j#tn � tjXd
� �

¼ o
1

Dn

� �
; ð2:1Þ

we have that

E#l}n;KðsÞ-lðsÞ: ð2:2Þ

Assumption (2.1) connects the truncation level Dn in the definition of #l}n;K with the

rate of convergence of #tn to t: We note in this regard that if the construction of #tn

allows one to calculate, or estimate, the second moment Eð#tn � tÞ2; then the
verification of (2.1) can be carried out with the help of the following (somewhat
stronger) condition:

Eð#tn � tÞ2 ¼ o
h2n

DnjWnj2

 !
: ð2:3Þ

Using (2.3), we can now describe a class of possible ‘‘truncation levels’’’ Dn;

depending on hn; Wn; and the rate of convergence of Eð#tn � tÞ2 to 0:

Theorem 2.2. Let the second derivative l00ðsÞ exist and be finite. Let the kernel K be

symmetric around 0 and satisfy the Lipschitz condition between the ( finite number of )
discontinuity points. Furthermore, let the sequence Dn be such that, for some c40 and

e40; the bound DnXch�e
n holds for all sufficiently large n; and let h2njWnj-N:

Assuming that, for any d40;

P
jWnj

h3n
j#tn � tjXd

� �
¼ o

h2n
Dn

� �
; ð2:4Þ

we have that

E#l}n;KðsÞ ¼ lðsÞ þ 1

2
l00ðsÞh2n

Z 1

�1
x2KðxÞ dx þ oðh2nÞ: ð2:5Þ

Note that contrary to Theorem 2.1, in Theorem 2.2 we require that the truncation
level Dn should not be too low, that is, DnXch�e

n : This is so in order to be able to

extract the term 1
2
l00ðsÞh2n

R 1
�1 x2KðxÞ dx out of the estimator #l}n;KðsÞ with the desired

error oðh2nÞ: Note also that, given the constraints of Theorem 2.2, if we take the

lowest truncation level Dn ¼ ch�e
n ; then we shall get the weakest assumption (2.4),

that is,

P
jWnj

h3n
j#tn � tjXd

� �
¼ oðh2þe

n Þ:
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The main reason for formulating a result like Theorem 2.2 with general Dn is to
allow some needed flexibility when combining results with different sequences Dn:
We employ this observation, for example, in deriving (3.5) below, which is a
consequence of two results: Theorems 2.2 and 3.2.

In Theorem 2.2 we assume that h2njWnj-N; which is a stronger assumption than

(1.5). In fact, without assuming h2njWnj-N; we can only prove that the remainder

term on the right-hand side of (2.5) is of the order oðh2nÞ þ OðjWnj�1Þ: Since the

second term on the right-hand side of (2.5) is exactly of the order Oðh2nÞ; it is

therefore natural to have jWnj�1 ¼ oðh2nÞ; which is the assumption h2njWnj-N in

Theorem 2.2.

3. Results: asymptotic variance and mean-squared error

In the following two theorems we consider the convergence of the variance

Varð#l}n;KðsÞÞ to 0; as well as the rate of convergence. Combining these two results

with those in the previous section, we in turn obtain the corresponding results about

the asymptotic behaviour of the mean-squared error of #l}n;KðsÞ:

Theorem 3.1. Assuming that, for any d40;

P
jWnj

hn

j#tn � tjXd
� �

¼ o
1

D2
n

� �
; ð3:1Þ

we have that

Varð#l}n;KðsÞÞ-0: ð3:2Þ

Using Theorems 2.1 and 3.1, we immediately obtain that under assumption (3.1)

the mean-squared error of #l}n;KðsÞ converges to 0:

In view of the discussion immediately after Theorem 2.1, it should not be

surprising that the rate oðD�2
n Þ is assumed in Theorem 3.1, if compared to oðD�1

n Þ in
Theorem 2.1. Indeed, even moderate errors when estimating t may enlarge the

variance of #l}n;KðsÞ in a more profound way than in the case of the mean E#l}n;KðsÞ:
In Theorem 3.2 below we derive the first asymptotic term of the variance

Varð#l}n;KðsÞÞ and in this way demonstrate that the variance is of the order

Oð1=ðjWnjhnÞÞ: Naturally, the result requires stronger assumptions than those in
Theorem 3.1.

Theorem 3.2. Let the kernel K satisfy the Lipschitz condition between the ( finite

number of ) discontinuity points. Furthermore, let the sequence Dn be such that, for

some c40 and e40; the bound DnXcðhnjWnjÞe holds for all sufficiently large n:
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Assuming that, for any d40;

P
jWnj3=2

h
1=2
n

j#tn � tjXd

( )
¼ o

1

D2
njWnjhn

� �
; ð3:3Þ

we have that

Varð#l}n;KðsÞÞ ¼
tlðsÞ
jWnjhn

Z 1

�1
K2ðxÞ dx þ o

1

jWnjhn

� �
: ð3:4Þ

Using Theorems 2.2 and 3.2, we derive the following asymptotic formula for the

mean-squared error of #l}n;KðsÞ:

tlðsÞ
jWnjhn

Z 1

�1
K2ðxÞ dx þ 1

4
l00ðsÞ

Z 1

�1
x2KðxÞ dx

� �2

h4n þ Rn; ð3:5Þ

where the remainder term Rn is of the order oððjWnjhnÞ�1Þ þ oðh4nÞ: Minimizing the

sum of the two main terms in (3.5), we obtain the following (optimal) choice for the
bandwidth hn:

hn ¼ ðc0=jWnjÞ1=5; ð3:6Þ

where the constant c0 is defined by the formula

c0 :¼ tlðsÞ
Z 1

�1
K2ðxÞ dx l00ðsÞ

Z 1

�1
x2KðxÞ dx

� �2
,

:

