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Abstract

The problem of simultaneous estimation of the regression parameters in a multiple regression model
with measurementerrors is considered when itis suspected that the regression parameter vector may be
the null-vector with some degree of uncertainty. In this regard, we propose two sets of four estimators,
namely, (i) the unrestricted estimator, (ii) the preliminary test estimator, (iii) the Stein-type estimator
and (iv) the postive-rule Stein-type estimator. In an asymptotic setup, properties of these estimators
are studied based on asymptotic distributional bias, MSE matrices, and risks under a quadratic loss
function. In addition to the asymptotic dominance of the Stein-type estimators, the paper contains
discussion of dominating confidence sets based on the Stein-type estimation. Asymptotic analysis is
considered based on a sequence of local alternatives to obtain the desired results.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the multiple regression model with measurement errors, namely,
Yi = fo+xB+er _
X, = X, + Uy, t=1,...,n, (1.1)
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whereff is the intercept an@ = (B4, ..., B,)" is the regression parameters while=
(s ooy Xp) s U = (Uay, o up), X = (X1, ..., Xpr) @nde; is the response error in
the study variable and;; is the measurement error in thth regression variable;;. Note
that x;; is unobservable anil;, is the corresponding observed value. SimilaHyijs the
observed response. We assume that

X, ep u)) ~ Nz,,+1{(,¢;, 0,0 Blockdiag():“, Gee, zw) } (1.2)

wherep, = (fe,. -+ 1y,)"-
Clearly, (Y;, X})’ follows a(p + 1)-variate normal distribution with mean-vectgt, +
B ., W) and covariance matrix

(DA ZY,X, . ﬁlzxxﬁ + Gee ﬁ/zxx (1 3)
ZX,Y, ZX,X, - Zxxﬁ Zxx + Zuu ' '

Thus, the distribution of Y, X’)" is a (p + 1)-variate normal with mean-vectdg, +
B ., W) and covariance matri%E. Now, the conditional distribution of; givenX; =

(X1, ..., X, is normal with conditional mean and variance given by
E[Y,|Xt] = o+ VX, (1.4)
Varl:Yt|Xt:| = ﬁ/zxx (I - Kxx)ﬁ + 0ee = 0 (SQY), (15)

whereK ., is the matrix of ratios oEy x andX,, defined by

-1
Kix = (Zxx + Zuu) Z.xx = Z;])-(Zx,\‘v ZXX = Zxx + Zuw (16)

Gleser[5] designateX ., as the reliability matrix oiX.
Further we have

Vo = ,80 + ﬁ/<IP - K;Cx)”/\W V= Kxxﬂ al’ldﬁ = K;le. (17)
The model L.1) as described is a structural linear errors-in-variable regression model.
Our basic problem is the estimation of the regression vefter (4, ..., ,)" when

it is suspected but one is not sure tifamay be the null-vector, i.g8 = 0. Towards

this goal we propose two sets of four estimatorgfagach, namely, (i) the unrestricted
estimators (UE), (ii) the preliminary test estimator (PTE), (iii) the Stein-type estimator
(SE) and (iv) the positive-rule Stein-type estimator (PRSE) and show that PRSE dominates
SE aswell as UE uniformly whem> 3. Forp < 2, PTE is a preferable choice whgis near

the origin,0, otherwise UE is preferable. Further,it is shown that neither the PTE nor SE
(PRSE) dominate each other uniformly. However, wpen3, PRSE is the preferred choice

for application. The same conclusion holds when we consider the confidence sets based
on PRSE.

These types of estimations phave been studied by Saleh and Han [14], Judge and Bock
[10] among others for models without the measurement errors. Preliminary test estimators
were introduced by Bancroft [1] and expanded by Saleh and Sen [15] in a nonparametric
setup. Stein [24] and James and Stein [8] introduced the Stein-type estimators, which were
expanded by Saleh and Sen [15,16] and Sen and Saleh [18] in the nonparametric setup. For
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the multiple regression model with measurement errors, see Hjlland Cheng and Van
Ness [3] for details and Schneeweiss [17] on consistency. Kim and Saleh [11] introduced
the preliminary test estimation in a simple linear model with measurement errors.

It is interesting to note that Stein-type estimation eliminates the inconsistency of the
traditional least-squares estimators (see [20,22,23]). Thus, Shalabh [21] studied the prop-
erties of Stein-type estimator whél,, is known. Our study includes a broader class of
estimators, such as the preliminary test and the positive-rule Stein-type estimator in addition
to the usual Stein-type estimator studied by Shalabh [21] vllagris known.

We organize the paper as follows. In Section 2, we provide the proposed four estimators
and motivate the estimators in various ways starting from the unrestricted estimator. Section
3 contains the asymptotic distributional properties of the estimators.

In Section 4, we obtain the asymptotic distributional bias, quadratic bias, MSE-matrices
and risk (under a quadratic loss function) expressions. In Section 5, we provide the com-
parison of the estimators based on the asymptotic distributional bias, MSE matrix as well
as risk analysis. We conclude the paper in Section 6 with a discussion of the asymptotic
properties of the recentered confidence sets.

2. Estimation of regression coefficients

Our basic problem is the estimation pfvhen it is suspected but one is not sure {hat
may be equal t0. For this purpose we assume that the variance—covariance nmagyinf
the measurement errors of regressors is known in order to obtain a consistent estimator of
P (see [17]) whileK ., is unknown.

Let
Syy Srx
S= , 2.1

(SXY SXX> (2.1)

where .
() Syy =21 (Y = V)2,
(i) Sxx = ((Sx;x;)), i
("I) SX[X_/' = Z:}:_’L(Xit __Xi)(Xjf ? Xj)v iv / = 17 cees Py
(v) Sx;y = Yo (X — XY = Y),
V) X, =230 X;pandY = 237 v, (2.2)
D . o ,

ThusS~ W, 1(X; n — 1) whereW,1(-; -) stands for the Wishart distribution with— 1
degrees of freedom (DF). CleartySiis the MLE of £ and -1; Sis an unbiased estimator
of X. Consequentlyh%lsxx is an unbiased and consistent estimato®fy andSyy is
independent ofY, X')’. Glesel[5] showed that the MLE ofp, v ands, are just the naive
least squares estimators (OLS), namely,

on =Y — ¥, X, ¥, = SyxSxy (2.3)
and

.1 g
Oz7 = n Zl(Yt —Von — an)Z (2.4)
=
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provided
Goe = G2z — VK180, >0, (2.5)

n txx

Further, whenx,, is known andK,, unknown then the reliability matrix is estimated
consistently by

