
Journal of Multivariate Analysis 101 (2010) 340–351

Contents lists available at ScienceDirect

Journal of Multivariate Analysis

journal homepage: www.elsevier.com/locate/jmva

Wiener processes with random effects for degradation data
Xiao Wang
Department of Mathematics and Statistics, University of Maryland, 1000 Hilltop Circle, Baltimore, MD 21250, USA

a r t i c l e i n f o

Article history:
Available online 24 December 2008

AMS subject classifications:
62G20
62M05
62N05

Keywords:
Bootstrap
Degradation
EM algorithm
Empirical processes
Random effects
Reliability
Wiener process

a b s t r a c t

This article studies the maximum likelihood inference on a class of Wiener processes with
random effects for degradation data. Degradation data are special case of functional data
with monotone trend. The setting for degradation data is one on which n independent
subjects, each with a Wiener process with random drift and diffusion parameters, are
observed at possible different times. Unit-to-unit variability is incorporated into the
model by these random effects. EM algorithm is used to obtain the maximum likelihood
estimators of the unknown parameters. Asymptotic properties such as consistency and
convergence rate are established. Bootstrap method is used for assessing the uncertainties
of the estimators. Simulations are used to validate the method. The model is fitted to
bridge beam data and corresponding goodness-of-fit tests are carried out. Failure time
distributions in terms of degradation level passages are calculated and illustrated.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In some studies where the subjects are put on test at time zero, these subjects degrade over time. Usually continuous
observation of degradation for these subjects is not possible. The degradation of each subject may be observed at each of
several times, where the number of observation times and observation times themselves are allowed to vary across the
subjects. Data of this type are called degradation data. Degradation data are special case of functional data with monotone
trend. Degradation data have applications in many fields, such as HIV study and industrial reliability. For example, it is
suggested that the immune system of a person infected with the HIV virus degrades over time [1]. CD4 counts constitute a
critical assessment of the status of the immune system and CD4 counts are commonly used markers for the health status
of HIV infected persons. In reliability area, the data from fatigue crack growth subject to loading cycles [2,3] and bridge
beams subject to erosion of chloride ion ingression [4] are typical degradation data. Degradation data are a very rich source
of survival information. In many tests, the failure time data are supplemented by degradation data and degradation data
offer many advantages over failure time data. For general discussion of degradation models, see [5–7].
Wiener processes and extensions to them have been used as models for degradation data (e.g. [8–11]). Let Λ(t) be a

nondecreasing function. The nonhomogeneousWiener process Y (t) has independent increments1Y (t) = Y (t+1t)−Y (t),
where 1Y (t) has a normal distribution with mean 1Λ(t) = Λ(t + 1t) − Λ(t) and variance σ 21Λ(t). If letting
U(t) = t + σW (t) be the Wiener process with drift t and diffusion σ , then

Y (t) = U(Λ(t)) = Λ(t)+ σW (Λ(t)) (1)

is just a time-transformed Wiener process. When the amount of degradation reaches a pre-specified critical level D, failure
occurs. Let T denote the failure time, then T = inf{t : Y (t) ≥ D}. The level-crossing of the cumulative degradation threshold
D by a nonhomogeneousWiener process Y (t) can be obtained in terms of the inverse Gaussian (IG) distribution [12,13,31] as
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TΛ = Λ−1(TIG), where TIG is inverse Gaussian (IG) random variable IG(D,D2/σ 2)with mean D and variance σ 2/D. Note the
similarities between nonhomogeneousWiener process model and hazard rate model. The failure time in hazard rate model
can be obtained by TΛ = Λ−1(Texp)whereΛ is the integrated hazard rate and Texp is the standard exponential distribution.
Detailed nonparametric inference of this model is discussed by [14].
In most degradation applications, there is substantial subject-to-subject variability among the degradation processes of

different individuals. The unit-specific random effects can be incorporated into the process to represent such heterogeneity
in the degradation paths. One such model can be specified by allowing both drift and diffusion of the aboveWiener process
model to be random. Mathematically tractable distribution results if we adopt a model as follows:

Given (ν, σ ), Y (t) = νΛ(t)+ σW (Λ(t)), (2)

w = σ−2 ∼ Gam(r−1, δ), ν|w ∼ N(1, θ/w). (3)