Using the just obtained bandwidth in formula (3.5), we obtain that the mean-

squared error of #l}n;KðsÞ is of the order OðjWnj�4=5Þ:

4. A comparison of the current and classical results

The main results in the previous two sections closely resemble the corresponding
ones in the classical kernel-type density estimation. To demonstrate this we now
construct an artificial density function f as follows:

f ðsÞ :¼
1
yt lðsÞ; sA½0; t	;
0 otherwise;

(

where y :¼ t�1
R t
0 lðsÞ ds: For the sake of argument, assume that both the period t

and the parameter y are known; this is an unrealistic but convenient assumption to
demonstrate the connection between the results of this paper and those in the
classical area of kernel-type density estimation. Under the assumptions above,
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the quantity

f̂n;KðsÞ :¼
1

yt
#l}n;KðsÞ

can be viewed as an estimator of f ðsÞ:
Applying (2.5) in the situation described above, we obtain

Ef̂n;KðsÞ ¼
1

yt
lðsÞ þ f 00ðsÞyt

2yt
h2n

Z 1

�1
x2KðxÞ dx þ oðh2nÞ þ O

1

jWnj

� �

¼ f ðsÞ þ f 00ðsÞ
2

h2n

Z 1

�1
x2KðxÞ dx


 �
þ oðh2nÞ þ O

1

jWnj

� �
: ð4:1Þ

Note that the term in brackets ½
	 on the right-hand side of (4.1) is the same as the
well-known formula for the asymptotic bias in the classical kernel-type density
estimation.
Applying (3.4) in the situation described above, we obtain the following formula:

Var ð f̂n;KðsÞÞ ¼
1

ðytÞ2
tf ðsÞðytÞ
jWnjhn

Z 1

�1
K2ðxÞ dx þ o

1

jWnjhn

� �

¼ f ðsÞ
yjWnjhn

Z 1

�1
K2ðxÞ dx þ o

1

jWnjhn

� �
: ð4:2Þ

Note that since l is periodic, EX ðWnÞ is approximately yjWnj: Hence, it is
appropriate to compare yjWnj in the context of the current paper with the sample
size N in the context of kernel-type density estimation. Therefore, replacing yjWnj on
the right-hand side of (4.2) by N; we reduce the right-hand side of (4.2) to the
following well-known expression for the variance in the kernel density estimation:

Varð f̂n;KðsÞÞ ¼
1

Nhn

f ðsÞ
Z 1

�1
K2ðxÞ dx þ o

1

Nhn

� �
: ð4:3Þ

Combining (4.1) and (4.3), we obtain the corresponding formulas for the mean-

squared error of f̂n;KðsÞ; which are in parallel to the corresponding ones in the

classical area of the kernel density estimation.

5. Assumptions on the kernel K

When formulating the results in the previous sections we assumed that the kernel
K has only a finite number of discontinuities. This assumption is needed to control
the fluctuations of the function

x/K
x � ðs þ k#tnÞ

hn

� �
ð5:1Þ

depending on the fluctuations of #tn around t: In fact, the assumption concerning the
finite number of discontinuities of K can be weakened even further. Namely,
straightforward calculations show that the results of the present paper hold under
the following assumption.

ARTICLE IN PRESS
R. Helmers et al. / Journal of Multivariate Analysis 92 (2005) 1–23 7



Assumption 5.1. For any a40; there exists a finite collection of disjoint compact
intervals B1;y;BMa and a continuous function Ka : R-R such that

(i) the Lebesgue measure of the set ½�1; 1	\
SMa

i¼1 Bi does not exceed a; and
(ii) jKðuÞ � KaðuÞjpa for all uA

SMa
i¼1 Bi:

Furthermore, note that by the classical Weierstrass theorem, the continuous
function Ka in Assumption 5.1 can be replaced by a Lipschitz function La:
Thus, without loss of generality, assumption (ii) can be replaced by the following
one:

(iii) jKðuÞ � LaðuÞjpa for all uA
SMa

i¼1 Bi:

However, in order to make the proofs shorter and more transparent, in the
following sections we present them only in the case when

the kernel function K is a Lipschitz function on the whole real line R;

ð5:2Þ
which is a stronger requirement than Assumption 5.1. However, generalizing the
proofs to piecewise Lipschitzian kernel functions K—which would mean presenting
the proofs under Assumption 5.1—is straightforward and thus omitted from the
current paper.
We conclude this section with a notation that we use in the proofs below:

DKk;nðxÞ :¼ K
x � ðs þ k#tnÞ

hn

� �
� K

x � ðs þ ktÞ
hn

� �
:

6. Proof of Theorem 2.1

Denote

An :¼ j#tn � tjp dhn

jWnj

� �
: ð6:1Þ

With this notation, we have the representation

E#l}n;KðsÞ ¼ Gnð1Þ � Gnð2Þ þ Gnð3Þ þ Gnð4Þ þ Gnð5Þ; ð6:2Þ

where

Gnð1Þ :¼ EðIfAc
ngIf#ln;KðsÞpDng#ln;KðsÞÞ;

Gnð2Þ :¼ EðIfAngIf#ln;KðsÞ4Dng#ln;KðsÞÞ;

Gnð3Þ :¼ EðIfAng#ln;KðsÞÞ;

Gnð4Þ :¼ DnEðIfAc
ngIf#ln;KðsÞ4DngÞ;