IZxx = S;(J).(ixx = ;(])-((SXX —nXyy). (2.6)
Thus, the MLE off,, g ando,, are given by
Bow = on — By, — RL0X, By =R 2.7)
and
6ee = 622 - ﬁ;zuu Kxxﬁn- (2-8)

Further, note thdf(”—F;K“ asn — oo. Finally, the explicit forms of the MLE of, and
p are given by

BOn = Y - ﬁ;)_(s ﬁn = (SXX - nzuu)ilsXY (29)

provideds,. >0 as in (2.5). The estimators given at (2.3), (2.7) and/or (2.9) will be desig-
nated as thenrestricted estimatofUE) of .
Then, by Theorem 2.2.1. in Fullgt] we have as1 — oo

(i) /n(B,—p)is normally distributegh-variate random vector with me&rand covariance
matrix, G given by

G = £ [ (B B + 0ee ) Exx + Zuu BB Lo | EE (2.10)

providedo,, > 0, X,, is known andZ,, is a positive-definite matrix.
(i) /n(¥, — v) is normally distributedp-variate random vector with mean vectand
covariance matrix, X%

A consistent estimator & may be obtained by substituting@, the consistent estimators
of g ando,. given by @.7) and (2.8). Let us denote the consistent estimat@r oy G,, as
given below.

G, = <1Sxx Euu>7l[(ﬁ;zuuﬁn +&ee>%SXX

1
+Zuuﬂnﬂn2uu:|<;SXX - Euu) . (2.11)
Thus, we may write
G, =G +o0,0). (2.12)

Since we suspect thftmay be equal t®, we consider the Wald-type test-statisfl; to
test the null-hypothesisd¢t = O against H, :  # 0, defined by

L, = n(i;;é,;lifn), (2.13)

where the asymptotic distribution @f, under H, follows a central chi-square distribution
with p DF by Theorem 2.2.1 of Fullg#4].
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Now, we consider the following four estimators which may improve (fi;,er
(i) Preliminary test estimator (PTE[),F:T
APT - L.
B, = ﬁnl(/:n > Xﬁ) = pBn — ﬁnl(ﬁn < Xi), (2.13a)

wherexf,’“ is the uppern-level critical value from a central chi-square distribution with
p DF andI (A) is the indicator function of sek.

~S
(i) Stein-type estimator (SER,

B, = (1— (r— Z)Egl)ifn, p>2 (2.13b)

where(p — 2) is the mode of the central chi-square distribution vatbF.
(i) Positive-rule shrinkage estimator (PRSHAI)?,Jr

~S+ _ - AS
B = (1-w-2LY)1(L > p—2)B =By > p -2,
wherep > 2. (2.13c)
We may compactly write the four estimators as
B; = (1= g(L))Bn. (2.14)
where
g(L,) =0

I(Ln <715,
[1-(p—2L,"
== (p-2L,MI(Ly>p—2)

givesf; = ﬁ,,, ﬁST, ﬁf andﬁ?, respectively.

_ Note that PTE is a discontinuous estimator and takes only two values, ndheeig,
B depending on the result of the test which heavily depend on the;sizthe test. Now,
replacingl (£, < xfw), by a smooth versiotpy — 2)£1, we obtain the values betweén

andp, depending on the sample valuef (and not o). Also notice tha@f+ isa PTE
of B with fixed critical value(p — 2).
Similarly, consider the class of estimatorsfiofbased orv,,) defined by

v, = (1= g(Ly))Vn. (2.15)

Accordingly, the four estimators,, OST, f),f and\?,?r are obtained by choosing(£,) =

0, I(Ly < 22), (p—2L; and 1-[1— (p — 2L, NI(L, > p — 2), respectively.

3. Asymptotic properties of the estimators

In this section we consider the asymptotic distribution of the estimagjrand v*.
First, we consider the asymptotic distribution of the estimators unddixénalternatives
Hs : B = 6(0 # 0) given by the following theorem.
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Theorem 3.1. Under fixed alternativeBls : f = d(# 0).

Q) £, - ococasn — 0,
(2) Vn(B, —B) = /n(By — B) + 0,(D),
(3) V(v —v) = /(@ —v) +0,(D).

Proof. To prove (1) consider
By = n(By — B + /. (3.1)
Then,
Ly =nBy—B'G By — B +ndG 0+ 20 (B, — p'G,1S. (3.2)
Now, nG, 2B, — B) B 7 asn — oo, wherez ~ N, (0,1,) andnd'G, 16 — oo as

n — oo, it follows that£,, — oo asn — oo.
Consequently,

lim Pp(L, > k) =1 forallk e RT. (3.3)
To prove (2), consider the quadratic differences
nl|By = B,II1. where B = (1~ g(Ln))Bn- (3.4)
Then,
nl1Be — ByI1E 1 = 1B, 6 Bg? (L)
= L,8°(Ly). (3.5)
It may be verified that
lim_ E[L,g%(L)] =0 for (3.6)
8(Ly) =1Ly < 13,
g(Ly) = (p—2L,"
and
gLy =1—[1-(p—2)L, (L, > p—2.
Hence,
VaB; — B =By — B + 0, (D). (3.7)

Thus, under fixed alternative, all the estimators are asymptotically equivalent in distribution
which isN,, (0, G).
Similarly,

Jm E[nl =i, 5 ¢ o] = im E[Lig?Ln] = 0. 3:8)

Hence
vy = v) = /n( —v) +0,(2) (3.9)
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and all the estimatorsf are asymptotically equivalent in distribution which is
Np(0, 0., X5 %).

In order to obtain a reasonable comparison, we need the asymptotic distributions of the
estimators to be different. To accomplish this goal, we consider the asymptotic distribution

of the estimators under the sequence of local aIterna{iKQ,s)} defined by

Ko : By =n~28, & fixed finite vector O (3.10)

Now following Chapter 7 of Sen and Singéd®] together with Theorem 2.2.1 of Fuller
[4] we note that undek ), we have the following theorem.