Here,w hasmean δ/r and variance δ/r2 and thusσ 2 has finitemean r/(δ−1) for δ > 1 and finite variance r2/((δ−1)2(δ−2))
for δ > 2. Letting the conditional mean of ν be 1 is for model identification since any constant can be incorporated into
function Λ(t). An alternative parameterization that is often used in such situations is to let r = δ in the distribution of
w. There is no physical meaning for choosing the random effect distributions in (3). The idea of making these choices of
the distributions (3) for random effects is borrowed from Bayesian linear regression [15] for computational convenience.
Semiparametric maximum likelihood method is developed to estimate the unknown parameter (Λ(t), δ, r, θ) of the
underlying process. Here, Λ(t) is estimated nonparametrically, which leads naturally to an infinite dimensional statistical
problem. We show that the maximum likelihood estimator (MLE) is consistent and we also derive the convergence rate of
the MLE. Bootstrap method is used for assessing the uncertainty of the MLE. Simulation results suggest that this method
works well and we apply our method to the degradation data of a civil engineering structure to estimate its reliability.
The remainder of the paper is as follows. Section 2 introduces the Wiener process model with random effects. Section 3

establishes the consistency and convergence rate of themaximum likelihood estimator and uses bootstrapmethod to assess
the uncertainties of the estimators. Section 4 uses EM algorithm to compute theMLE. Section 5 presentsMonte Carlo studies
to validate the methods and we also fit the Wiener process model to bridge beam data in Section 6. Section 7 makes some
concluding remarks.

2. Wiener process with random effects: t process

Model (2) shows that the conditional distribution of Y (t) given w and ν is normal, and the marginal density of Y (t)
follows as

f (y) =
∫
∞

−∞

∫
∞

0
f (y; ν,w)g1(ν; θ,w)g2(w; r, δ)dwdν

=
Γ (δ + 1

2 )
√
2πrΓ (δ)[Λ2θ +Λ]1/2

[
1+

(y−Λ)2

2r(Λ2θ +Λ)

]−δ− 12
. (4)

Note that
√

δ

r(Λ2θ+Λ)
(Y (t)−Λ(t)) has a t distributionwith degrees of freedom 2δ. Thus, Y (t) has finitemeanΛ(t) and finite

variance

Var(Y (t)) = [Λ(t)2θ +Λ(t)]
r

δ − 1
, for δ > 1.

An extreme situation of the above model is when the variances of the random effects are zero and it becomes the general
Wiener process model (1). This situation can be realized by letting θ → 0 and r →∞with δ/r = c fixed. Conditionally on
their common random effects, ν andw, the level-crossing of the cumulative degradation threshold D by the process Y (t) in
(2) follows IG distribution IG(D/ν,D2w). Hence, P(T ≤ t) = Eν,wG(Λ(t); ν,w), where G(t, ν, w) is the inverse Gaussian
distribution function with parameters (D/ν,D2w). If the degradation paths are monotonic, the failure time distribution has
explicit form and is given by

P(T ≤ t) = P(Y (t) > d) = F2δ

[√
δ

r
Λ(t)− d√

θΛ(t)2 +Λ(t)

]
, (5)

where F2δ is the t distribution function with degrees of freedom 2δ.
Suppose that we observe Y (t) for a subject at times t1, . . . , tm, yielding observations Y1, . . . , Ym. Let yj = Yj − Yj−1 and

λj = Λ(tj) − Λ(tj−1) with Y0 = 0 and Λ(t0) = 0. Given the common random effects ν and w, the increments yj are
independently normally distributed. Thus the joint density of the yj can be obtained as

f (y1, . . . , ym) =
∫
∞

−∞

∫
∞

0
φ(y1, . . . , ym; ν,w)g1(ν; θ,w)g2(w; r, δ)dwdν

=
Γ (δ + m

2 )

Γ (δ)(
√
2πr)m/2|A|1/2

[
1+

1
2r
(y− λ)′A−1(y− λ)

]−δ−m2
, (6)
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where y = (y1, . . . , ym)′ and λ = (λ1, . . . , λm)′ and the elements of matrix A are given by [A]ii = λ2i θ +λi and [A]ij = λiλjθ
for i 6= j. The joint density (6) for (y1, . . . , ym)′ is a multivariate noncentral t distribution with degrees of freedom 2δ and
covariance matrix rA/(δ − 1), for δ > 1, with cov(yj, yk) = θrλjλk/(δ − 1). We call such process Y (t) a t process. One
of the important issues to study degradation data is to predict the residual failure time conditional on observed levels of
degradation. As pointed out by [16], if we know the current degradationmeasurement, P (T > t+1t|T > t, Y (t)) provides
more precise prediction than P (T > t+1t|T > t). To track the individual subject, we need estimates of the random effects.
One such estimates can be obtained by

E[ν|Y1, . . . , Ym] =

θ−1 +
m∑
j=1
yj

θ−1 +
m∑
j=1
λj

, (7)

and

E[w|Y1, . . . , Ym] =
(
δ +

m
2

)−
(θ−1 +

m∑
j=1
yj)2

2(θ−1 +
m∑
j=1
λj)

+

m∑
j=1

y2j
2λj
+
1
2θ
+ r


−1

. (8)