Gnð5Þ :¼ DnEðIfAngIf#ln;KðsÞ4DngÞ:
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We shall demonstrate below that by taking n sufficiently large and/or d40
sufficiently small we can make the quantities GnðkÞ; k ¼ 1; 2; 4; 5; as small as desired,
and the quantity Gnð3Þ as close to lðsÞ as desired. These statements together with
(6.2) will then complete the proof of Theorem 2.1.
The quantities Gnð1Þ and Gnð4Þ do not exceed DnPðAc

nÞ: Due to assumption (2.1),

the quantity DnPðAc
nÞ converges to 0 for any fixed d40: This proves the desired

smallness of Gnð1Þ and Gnð4Þ:
The quantities Gnð2Þ and Gnð5Þ do not exceed D�1

n EðIfAng#l2n;KðsÞÞ: Since Dn-N;

the desired smallness of Gnð2Þ and Gnð5Þ follows if the expectation EðIfAng#l2n;KðsÞÞ is
asymptotically bounded. The latter statement follows from statement (8.2) below.
We ought to note in this regard that the proof of (8.2) is a part of the proof of
Theorem 3.1 which is formulated under stronger assumption (3.1) than (2.1).
However, we shall see below that the proof of (8.2) does not require (3.1) and can be
carried out under (2.1) only. With these notes we conclude the proof of the desired
smallness of Gnð2Þ and Gnð5Þ:
We shall now prove that lim supn-N

jGnð3Þ � lðsÞj can be made as small as
desired by taking d40 sufficiently small. We start with the representation

Gnð3Þ ¼ Lnð1Þ þ Lnð2Þ þ Lnð3Þ; ð6:3Þ

where

Lnð1Þ :¼ E IfAng 1� t
#tn

� �
#ln;KðsÞ

� �
;

Lnð2Þ :¼
t

jWnjhn

E IfAng
XN

k¼�N

Z
Wn

DKk;nðxÞX ðdxÞ
 !

;

Lnð3Þ :¼
t

jWnjhn

E IfAng
XN

k¼�N

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !
:

In Lemmas 6.1–6.3 below we prove that by taking n sufficiently large and d40
sufficiently small we can make the quantities Lnð1Þ and Lnð2Þ as small as desired and
the quantity Lnð3Þ as close to lðsÞ as desired.

Lemma 6.1. For any fixed d40; we have limn-N Lnð1Þ ¼ 0:

Proof. We start the proof with the note that if #tn ¼ 0; then #ln;KðsÞ ¼ 0: Thus, we can
and thus do restrict ourselves to the case #tn40 only. Since the kernel K is bounded
and has support in ½�1; 1	; we obtain that

#ln;KðsÞp c
#tn

jWnjhn

Z
Wn

XN
k¼�N

I
x � s

#tn

þ kA
hn

#tn

½�1; 1	Þ
� �

XðdxÞ

p c
#tn

jWnjhn

sup
zAR

XN
k¼�N

I z þ kA
hn

#tn

½�1; 1	Þ
� � !

XðWnÞ: ð6:4Þ
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For any real r we have the bound

sup
zAR

XN
k¼�N

Ifz þ kAr½�1; 1	Þg
 !

p2jrj þ 1: ð6:5Þ

Applying (6.5) on the right-hand side of (6.4), we obtain that, for all sufficiently
large n;

#ln;KðsÞp c
#tn

hn

þ 1

� �
X ðWnÞ
jWnj

p
c

hn

XðWnÞ
jWnj

; ð6:6Þ

where the right-most bound in (6.6) was obtained using the fact that we have
restricted ourselves to the event An when calculating the expectation in the definition
of Lnð1Þ: Using (6.6), we in turn obtain that, for all sufficiently large n;

jLnð1Þjp
c

hn

E IfAng 1� t
#tn

����
����X ðWnÞ

jWnj

� �

p c
d

jWnj
E

X ðWnÞ
jWnj

� �
: ð6:7Þ

It is easy to check that, for any pX1;

lim
n-N

EðX ðWnÞ=jWnjÞpoN: ð6:8Þ

Using (6.8) with p ¼ 1 and since jWnj-N by assumption, the right-hand side of
(6.7) converges to 0: This completes the proof of Lemma 6.1. &

Lemma 6.2. There is a constant coN such that for all sufficiently large n we have the

bound Lnð2Þpcd for all d40: Thus, by choosing d40 sufficiently small, we can make

the quantity lim supn-N
Lnð2Þ as small as desired.

Proof. Let

û :¼ x � ðs þ k#tnÞ
hn

; u :¼ x � ðs þ ktÞ
hn

:

Since the support of the kernel K is in the interval ½�1; 1	; the difference KðûÞ � KðuÞ
can be decomposed in the following way:

KðûÞ � KðuÞ ¼ ðKðûÞ � KðuÞÞIfûA½�1; 1	g

þ KðuÞðIfûA½�1; 1	g � IfuA½�1; 1	gÞ: ð6:9Þ

Using decomposition (6.9), we write Lnð2Þ as follows:

Lnð2Þ ¼ Ynð1Þ þYnð2Þ; ð6:10Þ
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where

Ynð1Þ :¼
t

jWnjhn

� E IfAng
XN

k¼�N

Z
Wn

DKk;nðxÞI
x � ðs þ k#tnÞ

hn

A½�1; 1	
� �

X ðdxÞ
 !

;

Ynð2Þ :¼
t

jWnjhn

E IfAng
XN

k¼�N

Z
Wn

K
x � ðs þ ktÞ

hn

� � 

� I
x � ðs þ k#tnÞ

hn

A½�1; 1	
� �

� I
x � ðs þ ktÞ

hn

A½�1; 1	
� �� �

XðdxÞ
!
:

We shall prove below that Ynð1Þ and Ynð2Þ can be made as small as desired by
taking n sufficiently large and d40 sufficiently small.
We start withYnð1Þ: Since K is a Lipschitz function (cf. assumption (5.2)), we have

that

Ynð1Þp
c

jWnjhn

E IfAng
j#tn � tj

hn

XN
k¼�N

kX fs þ k#tn þ hn½�1; 1	g-Wnð Þ
 !