Theorem 3.2. Let the mode(1.1) hold along withx,,, known .. > 0,andX,, positive
definite. Then undeK ,) asn — oo, we have

. ~ D
(l) ﬁ(ﬂn - ﬁ(n)) - N(Os G"), G*= O'ee(K;XEXXKxx)ily
. - D _
(”) ﬁ(vn - ﬁ(n)) - N( - (l - Kxx)év Geele )1
(i) P{L)<xIKan} = Hy(x, 42,
where H,(-; A?) is the cdf of a non-central chi-square distribution wittDF and
non-centrality paramete$ A2 with A2 = §'(G*) 718 = ||6*||2.
(V) VG 2 (B: = Buy) B Z — (Z +8%)g(1Z + 6112), whered™ = G*~ 25,
~—1/2 D
(V) V/nl', " (v = By =2 —(Z 47812 + 7112 — (I — Kxx)d,
wherel” = aZZZ;( andT’, is a consistent estimator &f while y* = r* %25 and
F* _ 2—1
= Ocesyx-
In (iv) and(v), Z ~ N,(O, 1 ).

4. Asymptotic distributional bias, mean-squares error and quadratic risk of the
estimators of slope parameterp

In this section, we consider the asymptotic distributional bias (ADB), the asymptotic dis-
tributional quadratic bias (ADQB), the asymptotic distributional mean-square error matrix
(ADMSE) and the asymptotic distributional quadratic risks (ADQR) of the four estima-
tors of g defined in Section 2 using Theorem 3.2 un¢&y,,} and calculatingE[Ui,l)],

E[UP UL and EUY QUP| where
UL =7 —(Z+62(1Z + 8. (4.1)

Similarly, the ADB, the ADQB, the ADMSE and the ADQR of the four estimators by
calculatingE[Ug,z)], E[Uéz)uéz) ] andE[Uéz) Quf)] where

UP =Z—@Z+7)201Z + 7117 — (1 =Ky (4.2)
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We only present the expressions for the estimatorg§ &faving the expressions of the
. . . - ~ _APT AS
estimators o¥ which may be obtained similarly. Then the ADB and ADQBfaf g, . B,
~St . .
andp, are given by theE[Ufg,l)] for the four estimators as follows.

(i) b1(B.) = 0andBi(B,) =0, (4.3a)

N N 2
(i) ba(B, ) = —3Hy 203 67 andBa(h, ) = 82{ Hyi2G3: 82|,
(4.3b)

(i) ba(B,) = —(p - 26E[ 1,2,
and
Bs(BY) = (p — 2202[E[ 12,07 | (4.30)
() baBy ) = —(p — 28] E[1;7,02)]
E[ 71,2200 (72,287 < p = 2) |+ 7z Hpra((p = 2: D)},
and

BB = (p = 2202 E[1,2,02)]

1 2
E| 1, 220D (112005 < p = 2) |+ =5 Hpralp — 25 80|
(4.3d)

respectively.
= APT »S N
Similarly, ADMSE and ADQR off,, 8, . B, and[i,?r using the loss function (ﬁ: —

!/
ﬁ(n)) Q(ﬁj - ,B(n)) by considering the computation &fU,U;] and transforming back
usingG*. The final result is given below.

(i) M1(B,) = G* andR1(B.; Q) = tr[G*Q], (4.40)
(i) M2(B, ) = 6*{1— Hy2(3: 1))
+55 {2H, 1202 87) — Hpya(15; 07} (4.4b)
and

Ro(fy': Q) = 01G™QIf1— Hyia(Z: 47)]
+5'Q0|2H, 42(75: £7) — Hppa(75: 27) .
(i) M) = G*[1- (r - 2[2E[ 52,0
~p = 2E[ 1,50 |} + (0 - 20526 [ 1,2,

—2E(7,2400) |+ (0 = DE[ 1,2489)]} (4.40)
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and
Ra(B} Q) = 116" Q11 (p - 2{2E[,2,(67)]
~(p = 2E[ 15,031} + 0 - 28Q3{2E [ 1,2,(0%) |
~2E[7,2,3)] + (0 - DE[ 1,402}
(V) Ma(B,) = Ma(B) — G*[ Hysa((p — 2: 87)
~(p = D{2E[ 1,21 (12,207 < p~2)]
~(p = 2E| 15201 (12,582 < p - 2) |}]
—38'[Hpsa((p — 25 52) = 2H, 15((p — 2); 12)
+(p — D{2E[ 1,251 (12,207 < p = 2)]
~2E[1,240D1 (721489 < p - 2)]
+(p = 2E[ 1, 140D1 (72 407 < p - 2)}] (4.4

and

RaB,": Q) = Ra(B) (G QI Hya((p — 2); 1)
—(p - D[2E[ 1,251 (0% < p 2]
~(p = 2B 1,581 (12,2080 < p - 2) |}
Q3] Hysa(p — 5 62) = 2H, 15((p — 2); 1)
+(p = 2261, 22001 (14 2(0?) < p — 2)]
~2E( 7,341 (240D < p - 2)
+(p = DE[ 1,501 (1 1a0% < p = 2) |},

respectively.

5. ADB, MSE-matrix and risk comparisons

In this section, we compare the ADB, MSE-matrix and risks of the four estimatgts of
based on Theorem 3.2 unde¥ ) }.

5.1. ADB comparison

- . . APT »S ~St+ .

Clearly, §, is asymptotically unbiased art] , g, andf, are biased. Under ¢lthey
are all unbiased. Also, as®> — oo, the bias reduces to zero for all estimators. For the PTE,
aso — 0, the quadratic bias goes to zero.
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In general ag\2 moves away from the origin, the quadratic bias function increases to a
maximum then decreases towards zeraAsends to infinity. First note that for ath?,

Bo(By) — Bath, ) = (p — 22072E] 1, 2,02)]
+p—i2Hp+2(p —2; 0%
~E[ 1,291 (734289 < p - 2)]|
< E[7, 22091 (22,207 < p—2)]
—p—iz pi2(p — 2 03} >0 (5.1)

Thus, the graph of the ADQB of PRSE remains below the graph of the ADQB of SE, that
is to say, the bias of PRSE is always smaller than that of SE, we may order the estimators
according to the quadratic bias as follows:

B < BT < B forall A2 (5.2)
In the case of PTE and SE, the ADQB difference shows that
BB — Ba(BD) = A2 2. A2 =2 (A2 2. A2
2B, ) — Ba(B,) = A Hp2(x5; A%) + Elx, 5 o(AD ]  Hp2(x5; A9)

~El1,3,621).
Thus, the graph of ADQB of SE remains below the graph of ADQB of PTE whenever

Hyi2G2 89> E[ 1,253 forall (1, 43, (5.3)

otherwise, the graph of ADQB of PTE remains below the graph of ADQB of SE. In general,
the graph of ADQB of PTE and SE intersects at some paftor fixed « and the bias of
PTE is worse than that of the SE.