Given the randomeffects ν andw, the residual failure time distribution, conditional on the last observed level of degradation
being Y (tk) at tk, is just the first passage time to D − Y (tk) of the nonhomogeneous Wiener process with drift function
Λ∗(t) = Λ(t)−Λ(tk).
Suppose that we observe the degradation paths for subject i at some discrete times tij, i.e., we observe Yi,j = Yi(tij), j =

1, . . . ,mi, i = 1, . . . , n. This type of data can be treated as a special case of functional datawithmonotone trend. The simplest
situation is that the observation times are fixed and the same for all subjects, say t1, . . . , tm. Under this circumstance, we
just observe a sample of multivariate t random variables (Yi,1, . . . , Yi,m)′, i = 1, . . . , n, with finite dimensional unknown
parameter (Λ1, . . . ,Λm, δ, r, θ)′, where Λi = Λ(ti). Maximum likelihood estimation of t distribution was discussed by
many authors in the literature, see e.g. [17–21]. When the observation times become random and different for each subject,
this problem is changed to an infinite dimensional statistical problembecause the parameter space is now infinite dimension
and we need estimate a functionΛ(t). However, due to the correlation between the successive degradation measurements
and monotonicity ofΛ(t), we need to solve a difficult constrained optimization problem. Both algorithms and asymptotics
pose many challenges. In the following, we first derive the large sample properties of the MLE, then use EM algorithm to
obtain the MLE.

3. Maximum likelihood estimator

Suppose we observe the degradation process Y (t) at a random number K of random times 0 = TK ,0 < TK ,1 < · · · < TK ,K .
Represent T K = (TK ,1, . . . , TK ,K ) and Y K = (YK ,1, . . . , YK ,K ), where YK ,j = Y (TK ,j). Assume (K , T K ) is independent of Y (t).
Suppose we observe n i.i.d. copies of X = (Y K , T K , K), X1, . . . , Xn, where Xi = (Y

(i)
Ki
, T (i)Ki , Ki) for i = 1, . . . , n. Our goal is to

estimate the unknown parameters of the process, (Λ(t), r, δ, θ).
The log likelihood function is given by

ln(Λ, r, δ, θ) =
n∑
i=1

{
logΓ

(
δ +

Ki
2

)
− logΓ (δ)−

Ki
2
log r −

1
2
log |Ai|

−

(
δ +

Ki
2

)
log

[
1+

1
2r
(y(i) − λ(i))′A−1i (y

(i)
− λ(i))

]}
, (9)

where y(i) = (1Y (i)Ki,1, . . . ,1Y
(i)
Ki,Ki

)′, λ(i) = (1ΛKi,1, . . . ,1ΛKi,Ki)
′, 1Y (i)Ki,j = Y

(i)
Ki,j
− Y (i)Ki,j−1, 1ΛKi,j = Λ(T (i)Ki,j) − Λ(T

(i)
Ki,j−1

),
and the elements of Ai are given by [Ai]kk = (1ΛKi,k)

2θ + 1ΛKi,k and [Ai]kj = 1ΛKi,k1ΛKi,jθ for k 6= j. Let (Λ̂n, r̂n, δ̂n, θ̂n)
be the MLE and then

(Λ̂n, r̂n, δ̂n, θ̂n) = arg max
F×R3

+

ln(Λ, r, δ, θ)

whereR+ ⊂ (0,∞) is a compact interval and

F = {Λ : [0,∞)→ [0,∞)|Λ is a nondecreasing function withΛ(0) = 0}.

Let Ct = {T
(i)
Ki,j
, j = 1, . . . , Ki, i = 1, . . . , n} = {T1, . . . , TN} be the superset of all the inspection times for all subjects. The

MLE Λ̂n(t) can only be identified at T1, . . . , TN and Λ̂n can be defined as a nondecreasing piecewise linear function with
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possible knots at T1, . . . , TN . The choice of making Λ̂n(t) a piecewise linear function is arbitrary and other conventions are
possible (e.g., making Λ̂n(t) as a step function with possible jumps at T1, . . . , TN ).
Characterizing α̂n = (Λ̂n, r̂n, δ̂n, θ̂n) can be easily formulated by the following optimality condition (e.g. [22]). Write F

as {Λ ∈ RN : 0 ≤ Λ1 ≤ Λ2 ≤ · · · ≤ ΛN} and denote

φi(α) =
∂ ln(α)
∂Λi

, i = 1, . . . ,N,

and

φr(α) =
∂ ln(α)
∂r

, φδ(α) =
∂ ln(α)
∂δ

, φθ (α) =
∂ ln(α)
∂θ

,

which can be calculated explicitly from (9). If α̂n = argmaxF×R3
+
ln(α), then∇ln(α̂n)′(α− α̂n) ≤ 0 for all α ∈ F ×R3

+
, i.e.,

N∑
i=1

φi(α̂n)(Λi − Λ̂n,i)+ φr(α̂n)(r − r̂n)+ φδ(α̂n)(δ − δ̂n)+ φθ (α̂n)(θ − θ̂n) ≤ 0, (10)

for all (Λ1, . . . ,ΛN , r, δ, θ) ∈ F ×R3
+
.