:

ð6:11Þ

The infinite sum
P

N

k¼�N
on the right-hand side has only a finite number of nonzero

summands. Thus, we replace
P

N

k¼�N
by
P

kAK; where the set KCZ is finite and

such that the number kn of elements in K satisfies the asymptotic relationship
knEcjWnj; where the constant c does not depend on n and d: Next, we estimate k on
the right-hand side of (6.11) by cjWnj: Furthermore, we estimate j#tn � tj on the right-
hand side of (6.11) by dhn=jWnj: Consequently, we have the bound

Ynð1ÞpcdC�
n; ð6:12Þ

where

C�
n :¼ 1

jWnjhn

XN
k¼�N

EX s þ ktþ k
dhn

jWnj
½�1; 1	 þ hn½�1; 1	

� �
-Wn

� �
: ð6:13Þ

LetK be now (possibly another) subset of Z such that the expectations on the right-
hand side of (6.13) are nonzero for any kAK; and let kn be the number of elements
in K: We obtain

C�
n ¼ 1

jWnjhn

X
kAK

EX s þ ktþ k
dhn

jWnj
½�1; 1	 þ hn½�1; 1	

� �
-Wn

� �

p
1

jWnjhn

X
kAK

EX s þ k
dhn

jWnj
½�1; 1	 þ hn½�1; 1	

� �

p
kn

jWnjhn

EX ðs þ cdhn½�1; 1	 þ hn½�1; 1	Þ:
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Thus, lim supn-N
C�

n does not exceed a constant. In view of (6.12), the latter fact

implies that limn-NYnð1Þ can be made as small as desired by taking d40 sufficiently
small.
We shall now prove that lim supn-N

Ynð2Þ can be made as small as desired by
taking d40 sufficiently small. For this, we first estimate the difference of the two
indicators in the definition of Ynð2Þ as follows. First, we rewrite k#tn as the sum of kt
and kð#tn � tÞ: Then, we estimate kð#tn � tÞ by kdhn=jWnj: Since the number kn of
nonzero summands in the definition ofYnð2Þ is of the order knEcjWnj; we estimate k

in kdhn=jWnj by cjWnj: The notes above imply that the absolute value of the
difference between the two indicators in the definition of Ynð2Þ does not exceed

Ifx � ðs þ ktÞAhn½�1� cd;�1þ cd	g þ Ifx � ðs þ ktÞAhn½1� cd; 1þ cd	g:

This, in turn, implies the bound

Ynð2ÞpYþ
n ð2Þ þY�

n ð2Þ; ð6:14Þ

where

Y7
n ð2Þ :¼ t

jWnjhn

E IfAng
XN

k¼�N

Z
Wn

K
x � ðs þ ktÞ

hn

� � 

� Ifx � ðs þ ktÞAhn½71� cd;71þ cd	gX ðdxÞ
!
:

Using the boundedness of the kernel K ; we obtain

Y7
n ð2Þp c

jWnjhn

E
XN

k¼�N

Z
Wn

Ifx � ðs þ ktÞAhn½71� cd;71þ cd	gXðdxÞ
 !

p
c

jWnjhn

X
kAK

EXðs þ ktþ hn½71� cd;71þ cd	Þ

p
c

hn

EXðs þ hn½71� cd;71þ cd	Þ

p cd: ð6:15Þ

Thus, taking d40 sufficiently small, we can make lim supn-N
Y7

n ð2Þ as small

as desired. This also completes the proof of the same claim concerning
lim supn-N

Ynð2Þ: The proof of Lemma 6.2 is finished. &

Lemma 6.3. The statement limn-N Lnð3Þ ¼ lðsÞ holds.

Proof. We decompose Lnð3Þ in the following way:

Lnð3Þ ¼ X�
n þ X��

n ; ð6:16Þ
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where

X�
n :¼ t

jWnj
E

XN
k¼�N

1

hn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
X ðdxÞ

( )
;

X��
n :¼ t

jWnj
E IfAc

ng
XN

k¼�N

1

hn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
X ðdxÞ

( )
:

We shall demonstrate that

X�
n-lðsÞ; ð6:17Þ

X��
n -0: ð6:18Þ

We start the proof of (6.17) with the following equalities:

X�
n ¼ t

jWnj
XN

k¼�N

1

hn

Z
R

IfxAWngK
x � ðs þ ktÞ

hn

� �
lðxÞ dx

¼ t
jWnj

XN
k¼�N

Z
R

Ifhnx þ s þ ktAWngKðxÞlðhnx þ s þ ktÞ dx

¼ t
jWnj

Z
R

XN
k¼�N

Ifhnx þ s þ ktAWng
 !

KðxÞlðhnx þ sÞ dx: ð6:19Þ

Since Wn is an interval, we have that, for any zAR;XN
k¼�N

Ifz þ ktAWngA
jWnj
t

� 1;
jWnj
t

þ 1


 �
: ð6:20Þ

Therefore, when n-N; the right-hand side of (6.19) asymptotically behaves like

*X�
n :¼

Z
R

KðxÞlðhnx þ sÞ dx:

Since the kernel K is a bounded probability density function and has support in
½�1; 1	; we obtain the representation

*X�
n ¼ lðsÞ þ y

c

hn

Z hn

�hn

jlðx þ sÞ � lðsÞj dx ð6:21Þ

for some jyjp1: Since s is a Lebesgue point of l; the second summand on the right-
hand side of (6.21) (with y in front of it) converges to 0. This completes the proof
of (6.17).
We shall now prove (6.18). Using the Cauchy–Schwarz inequality, we have that