Similarly, the ADQB-difference of PTE and PRSE is given by

~PT ~St
Ba(B, ) — BaB,' ) = 82| Hpra(r: 07)
+(p = 2E[ 1251 (121203 > p - 2) ]}
+Hpia(p = 2 8 W Hyr2(2: 87 = Hysa(p = 2 09)
>
~(p = DE[7, 22001 (2207 > p-2)|} 0. (5.4)
which may be positive or negative whenever
N —2 A2 2
Hpi2(73 A ZE[ (1= (0 = 27,2,(09) 1 (12,247 > p—2)]
Hence, for fixedy,

Bz(if,':T) < B4(i¢f+) or Bz(ﬁST) > B4(iff+) for someA? < A2(x), (5.5)
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1.0 -
0.8 A a=015p=4
QB of PTE SE and PRSE
PTE
0.6 -
) SE
o
044 /7
/
l”
0.2 4/ ™
b PRSE .
0.0 . Ty .
0 5 10 15 20
A2
Fig. 1. ADQB of PTE, SE, PRSE with = 4.
2.0 -
a=0.15p=8
QB of PTESE and PRSE
L5 1 SE
m
1.0 -
© PRSE
---------- PTE
4 ..
05 ~e~
\\\
e
0.0 . . Bt .
0 5 10 15 20
AZ

Fig. 2. ADQB of PTE, SE and PRSE wifh= 8.

WhereAi(oc) is the point of intersection of the graphBi(ﬁ:T) andB4(ﬁ§+). The graphical
representation of ADQB depicts these findings in Figs. 1 and 2.

5.2. ADQR analysis

5.2.1. Comparison cﬁ:T and g,
In this case the risk-differeno%l(iin Q) — Rz(if:T : Q) >0 whenever
) tr(G*Q) Hpi2(25 0 A%)
< 2. A2 VL (5.6)
Chmax(G*Q) {2H12(15 : A%) — Hpa(yg : A9)}

where Chyax(A) is the maximum characteristic value of the matix
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Then,/?:T performs better thaf, in this range ofA2. On the other hand}, performs
better tharf},F:T if
2 WGQ Hpi2(15 - 0%
Chmin(G*Q) {2H12(x2 : A2) — Hpra()2 : A2)}

(5.7)

where Chnin(A) is the minimum characteristic value of the mathix
Under Hy, the risk-difference becomes{@*Q]Hp+2(X§ : 0). Hence, the relative gain

. . APT e -

in using B, againstp, is 100tr(G*Q)Hp+2(X§ : 0)% ata-level of significance test. An
optimum PTE with minimum guaranteed efficiengy may be obtained at*-level of
significance by solving the equality,

”A"z” E(x, A?) = E(a, A (0) = Eo, (5.8)
where
R2(B, : Q)

Now settingQ = (G*)~1, we have

E(o, A?) = [1— Hpi2(72 : A?)
1. 2. A2 2 A2 17171t
+A {21202 : A% = Hpra(2: 09)]] (5.9)

~PT . ~
Clearly, g, is better tharg, whenever

pHyi2(12; A%

A< 42. A2y _ 2. A2
2Hp+2(){op ) H])+4(Xo(’ )

L= APT
Otherwise 8, is better tharg, .

. . - e o APT .
Tablel gives the maximum and minimum asymptotic efficieriegy, A°) of B, relative
to ﬁ,, as a function of\? for Q = G*~1and for chosen-values angh = 4(2)14 using (5.9).
For p = 8, if PTE of § is to be chosen with at leas&0 efficiency, we choosg* = 0.05 as
the level of the test.

~S ~ ~
5.2.2. Comparison ¢, and[f,?r with B,

The risk ofﬁf may be rewritten as
r(G*Q) ~ (p — 2G| (p — 2l 1,47

(p+20Qd\ L4 A2
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Table 1
Maximum and minimum of risk-based efficiencies

a p 4 6 8 10 12 14

0.05 | Emax| 6.75908 7.89292 8.72300 9.373)5 9.90415 10.34988
Emax| 0.67741 0.76147 0.817Q7 0.856B9 0.88%38 0.94738
A?nin 8.70073 | 10.82463 12.79291 14.667[/3 16.48109 18.24932

0.1 Emax| 3.92601 4.49118 4.89829 5.21311 5.46767 5.67991
Emax| 0.75506 0.82544 0.87014 0.90071 0.92260 0.93879
A%nin 7.73232 9.77526] 11.68294 13.510p2 15.28335 17.01821

0.15 | Emax| 2.89783 3.26722 3.5304f7 3.73248 3.89487 4.02965
Emax| 0.80429 0.86374 0.90061 0.92580 0.94267 0.95530
Afnin 7.16494 9.15150] 11.01743 12.811p4 1455626 16.26681

0.2 Emax| 2.35590 2.62511 2.815409 2.960Y5 3.07701 3.17317
Emax| 0.84032 0.89067 0.92141 0.941y1 0.95%79 0.96591
A%nin 6.76058 8.70106] 10.53304 12.29940 14.02168 15.71231

0.25 | Emax| 2.01845 2.22631 2.37244 2.48345 2.57199 2.64502
Emax| 0.86844 0.91105 0.93681 0.95363 0.96%18 0.97339
A?nin 6.44492 8.34493 10.1471)8 11.889p69 13.59187 15.26500

0.3 Emax| 1.78732 1.95346 2.06973 2.157Y4 2.22775 2.28535
Emax| 0.89120 0.92715 0.94874 0.962y2 0.97225 0.97897
A?nin 6.18490 8.04786 9.82294 11.543p6 13.22745 14.88455

0.35 | Emax| 1.61900 | 1.75471 1.84936 1.9208]1 1.97751 2.02408
Emax| 0.91005 | 0.94021 0.95827 0.96984 0.97776 0.98326
A?ﬂin 5.96289 | 7.79095 9.54048| 11.24068 12.90716 14.54916

0.4 | Emax| 1.49112 1.60350) 1.68169 1.74059 1.787124 1.82549
Emax| 0.92589 0.95099 0.96604 0.97567 0.98215 0.98666
A?nin 5.76832 7.56281] 9.28777 10.968R6 12.61807 14.24553

0.45 | Emax| 1.39096 1.48475 1.54992 1.59894 1.63770 1.66944
Emax| 0.93933 0.96002 0.97245 0.98089 0.98571 0.98938
Ainin 5.59431 7.35598 9.05691 10.718p9 12.35159 13.96478

0.5 Enax| 1.31074 1.38927 1.44382 1.48480 1.51718 1.54367
Emax| 0.95079 0.96763 0.97781 0.98480 0.98862 0.99160
A%nin 5.43611 7.16522 8.84227 10.484R7 12.10153 13.70053

The risk—differencd?l(iin Q) — Rg(iif : Q) >0 for all A2 if Q satisfies the condition
tr(G*Q) S P +2

Chmax(G*Q) ~ 2 (>-11)

~S . . ~ . .
Thus, ,, uniformly dominates, under (5.11). AsA? — oo, the risk-difference goes to
zero.
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~S ~
Now consider the risk-differencBz (B, : Q) — R;;([i?r : Q). Itis nonnegative for all
(A2, Q) since the risk-difference is

[rGQE[(1- 0~ 274,22 1(B126% < p~2)]
FOQIE[(1- (p - 2 24(87) 1(£2a(0? < p— 2)])

+25/Q5E[((p —2)7,2,(82) - 1)1(x§+2(A2) <p-— 2)] >0, (5.12)

o . ~S ) .
Hence,ﬂf+ dominatess, for all (Q, A%). This leads to the conclusion that

RiBs: Q> RaB, : Q> Ra(h, = Q)
uniformly in A2 under (5.11).

5.2.3. Comparison cﬁ:T with ﬁf or ﬁ?
Consider the risk-difference dfg(iif :Q) — Rg(if:T : Q) under H given by

tr(G*Q)[Hp+2(X§ L0) — pT_Z] for p > 2. (5.13)

. L _ ~PT . S
It is nonnegative |fH,,+2(;{§ :0) > ”72. Thus,p, dominates, for a set of the level of
significancex for which

p—2

2
=1—— forp>2 (5.14)
p

We have used the resuHX;Z(O)] =(p-27*t andE[x;“(O)] =(p-2p-s71

Hpy2(z5:0) >

APT  ~S
in obtaining (5.13) and (5.14). Thus, neither nor g, dominate each other uniformly. In

N APT . . .
general,ﬁ?r should be used whenever>3 but for p <2, B, is preferable in casg is
close to0.

Now, the risk-difference 0R4(ﬁf+ 1 Q) — Rg(ﬁ:T : Q) under R is given by
1(G* Q)| Hpr2(73: 0) + (p = D{2E17, 251 G2 < p — D)
_ -2
~(p = DE 5 Uz < p = D1} = (55 4 Hpsolp - 2.0) |
forp > 2. (5.15)

- ~PT
Hence,ﬂ?r has lesser risk thaf, when the level of significance satisfies the relation
2
Hy205:0>{(1- )

+Hpi2(p =20 = (p = DE[ 1,21 (oo < p -2} (616)

Figs. 3 and 4 provide the graphical representation of the risks and efficiencies of the various
estimators whe@ = G*~ 1.
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Fig. 3. Risk of UE, PTE, SE and PRSE.
3.0 4
E=i=234
2.5 1 R
R, —risk of UE
R, —risk of PTE
2.0 1 R, —risk of SE
E, R, —risk of PRSE
w15 A
E
1.0 2
E
a=0.2
0.5 A
EZ
=0.15
0.0 . — . ; : )
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2
A

Fig. 4. Graph of efficiencies of different estimators.

5.3. ADMSE comparisons
, ~ APT , . ~ ~PT
First we compare8, andp, . In this case MSE matrix differendd 1(,) — M2(g, )
is given by
- ~PT
M1(B.) —M2(B, ) = G*Hpi2(15; A7)

—55’{ 2H, 272 A?) — Hya(72: AZ)}. (5.17)

Thus, for a given nonzero vectéywe have

, = APT .
¢ Ma(By) — Ma(B, ) = €G*H, 2(1%; A?)

—65'|2H, 12053 6% — Hpia(: 69 (5.18)
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RHS is nonnegative for all nonzefdaf and only if

mea 7 G*(HZHP“LZ(/“’ A% — p+4(/w A )]
< Hpi2(15: A?) (5.19)
or
i 2. 72
2 ; p+22(Xo¢ ) S (5.20)
since may ﬁ/‘;‘zf = A2,

~ ~PT
Now, B, would be better thafi, if and only if (5.18) <0 for all nonzero vectoé with,
say,{’¢ = 1. But this can never be so becau&®'¢ can be made arbitrarily small whereas

~PT -
£'G*¢ stays away from zero. Thus, if (5.20) is not satisfied, neifyernor 8, be better
than the other one. s o1 s
Next, we consider the MSE matrix differendds(f,) —M3(,) andM2(B, )—M3(B,).
Now,

Mi(B) —Ms(B) = (p = DG*|2E14,25(8%)] — (p ~ DL, (621

—(p® - 4)55’E[7,,+4(A )1 (5.21)
The RHS is not negative whenever for any given nonzero veéol® have

/7 /

L'60'¢C
(P + 2 5gig EUG (OIS Bl Lo (8] + A2E L, 1, (02)] (5.22)

Since, may ;27 Loot 5‘” = A?, (5.22) implies

(p + 2)A2 El1, 4B ElL, 2 5(0%)] + A%EL, (8], (5.23)
Using the identityE [, %,(A%)] — (p — 2 Elx, {,(A*] = A’El, 1 4(A*)], we obtain
PELL,2,(02)]< (p — 2)El, {871, (5.24)

_— - _ ~S _
which is a contradiction (for exampIA,2 = 0implies 1< 1). Hence 8, does not dominate
p

ﬁ;, uniformly.
Next we observe that

M3(i’f) - M4(l}§+)
=G {E[(1- - 2)x;i2(A2>)21(x§+2<A2) <p-2)]
+55/{2E[(1— (1— p)x;iz(Az)) (/p+2(A y<p—2 ]
_E[(l —(p- 2)X;§4(A2))21(X§+2(A2) <p- 2)]} 0 (5.25)

. . _ °S _
forall & smcexf,H(Az) < p—2fort =2and4. Henceﬁf+ dominateg, uniformly with
respect to the MSE-matrices.
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i ~PT S . I
The comparison of, andf, is obtained by considering
Ma(B,) —Ma(B, ) = G| Hyea(Z: 87)
—(p = 2[2E11,2,(8D] = (p = DEL1 (071
—00'| [2Hy 1202 5 = a7 12)]
~(p? = HE, L4091, (5.26)

S ~PT
Thus, the differencéz(B,) — M2(B, ) is nonnegative semi-definite iff for any level of
significanceg.

a2 Hps2(15: 82) = (p = 2{2E[1,52(A9)] = (p = 2 El£,{,(AD)])
(P - 4)E[7p+4(A2) {2Hp+2(Xa’ AZ) - p+4(ya$ AZ)}

(5.27)

X AS
Thus,ﬂsT is better tharg, if and only if A? satisfies $.27). By similar argument as before
- AS
(see after (5.20)), we find that neithQFfT nor B, dominate each other uniformly. Similar

. ~PT ~St . ~PT ~S+ . .
conclusion holds fop, andf, and neithe, norf, dominate each other uniformly
for any level of significancey. Similar conclusion holds fok,, ¥, T $S ande+ and is not
repeated.