ðX��
n Þ2pP

jWnj
dhn

j#tn � tjX1

� �
Pn; ð6:22Þ

where

Pn :¼ t2

jWnj2h2n
E

XN
k¼�N

Z
Wn

K
x � ðs þ ktÞ

hn

� �
X ðdxÞ

 !2

:
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By assumption (2.1), for any fixed d40 the probability on the right-hand side of
(6.22) converges to 0 when n-N: Therefore, in order to complete the proof of
statement (6.18), we need to show that the quantity Pn is asymptotically bounded. In
fact, we shall demonstrate that

Pn-l2ðsÞ: ð6:23Þ

We start the proof of (6.23) with the note that, since hnk0 and the kernel K has
support in ½�1; 1	; the random variables xk; kX1; defined by the formula

xk :¼
Z

Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

are independent for all sufficiently large n: Therefore,

Pn ¼ P�
n �P��

n þP���
n ; ð6:24Þ

where

P�
n :¼ t2

jWnj2h2n

XN
k¼�N

E

Z
Wn

K
x � ðs þ ktÞ

hn

� �
X ðdxÞ

 !2

;

P��
n :¼ t2

jWnj2h2n

XN
k¼�N

E

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

� �2

;

P���
n :¼ t2

jWnj2h2n

XN
k¼�N

E

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

� �2

:

Note that limn-N P�
n ¼ l2ðsÞ: Indeed, we have that P�

n ¼ fX�
ng

2; where X�
n is the

same as in (6.16). But we have already proved that X�
n-lðsÞ: Thus, in order to

complete the proof of (6.23), we need to show that limn-N P��
n ¼ 0 and

limn-N P���
n ¼ 0: Since statement limn-N P��

n ¼ 0 follows from limn-N P���
n ¼ 0;

we need to prove the latter only. Since K is bounded and has support in ½�1; 1	; we
have that

P���
n pc

1

jWnj2h2n

XN
k¼�N

EðXðfs þ ktþ hn½�1; 1	g-WnÞÞ2: ð6:25Þ

Replacing the infinite sum
P

N

k¼�N
on the right-hand side of (6.25) by a finite oneP

kAK as we have already done several times above, we obtain the bounds

P���
n p c

1

jWnj2h2n

X
kAK

EðXðfs þ ktþ hn½�1; 1	g-WnÞÞ2

p c
kn

jWnj2h2n
EðXðfs þ hn½�1; 1	gÞÞ2

p c
1

jWnjhn

: ð6:26Þ
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The right-hand side of (6.26) converges to 0 since we have jWnjhn-N by
assumption. This completes the proof of (6.23) and, in turn, of (6.18). Lemma 6.3 is
proved, and so is Theorem 2.1. &

7. Proof of Theorem 2.2

We closely follow the proof of Theorem 2.1. Denote

Bn :¼ j#tn � tjp dh3n
jWnj

� �
: ð7:1Þ

As in the proof of Theorem 2.1, we use the following representation:

E#l}n;KðsÞ ¼ Gnð1Þ � Gnð2Þ þ Gnð3Þ þ Gnð4Þ þ Gnð5Þ; ð7:2Þ

where Gnð1Þ;y;Gnð5Þ are defined in (6.2) but now with the set Bn instead of An:
The quantities Gnð1Þ and Gnð4Þ do not exceed DnPðBc

nÞ: Due to assumption (2.4),

the latter quantity is of the order oðh2nÞ:
The quantities Gnð2Þ and Gnð5Þ do not exceed D�r

n EðIfBngf#ln;KðsÞgrþ1Þ for any
rX0: Since DnXch�e

n ; we can find a large rX0 such that 1=Dr
npoðh2nÞ: This implies

that both Gnð2Þ and Gnð5Þ are of the order oðh2nÞ provided that the expectation

EðIfBng#lrþ1
n;K ðsÞÞ is asymptotically bounded. In order to demonstrate this, we first

replace the set Bn in the expectation EðIfBng#lrþ1
n;K ðsÞÞ by the set An defined in (6.1).

Then, with some obvious modifications, we follow the proof of (8.2) below (that we
have already mentioned in the proof of Theorem 2.1 above) and demonstrate that

the expectation EðIfBng#lrþ1
n;K ðsÞÞ is asymptotically bounded.

In view of the notes above, we complete the proof of Theorem 2.1 provided that

Gnð3Þ ¼ lðsÞ þ 1

2
l00ðsÞh2n

Z 1

�1
x2KðxÞ dx þ oðh2nÞ: ð7:3Þ

Just like in (6.3), we decompose Gnð3Þ into the sum of Lnð1Þ; Lnð2Þ and Lnð3Þ defined
below (6.3) but now with Bn instead of An: Recall that when proving Lemma 6.1 we

showed that Lnð1Þ ¼ OðjWnj�1Þ: Since in the current proof we assume h2njWnj-N;

we have jWnj�1 ¼ oðh2nÞ: Consequently, Lnð1Þ ¼ oðh2nÞ: As to the quantity Lnð2Þ; we
apply Lemma 6.2 with d replaced there by dh2n: (Note that the latter replacement

makes the set An into the set Bn:) This proves that there exists a constant coN such

that for all sufficiently large n the bound Lnð2Þpcdh2n holds for all d40: This implies

that lim supn-N
h�2

n Lnð2Þ can be made as small as desired by choosing d40

sufficiently small. In view of these notes, statement (7.3) follows from

Lnð3Þ ¼ lðsÞ þ 1

2
l00ðsÞh2n

Z 1

�1
x2KðxÞ dx þ oðh2nÞ: ð7:4Þ
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To prove (7.4), we write

Lnð3Þ ¼ X�
n þ X��

n ; ð7:5Þ

where X�
n and X��

n are defined as in the proof of Lemma 6.3 but with Bn instead of An:
We shall verify below that