5.4. Comparison of; with g

We have two set of estimators ffnamelyy’ andg; . In this section, we compare them
under{K,}. In order to carry out valid comparison, we first obtain the canonical bias, MSE
matrices and risk expressions fgrandg;;.

5.4.1. Canonical bias and MSE Expression
There exists a non-singular x p matrix T that simultaneously diagonaliz&s; x and
Y., x (see for example [5]). Thus,

T'ExxT =1, TZ,T=D=diagds...,d,) (5.28)

whered; < - -- <4, are the ordered eigenvaluesE;ﬁExx =K.

It is easily seen tha ,, = TDT ~1 so that théth column ofT is the right eigenvector
of K, corresponding to the eigenvaldgi =1, ..., p.

Letd = T~1B. Then,d, = T-1B, andd, = T~1¥,

Now consider the estimatofs 1v and T~ of T"18 = 0.

Then the expressions of ADB and ADMSE'bflv: are given, respectively, by

b® = VT~ lim_EIv; — Bl = —( = D)y~ DyE[8(3,2(A%)]  (5.29)
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and
M® = T~ lim ELv; = Bu) v — Bu) T
= Geel + (1, =Dy (1 = D) = 0ol [2E[ 2 G2, 2(A%) |
~E[6202,2(4%) |} + Dy/D{2E[ (2, 2(4%)]
264240 | + B[22 a0}
+(1 = D)y DE[ g2 2(A%) | + D1/ = DIE[8G2.2(%)]. (5:30)

wherey = /n T~ 1B, = T~16.
Similarly, the expressions of ADB and ADMSE &f 1 are given, respectively by

b® = VaT~* lm_E(B; — Bun] = —7E[8(312(A%) | (531)
and
M@ = T~ lim ELB; — Bo) (B, — Bo) T
= 00D~ 0. D?{2E[ 52, 2(A%) |
|82 2% || + v/ {2E [ 872 287 |
~2E[ (7320 | + E[ 22447 |}. (5.32)

The expressions of (5.29)—(5.32) are the canonical forms of the corresponding expressions
of v* andp;;, respectively, based on the limiting distributions by Theorem 3.2 uffdgy}.

5.4.2. Canonical risk expressions figy andﬁn

RP(0,) = e trll1+7( —D)?y, tr[l] = p,
RP(0,) = 0,tr[D72]. (5.33)

The difference between the two risks is given by
RV @0,) — RP (0,) = a,etrll =D +7'(1 — D)?y. (5.34)

The risk ofén is smaller than the risk cif,, if

A2c Geetl[D72 — 1]

S == 5.35
Chmin[Alsz] ( )
whereA; = (I — D)2 and the risk Oﬁh is smaller thar@n if
eetf[D72 — |
2 Teclll ] (5.36)

ChmaxA1D—2]

Clearly, we find thab,, dominated, under the null-hypotheses. The Fig. 5 shows the entire
dominance picture d,, and@, thereby ofv, andp,.
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80 -
R} = risk of UE based om
601 maxR} R?=risk of UE based of
40 -
maxR? — min R?
20 A
min R}
0 -
T T T T T T
0 5 10 15 20 25

80 - /
maxR} —
maxR3 R; =risk of PTE based on
60 - RZ=risk of PTE based o
40 +
min RZ
20 A
min R}
0 -
0 5 10 15 20 25

APT -
Fig. 6. Risk bounds as a function AF for thed, and theﬂsT for p =4 andD = diag(%, % % %), Oee =
. . . BT ~PT
5.4.3. Canonical risk expression #ff' and f,

RP@, ) = RV@,) — 0ot Hp 122 : A7)
+7'D%|2H, 1202 : %) = Hpsa7 : 03]
+2y'D(l — D)yHpy2(7% : A2, tr[l]= p,

RP@;,) = R2®,) — 0, 1D 2IH, 202 : A9

17| 2Hp 1202 - 67 — HpiaG : 63). (5.37)
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80 1
R} = risk of SE based on

60 - maxRg R2=risk of SE based o

maxRf ——

40 -~
A —————
mmR3

20 A

o RL

min
o J Rs
0 5 10 15 20 25
AZ

~S -
Fig. 7. Risk bounds as a function af for the@,, and theﬂ,? for p =4andD = diag(%, % % é), Gee = 1.

~PT -
Clearly, we find tha®, dominatesa‘),F:T under the null-hypotheses. The Fig. 6 shows the
entire dominance picture &  andd. " thereby ofi®T andp. |

5.4.4. Canonical risk expressions&ffandﬁf
RP @) = R @)
~(p = Dot [2E] 1,203 = (0 = 2E[ 1,123 ][]
+(p = 2y D%|2E[ 1,257 | - 2E[ 1,2403) ]

+(p = DE[1,2403 |} + 20 - 27D1 — DE[ 1,253,
where tfl] = p. (5.38)

RP @) = RY @) — (p — 251D 2126 1,2,(02)]
—(p = 2E[ 1,2, }
+(p - Z)V’V[ZE [x;iz(Az)]
~2E[ 152402 + (0 = 2E[ 158,02} (5.39)

~S ~

Clearly, we find thad, dominateﬁf under the null-hypotheses. The Fig. 7 shows the entire
S ~ S
dominance picture d, andBf thereby offzf andg,.
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5.4.5. Canonical risk expressions&,‘)?‘+ and[}?r

RO, = RS @) — 0.ctrlN[ Hpsal(p — 205 1)
—(p— 2){2E[y (AZ)I(AP+Z(A)<p 2)
~(p = 2E[ 112D (13,267 < p - 2)||]

—y' Dy Hpra((p = 20: 8% = 2H, 12((p — : 42)

+(p = 226122001 (1 2(0%) < p - 2)
~2E(7, 2401 (£a(0?) < p - 2)]
+(p = DE[ 1,441 (121407 < p - 2) ]
+2(p —2)y'D( — D)y
x| Hpi2((p = 2 82 + (0 = DE[ 12,6
—E[1,2,001 (1,207 < p=2) |}, tl1=p.  (5.40)
RP@,) = RO @) — DA Hyra((p — 205 27
~(p - D[2E[ 1,251 (1207 < p - 2)]
~(p = DE[ 1,91 (72267 < p-2) |}
~' 1| Hpsal(p = 2 83) = 2Hps2((p — 23 27)
+(p — D{2E[ 12,001 (12,207 < p - 2)]
ZE[/,,+4(A )1(,{,,+4(A )<p-— 2)]
+(p = 2E[ 1,821 (21407 < p = 2) |- (5.41)

Clearly, we find that?),?r dominateaz);?r under the null- hypotheses. The Fig. 8 shows the

entire dominance picture 6€+ andén thereby ofvs’+ andﬁ

We note tha¥,, dominates, near the null-hypothesis. ThIS is true for all the estimators
in the class; andg;,. Further, one may establish that undgy,,

cov(f;) = cow(vy) (5.42)

Hence, with respect to covariance matriogsis better thar;, a result similar to Gleser
[5, p. 704].
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80
R} = risk of PRSE based an
601 maxR} RZ=risk of PRSE based @
maxRf —mH0H+ 000000
40
e
minR?
20 A
min R}
0 -
T T T T T T
0 5 10 15 20 25
N2

Fig. 8. Risk bounds as a function af for the(}f+ and thef),?+ for p =4 andD = diag(%, % % é), Oee = 1.

6. Asymptotic properties of recentered confidence sets
In this section, we discuss various confidence sets and their properties.
6.1. Recentered confidence sets

The basic confidence set ffiiis defined by

CO(B.) = [B:n(B-B.) &2 (8-Br) <22}, (6.1)
wherexf, is they-level critical value based on the null-distribution, as a result
lim_ Pﬁ{cg’(i}n)} —1—+y forall . (6.2)

In our case, we have three more confidence sets defined by
O () = Ben(p-B) &2 (BB ) <22,
iy CS(B,) = [B:n(B-B,) 6:2(8 - B)) < 2],
iy ¢S (B @) = {Bn(B- B, ©) &2 (8- B, ©)<2).  63)
whereﬁ?(c) = (1 - cﬁ,;l)I(ﬁ,, > c)lf,,.
Our basic problem is to show thalf’T(if:T) is not admissible whileCf(iBf) and

C§'+ (ﬁ?(c)) uniformly dominateC$<En> asn — oo. To obtain such results we consider

the following definition: A confidence self,l) (i&) is said to dominate Iocallﬂ}(,z) (ﬁ,,)
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if K(;) holds (i.e.(,) = n~%2 for all §) and

() liMmp—o0 Pk, {ﬂ(n) € C"r(’l) (ﬁ”>] z lim,— o Pk, {ﬁ(n) € C‘r(‘Z) (ﬁ”>]
(ii) |?r:i%o Volg,, [c;l) (/z)] < iMoo [VOlK(n>c§2> (ﬁ)] (6.4)

with strict inequality holding either for (i) or (ii) for ald with positive Lebesque measure.
See[13]. To obtain the asymptotic coverage probabilities of the three sets we first note
that undeffixed alternativeshe probability is 1— y for the three sets as— oo according

to Section 3. Thus, we only consider the probability contents of these sets loader
alternativesAccordingly, we have the following theorem for the expressions of the coverage
probabilities based on Theorem 3.2. un{lEg,,)}. In our discussions, we kept the volume

of the sphere fixed, while the coverage probability vary.

Theorem 6.1. Under the conditions of Theoret2 with 6* and Z defined thereK,) :
By = n~28, & fixed we have

i) limPr, [allBoy = Balld 1 <22} =17, (6.5)
" . ~PT
(i) lim. PK(,,)[nHﬁ(n) - B, IIégléxi}
= Hp(;{i; A2>I<A2 < y%)
+P{I1ZIP < 2112 + 517 > 23], (6.6)
. ~S 2 2
(i) lim Pg, [nllﬁ<n> —Bullg <;o,}
2
=rllz-w-2@+enz+5Y| <2, (6.7)
. . RSt 12 2
vy lim Py, fnllBo — B, @13 2 <2
— p” Z-(z +5*)1(||z 5P < c)

c(Z + 6%
1Z + 6]

iz + 512> )| < 2], (6.9)

Seg12,13].
The expression (6.6)—(6.8) follows from Theorem 3.2 (iv), that is,

. 2 2
nl|_>moo PK(,,) {nl |ﬂ(n) - ﬂ;: | |én—1 < Xy}

:P{HZ—(z+5*)g(||z+5*||2)H2<X§}, (6.9)
where
g(1Z+612) = 1012 + 812 < D),
=(p—2Z+ 52

=1-{1-p-20z+8172|10Z + 812 > p-2), (6.10)
respectively.
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6.2. Asymptotic comparisons of the recentered confidence sets

First, note that the basic confidence él?(ﬂ,l) has the probability content  y as

n — oo. Next, by Brown[2], Hwang and Casella [6,7], and Joshi [9] one knows that the
AS ~S -
probability content 0C§(ﬁn) >1—y.ie. CVS(B") dominateff(ﬁ,» for all A. Next, we
APT
show thaC!;T(ﬁn ) is inadmissible via Theorem 6.2 given below regarding the asymptotic

coverage probability oCyF’T<i3:T) as function ofA? keepingg, 7, andp fix.

Theorem 6.2. Under K,y and the conditions of Theore®n2,
(i) If A2 < 42, then

. ~PT
lim Px,, {Cf%ﬁn )} >1—7,

n—o0

2
(i) If 2<A? < (X}, +xa) ,then

. pT/PT
Jim P, (7B, ) f<1-,

(iii) 1 (X./ n Xa)ngZ, then
Jm_ P, [CT(B)} =10

Proof. Consider the asymptotic probability O‘ffT(ifST) given by (6.6). Then,

(i) If A% < 42, the RHS of (6.6) is

> PlIZI? < 2212 + 512 < 2]

+P{I1ZI? < 72 12 + 3112 = 2]
= Plizi? < 2} =20 =1-7. (6.11)
Hence, for 0< A2< 72, the coverage probability cﬂ’ypT(lAlST) >1—7.
(i) Now let 22< A2 < (y,, + xa)z, then
Tim P, {CFT(B)) = PlizI? < 211z + 512 > £2)

< plizip<2=1-» (6.12)