X�
n ¼ lðsÞ þ 1

2
l00ðsÞh2n

Z 1

�1
x2KðxÞ dx þ oðh2nÞ; ð7:6Þ

X��
n ¼ oðh2nÞ: ð7:7Þ

We start the proof of (7.6) with the equalities

X�
n ¼ t

jWnj
XN

k¼�N

1

hn

Z
R

K
x � ðs þ ktÞ

hn

� �
lðxÞIðxAWnÞ dx

¼ t
jWnjhn

Z
R

K
x

hn

� � XN
k¼�N

lðx þ s þ ktÞIðx þ s þ ktAWnÞ dx

¼ t
jWnjhn

Z
R

K
x

hn

� �
lðx þ sÞ

XN
k¼�N

Iðx þ s þ ktAWnÞ
 !

dx: ð7:8Þ

Bound (6.20) shows that the right-hand side of (7.8) equals

1þ y
1

jWnj

� �
1

hn

Z
R

K
x

hn

� �
lðx þ sÞ dx ð7:9Þ

with some jyjp1: Using the Taylor theorem and the assumption that K is symmetric

around zero (which implies that
R 1
�1 xKðxÞ dx ¼ 0), we have that

1

hn

Z hn

�hn

K
x

hn

� �
lðs þ xÞ dx ¼

Z 1

�1
KðxÞlðs þ xhnÞ dx

¼ lðsÞ þ 1

2
l00ðsÞh2n

Z 1

�1
x2KðxÞ dx þ oðh2nÞ: ð7:10Þ

Using (7.10) in (7.9) together with jWnj�1 ¼ oðh2nÞ; we finish the proof of (7.6).

In order to prove (7.7), we start with the inequality

X��
n pPðBc

nÞ
1=rrnðqÞ1=q; ð7:11Þ

where r; q41 are such that r�1 þ q�1 ¼ 1; and

rnðqÞ :¼ E
t

jWnj
XN

k¼�N

1

hn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !q

: ð7:12Þ

By assumption (2.4) and DnXch�e
n ; we have that PðBc

nÞ ¼ oðh2þe
n Þ: Therefore,

choosing r41 sufficiently close to 1, we obtain that PðBc
nÞ

1=r ¼ oðh2nÞ: Consequently,
in order to have (7.7), we need to verify that, for a sufficiently large q41;
lim supn-N

rnðqÞoN: In fact, we shall prove that this is true for any even number
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qX2: We start with the bound

rnðqÞpcðQnð1Þ þ Qnð2ÞÞ; ð7:13Þ

where

Qnð1Þ :¼E
XN

k¼�N

1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

� 

� E

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

�!q

; ð7:14Þ

Qnð2Þ :¼ E
XN

k¼�N

1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !q

:

Note that Qnð2Þ ¼ ðX�
nÞ

q; where X�
n is the same as in (6.16). We have proved in (6.17)

that X�
n is asymptotically bounded, and so is Qnð2Þ: Consequently, we are left to

demonstrate that lim supn-N
Qnð1ÞoN: Note first that the sum

P
N

k¼�N
in the

definition of Qnð1Þ has at most knEcjWnj nonzero summands. Since hn converges to
0; the summands are independent for all sufficiently large n: Furthermore, the
summands have means zero. Thus, we conclude that

Qnð1Þp ckq=2
n sup

k

E
1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

� �q

p c
1

jWnjh2n

� �q=2

sup
k

E

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

� �q

p c
1

jWnjh2n

� �q=2

sup
k

EðX ðfs þ ktþ hn½�1; 1	g-WnÞÞq

p c
1

jWnjh2n

� �q=2

EðX ðfs þ hn½�1; 1	g-WnÞÞq: ð7:15Þ

The expectation on the right-hand side of (7.15) is bounded (it even converges to 0).

Since h2njWnj-N by assumption, this completes the proof (7.7). This finishes the

proof of Theorem 2.2. &

8. Proof of Theorem 3.1

We start the proof by writing Varð#l}n;KðsÞÞ as the difference between Eð#l}n;KðsÞÞ
2

and ðE#l}n;KðsÞÞ
2: From Theorem 2.1 we know that the quantity E#l}n;KðsÞ equals

lðsÞ þ oð1Þ: Thus, in order to prove Theorem 3.1 we need to show that Eð#l}n;KðsÞÞ
2

equals l2ðsÞ þ oð1Þ: We proceed with the representation:

Eð#l}n;KðsÞÞ
2 ¼ Unð1Þ � Unð2Þ þ Unð3Þ þ Unð4Þ þ Unð5Þ; ð8:1Þ
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where

Unð1Þ :¼ EðIfAc
ngIf#ln;KðsÞpDngf#ln;KðsÞg2Þ;

Unð2Þ :¼ EðIfAngIf#ln;KðsÞ4Dngf#ln;KðsÞg2Þ;

Unð3Þ :¼ EðIfAngf#ln;KðsÞg2Þ;

Unð4Þ :¼ D2
nEðIfAc

ngIf#ln;KðsÞ4DngÞ;

Unð5Þ :¼ D2
nEðIfAngIf#ln;KðsÞ4DngÞ

with the same set An as in the proof of Theorem 2.1. Theorem 3.1 follows if we verify
that by choosing n sufficiently large and/or d40 sufficiently small we can make

UnðkÞ; k ¼ 1; 2; 4; 5 as small as desired and Unð3Þ as close to l2ðsÞ as desired.
The proof that Unð1Þ and Unð4Þ converge to 0 for any fixed d40 follows from the

fact that the two quantities do not exceed D2
nPðAc

nÞ; assumption (3.1) completes the

proof.
The proof that the two quantities Unð2Þ and Unð5Þ converge to 0 for any fixed d40

starts with the fact that both of them do not exceed D�2
n EðIfAng#l4n;KðsÞÞ: Now, we

need to verify that the expectation EðIfAng#l4n;KðsÞÞ is asymptotically bounded. The

proof of the latter statement closely resembles the proof that the quantity

lim sup
n-N

jUnð3Þ � l2ðsÞj ð8:2Þ

can be made as small as desired by taking d40 sufficiently small. We shall prove the
latter statement. Before proceeding we note in passing that when proving Theorem
2.1 we referred to statement (8.2) and claimed that it holds under assumption (2.1),
which is weaker than the in the current proof assumed (3.1). For this reason,
throughout the rest of the current proof we only assume (2.1).
We start the proof of the aforementioned smallness of (8.2) with the equality

Unð3Þ ¼ Fnð1Þ þ Fnð2Þ þ Fnð3Þ; ð8:3Þ

where

Fnð1Þ :¼
1

jWnj2h2n
E IfAngð#tn � tÞ2

XN
k¼�N

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ

( )2
0
@

1
A;

Fnð2Þ :¼
1

jWnj2h2n
E IfAng2tð#tn � tÞ

XN
k¼�N

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ

( )2
0
@

1
A;

Fnð3Þ :¼
1

jWnj2h2n
E IfAngt2

XN
k¼�N

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ

( )2
0
@

1
A:

We shall demonstrate below that Fnð3Þ can be made as close to l2ðsÞ as desired. This
will also imply that Fnð1Þ-0 and Fnð2Þ-0 since j#tn � tj does not exceed dhn=jWnj;
which converges to 0: Thus, in order to verify (8.2), we need to prove that
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lim supn-N
jFnð3Þ � l2ðsÞj can be made as small as desired by taking d40

sufficiently small. We write

Fnð3Þ ¼ F�
nð3Þ þ F��

n ð3Þ þ F���
n ð3Þ þPn; ð8:4Þ

where Pn is the same as in (8.2) and

F�
nð3Þ :¼

t2

jWnj2h2n
E IfAng

XN
k¼�N

Z
Wn

DKk;nðxÞX ðdxÞ
 !2

;

F��
n ð3Þ :¼ 2t2

jWnj2h2n
E IfAng

XN
k¼�N

Z
Wn

DKk;nðxÞX ðdxÞ
 

�
XN

l¼�N

Z
Wn

K
x � ðs þ ltÞ

hn

� �
XðdxÞ

!
;

F���
n ð3Þ :¼ t2

jWnj2h2n
E IfAc

ng
XN

k¼�N

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !2

:

We have already proved in (6.23) that Pn-l2ðsÞ: Consequently, we are left to verify
that F�

nð3Þ; F��
n ð3Þ and F���

n ð3Þ can be made as small as desired. In fact, we only need
to prove this for F�

nð3Þ and F���
n ð3Þ since the desired smallness of F��

n ð3Þ follows from
the smallness of F�

nð3Þ due to the Cauchy–Schwarz inequality which implies that

F��
n ð3Þ does not exceed cF�

nð3Þ
1=2P1=2

n : The smallness of F���
n ð3Þ follows from the fact

that the expectation in the definition of F���
n ð3Þ does not exceed PðAc

nÞ
1=rfrnðqÞg1=q

with the same rnðqÞ as in (7.11) and with r; q41 such that r�1 þ q�1 ¼ 1: By
assumption (2.1), we have that PðAc

nÞ ¼ Oð1=DnÞ; which converges to 0:
Furthermore, we have already proved that lim supn-N

rnðqÞoN for any (even)
number qX2: In view of the notes above, we need to verify that lim supn-N

F�
nð3Þ

can be made as small as desired by taking d40 sufficiently small. The proof of the
latter fact resembles the proof of Lemma 6.2 and we therefore omit it. This completes
the proof of (8.2) and, in turn, of Theorem 3.1. &

9. Proof of Theorem 3.2

Throughout this section we use the notation

Cn :¼ jWnj3=2

h
1=2
n

j#tn � tjpd

( )
: ð9:1Þ

With the quantities Un and Gn as in (8.1) and (6.2) but now with Cn instead of An; we
have the representation

Varð#l}n;KðsÞÞ ¼ VarðIfCng#ln;KðsÞÞ þ Rn; ð9:2Þ

ARTICLE IN PRESS
R. Helmers et al. / Journal of Multivariate Analysis 92 (2005) 1–23 19



where

Rn :¼ Unð1Þ � Unð2Þ þ Unð4Þ þ Unð5Þ

� ðGnð1Þ � Gnð2Þ þ Gnð4Þ þ Gnð5ÞÞ2

� 2Gnð3ÞðGnð1Þ � Gnð2Þ þ Gnð4Þ þ Gnð5ÞÞ:

We shall prove below that by choosing sufficiently small d40; the quantity

lim sup
n-N

jWnjhn VarðIfCng#ln;KðsÞÞ �
tlðsÞ
jWnjhn

Z 1

�1
K2ðxÞ dx

� �� �
ð9:3Þ

can be made as small as desired. Statement (9.3) and (9.2) imply Theorem 3.2
provided that Rn ¼ oð1=ðjWnjhnÞÞ: The latter statement can be proved following the
lines of similar proofs involving related quantities in the proof of Theorems 2.1 and
3.1. We therefore omit further details and now prove only that the quantity in (9.3)
can be made as small as desired by choosing sufficiently small d40:We start with the
equality

VarðIfCng#ln;KðsÞÞ ¼ t2Vnð1Þ þ Vnð2Þ þ y2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vnð1ÞVnð2Þ

p
; ð9:4Þ

where jyjp1 and

Vnð1Þ :¼ Var IfCng
1

jWnjhn

XN
k¼�N

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ

 !
;