(iii) If A2> (X}, + xa)z, then

. ~PT
im P, [PT(B) = Pliz+ 812 = 2 1ziP< 2] 613)
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Note thaty, + x, < A = [|6*||. Thus,||Z|[?< 2 implies that||Z|| <, which in turn
implies
0% = 1Z + 0" I <11ZII< 7,
= A—1Z+<IZII< gy = A < |2+ 6% + 7. (6.14)
Thus, from (6.11) we get, + 7, < A < [|Z + 0| + %~ It follows thaty, <|[|Z + 0|
which is equivalent to|Z + 6*(|2 > 2.

lim_ P, {FT(B )] = Plizie<2) =1-». (6.15)

This completes the proof.lJ

Itis evident from Theorem 6.2 that the asymptotic coverage probabilim‘));B(ifST) as

a function ofA? (for fixed (x, y, p)) decrease (from its maximum At = 0) monotonically
towards(1 — y) nearA” = 2, then drops to a minimum, say-1y*(<1 — y) atA® = 42
then increase towardd — y). The coverage probability fluctuates around 1 depends
on A? for fixed (a, y, p) implying inadmissibility. Some values of coverage probabilities of

~PT
CfT(ﬁn ) for different values ofA? andp, wheno = 0.05 andy = 0.1 are given in Table

2. The picture is similar to the efficiency graph (as a function%)fof the PTE versus UE
using (5.4) which may be observed in Fig. 4.

Consider now the recentered confidencdg%‘t ([Af?(c)). In this case, the asymptotic
coverage probability expression is given by (6.8) which may be rewritten as

Hy(c; 831 (62 < 2)
c(Z + 8
[p2 +5*||2H

The expression (6.16) is greater than or equal tolby Hwang and Casellgs,7] for all
c gc;‘. The number oﬁ;; is determined by solving the equation (fee= 4) for ¢g (see [6])

[xy+,/(x$+co)]p 3_08(,; 3)exp{M}. (6.17)

Toinclude the case fgr = 3, the numbec? is chosen as the minimum of the two solutions
of the equations, namely,

p—2
1 /1 1(p-2) 1 1
(é%/ + ZX}Z' + Cl) - Cf - eXplEXycf } (618)

(\/m - X,,) (Xv + \/W)P—Z
_2} P exp\[12c2). (6.19)

(Se€[7], Egs. (2.26) and (2.27))

+P{Hz < 22 N1Z + 811 >c}. (6.16)

and
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An approximate value of is 0.8(p — 2). However, using = p — 2 one may compute
the coverage probability (6.17) by rewriting (6.17) as

¢1+ ¢,
where
b= Hy(p — 2: A2)1<A2 < x?) (6.20a)
and
o |1Z . 2
{H ||Z+5*||2} <2 ||>c} (6.20b)

Letr = ||Z|| and@ is the angle between andd* then we may write (foA2 < ,(1,)

CS* (B (@) = {(r, 0) : r<ri(0), 0 € [, ), (6.21)

where

r+(0) = (u(ﬁ) + /R O12 + 4c> (6.22a)
and
r?(0) = Acosl + /72 — A? co 0. (6.22b)

On the other hand, whet? > 2
c§+(i;f+(c)) ={(r,0) : r—(0) <r<r4(0), 0 € [—00, o]}, (6.23a)

r-(0) =3 ( 00) +,/1r2 ()12 +4c>, (6.23Db)
r0(0) = Acosl — \/y2 — A?sir? 0 and sinfp = 4. (6.23c)

Note that_(0) > ¢ andr,.(0) is a decreasing function @f Now if A? < yf we have

dp = 2K [T [2+D h(r, 0) drdo (6.24)
where

h(r, 0) = rP~1(sinf)P—2 exp{ —1(r? = 2rAcost) + Az)}, (6.24b)
and

[J—3 T
K =@n 22 ] {/ sin/ ede}. (6.24¢)
j=1

0

Further, as\? increases t%z,, r+(0) tends toy, <cos€ + /cosO + ﬁ) On the other hand
vV (
if A% > 42

0o pry(0)
¢ =2K / / o h(r, 0)drdo. (6.25)
r—(0)
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Table 2
Asymptotic coverage probabilities of sets wjth= 0.05 andx = 0.1

A P 5 7 9 11 13 15
0 S+ 0.9879 0.9959 0.9985 0.9994 0.9998 0.9999
PTE 0.9500 0.9500 0.9500 0.950 0.9500 0.95Q0
2 S+ 0.9809 0.9926 0.9972 0.9989 0.9995 0.9998
PTE 0.9318 0.9304 0.9297 0.9293 0.9291 0.9289
4 S+ 0.9343 0.9622 0.9808 0.9949 0.9977 0.9989
PTE 0.9264 0.9345 0.9233 0.922¢ 0.92211 0.9218
6 S+ 0.9162 0.9337 0.9510 0.9661 0.9780 0.9866
PTE 0.9224 0.9202 0.9190; 0.9181 0.9176 0.9171
8 S+ 0.9093 0.9202 0.9323 0.944 0.9556 0.9687
PTE 0.9191 0.9169 0.9156 0.9147 0.9141 0.9137
10 S+ 0.9060 0.9133 0.9218 0.9307 0.9397 0.9484
PTE 0.5937 0.9141 0.9129 0.9121 0.9115 0.9110
15 S+ 0.9027 0.9061 0.9102 0.914y 0.9196 0.9247
PTE 0.7773 0.7296 0.6871 0.9074 0.9069 0.9066
20 S+ 0.9015 0.9035 0.9059 0.908% 0.9114 0.9145
PTE 0.8593 0.8336 0.8079 0.782¢ 0.7580 0.9039
25 S+ 0.9010 0.9022 0.9038 0.9055 0.9075 0.9095
PTE 0.8890 0.8777 0.8650) 0.8514 0.8371 0.8243
50 S+ 0.9002 0.9006 0.9010 0.9014 0.9019 0.9024
PTE 0.9000 0.9000 0.9000 0.8999 0.8997 0.8995
100 S+ 0.9001 0.9001 0.9002 0.9004 0.9005 0.9006
PTE 0.9000 0.9000 0.9000 0.9000 0.9000 0.90q0

As A? increases tq%, r+(0) approacheg, (cos@ + /cosb + 702) , 7—(60) approaches/c

andtp — 3. Therefore, forA? gxﬁ, the limit of (6.24a) is given by

. pr(0)
ZK/ / h(r,0)drdo, (6.26)
0 Jye
and forA® > »2, the limit is
5 pr+(0)
ZK/ / h(r,0)drdO (6.27)
0 Jye

(Se€[12]). Table 2 gives some numerical values of the coverage probabilities$d.05
ando = 0.1.
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