Vnð2Þ :¼ Var IfCngð#tn � tÞ 1

jWnjhn

XN
k¼�N

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ

 !
:

We have that Vnð2Þ ¼ oð1=ðjWnjhnÞÞ: Indeed,

Vnð2ÞpE IfCngð#tn � tÞ 1

jWnjhn

XN
k¼�N

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
X ðdxÞ

 !2

p d
hn

jWnj3
1

jWnj2h2n

8<
:

� E IfCng
X
kAK

Z
Wn

K
x � ðs þ k#tnÞ

hn

� �
XðdxÞ

 !2
0
@

1
A
9=
;; ð9:5Þ

where the number of elements in the set K is asymptotically of order cjWnj: Thus,
the quantity inside f
g on the right-hand side of (9.5) is asymptotically bounded,
which can be proved following the lines of the proof that the quantity rnðqÞ is
asymptotically bounded. This finishes the proof of the above claimed statement that
Vnð2Þ ¼ oð1=ðjWnjhnÞÞ:
We now consider Vnð1Þ: The equality

Vnð1Þ ¼ Rnð1Þ þ Rnð2Þ þ y2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rnð1ÞRnð2Þ

p
ð9:6Þ
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holds with some jyjp1 and

Rnð1Þ :¼ Var IfCng
1

jWnjhn

XN
k¼�N

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !
;

Rnð2Þ :¼ Var IfCng
1

jWnjhn

XN
k¼�N

Z
Wn

DKk;nðxÞX ðdxÞ
 !

:

Choosing d40 sufficiently small, we can make lim supn-N
jWnjhnRnð2Þ as small as

desired. Indeed, this can be achieved by first using the inequality

Rnð2Þp
1

jWnj2h2n
E IfCng

XN
k¼�N

Z
Wn

DKk;nðxÞX ðdxÞ
 !2

ð9:7Þ

and then following the lines of the proof to Lemma 6.2 with some obvious changes.
We shall now consider Rnð1Þ: We start with the equality

Rnð1Þ ¼ Ynð1Þ þ Ynð2Þ þ y2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ynð1ÞYnð2Þ

p
; ð9:8Þ

where jyjp1 and

Ynð1Þ :¼ Var
XN

k¼�N

1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !
;

Ynð2Þ :¼ Var IfCc
ng
XN

k¼�N

1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

 !
:

To prove that Ynð2Þ ¼ oð1=fjWnjhngÞ; we first use the bound VarðxZÞpEðx2Z2Þ and
then apply the Hölder’s inequality. This gives us the bound

Ynð2Þp P
jWnj3=2

h
1=2
n

j#tn � tjXd

( ) !1=r

� E
XN

k¼�N

1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
X ðdxÞ

 !2q
8<
:

9=
;

1=q

; ð9:9Þ

where r; q41 are such that r�1 þ q�1 ¼ 1: We have already proved above (cf. (7.12)
and the calculations below it) that the expectation on the right-hand side of (9.9) is
asymptotically bounded. As to the probability on the right-hand side of (9.9), we use

assumption (3.3) together with DnXjWnjehe
n and obtain that, for r41 sufficiently

close to 1,

P
jWnj3=2

h
1=2
n

j#tn � tjXd

( ) !1=r

¼ o
1

jWnjhn

� �
: ð9:10Þ
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Consequently, from (9.9) we obtain that Ynð2Þ ¼ oð1=fjWnjhngÞ holds.
We shall now prove the following statement:

t2Ynð1Þ ¼
tlðsÞ
jWnjhn

Z 1

�1
K2ðxÞ dx þ o

1

jWnjhn

� �
ð9:11Þ

and in this way finish the proof of Theorem 3.2. Since the summands in the definition
of Ynð1Þ are independent for sufficiently large n; we have that

Ynð1Þ ¼
XN

k¼�N

Var
1

jWnjhn

Z
Wn

K
x � ðs þ ktÞ

hn

� �
XðdxÞ

� �
: ð9:12Þ

We calculate the variances on the right-hand side of (9.12) using Lemma 1.1 on p. 18
of Kutoyants (1998) and obtain that

Ynð1Þ ¼
1

jWnj2h2n

XN
k¼�N

Z
Wn

K2 x � ðs þ ktÞ
hn

� �
lðxÞ dx

¼ 1

jWnj2h2n

Z
N

�N

K2 x

hn

� �
lðx þ sÞ

XN
k¼�N

Iðx þ s þ ktAWnÞ dx: ð9:13Þ

An application of (6.20) on the right-hand side of (6.13) yields, for some yA½�1; 1	;

t2Ynð1Þ ¼
t

jWnjh2n
þ y

t2

jWnj2h2n

 !Z
N

�N

K2 x

hn

� �
lðx þ sÞ dx

¼ t
jWnjh2n

þ y
t2

jWnj2h2n

 !Z
N

�N

K2 x

hn

� �
ðlðx þ sÞ � lðsÞÞ dx

þ t
jWnjh2n

þ y
t2

jWnj2h2n

 !
hnlðsÞ

Z 1

�1
K2ðxÞ dx: ð9:14Þ

Since s is a Lebesgue point of l and the kernel K is bounded with support in ½�1; 1	;
we have thatZ

N

�N

K2 x

hn

� �
jlðx þ sÞ � lðsÞj dx ¼

Z hn

�hn

K2 x

hn

� �
jlðx þ sÞ � lðsÞj dx

¼ oðhnÞ: ð9:15Þ
Applying (9.15) on the right-hand side of (9.14), we arrive at (9.11). This also
completes the proof of Theorem 3.2. &
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