In the following, we study the asymptotic properties of the MLE. Let B denote the collection of Borel sets in R. Let
B[0,T ] = {B ∩ [0, T ] : B ∈ B} for some fixed constant T . On ([0, T ],B[0,T ]) we define measures µ, γ as follows: for
B1, B2 ∈ B[0,T ], define

µ(B1 × B2) =
∞∑
k=1

P(K = k)
k∑
j=1

P(TK ,j−1 ∈ B1, TK ,j ∈ B2|K = k),

γ (B) =
∞∑
k=1

P(K = k)P(Tk,k ∈ B|K = k).

Based on measure µ, for any α1 = (Λ1, r1, δ1, θ1) and α2 = (Λ2, r2, δ2, θ2), define the L2 metric d(α1, α2) as

d2(α1, α2) = (r1 − r2)2 + (δ1 − δ2)2 + (θ1 − θ2)2 + ‖1Λ1 −1Λ2‖2µ

= (r1 − r2)2 + (δ1 − δ2)2 + (θ1 − θ2)2 +
∫
[(Λ1(v)−Λ1(u))− (Λ2(v)−Λ2(u))]2dµ(v, u).

Wellner and Zhang [23] showed that this metric d is equivalent to another common L2 metric d0: If P(K ≤ k0) = 1 for some
k0 <∞, 12d(α1, α2) ≤ d0(α1, α2) ≤ k0d(θ1, θ2), where

d20(θ1, θ2) = (r1 − r2)
2
+ (δ1 − δ2)

2
+ (θ1 − θ2)

2
+ ‖Λ1 −Λ2‖

2
µ0

= (r1 − r2)2 + (δ1 − δ2)2 + (θ1 − θ2)2 +
∫
(Λ1(t)−Λ2(t))2dµ0(t),

and µ0(B) =
∑
∞

k=1 P(K = k)
∑k
j=1 P(TK ,j ∈ B|K = k).

Let (Λ0, r0, δ0, θ0) be the true parameters. To establish consistency of the MLE, assume the following regularity
conditions:
Condition A1. The true parameter (r0, δ0, θ0) is in the interior ofR3

+
.

Condition A2. The observation times TK ,j, j = 1, . . . , K are random and take values in [0, T ]with T <∞.
Condition A3. E(K) <∞ andΛ0(T ) <∞.
The above conditions are generally mild conditions in the context of applications. Conditions A1–A3 usually hold in

practice.

Theorem 3.1 (Consistency). Suppose that the conditions A1–A3 hold. Then, for every t < T and γ ([t, T ]) > 0,

d((Λ̂n1[0,t], r̂n, δ̂n, θ̂n), (Λ01[0,t], r0, δ0, θ0))→ 0, (11)

almost surely as n→∞. If γ ({T }) > 0, we also have

d((Λ̂n, r̂n, δ̂n, θ̂n), (Λ0, r0, δ0, θ0))→ 0.

To obtain the convergence rate of the MLE, we also assume that:
Condition B1. For some interval [Tl, Tu]with Tl > 0 andΛ0(Tl) > 0, P(∩Kj=1 TK ,j ∈ [Tl, Tu]) = 1.
Condition B2. P(K < k0) = 1 for some k0 <∞.
Condition B3. There exists a constant c > 0 such that P(TK ,j − TK ,j−1 ≥ c for all j = 1, . . . , K) = 1.
Condition B4. FunctionΛ0 is differentiable and there exist constants bl and bu such that 0 < bl < Λ′0(t) < bu <∞.



344 X. Wang / Journal of Multivariate Analysis 101 (2010) 340–351

Condition B1 assumes TK ,j is bounded away from zero and Condition B2 assumes K is finite almost surely. Condition
B3 assures that observation time points are separated and Condition B4 assumes that there is no flat part in Λ0(t) and its
derivative is bounded away from zero and infinity.

Theorem 3.2 (Convergency Rate). Suppose the conditions A1–A4 and B1–B4 hold. Then,

n1/3d((Λ̂n, r̂n, δ̂n, θ̂n), (Λ0, r0, δ0, θ0)) = Op(1). (12)

The overall convergence rate for the MLE is n1/3. Simulation study in Section 5 suggests that the convergence rate of
(r̂n, δ̂n, θ̂n) of the finite dimensional parameters is still n1/2. The proofs of Theorems 3.1 and 3.2 are given in Appendix which
are established similarly as in [23,24]).
In the following, bootstrap method (e.g. [25]) is used to assess the variability of the MLE: the degradation paths are

resampled independently, i.e., we resample triples X∗i = (Y
(i)∗
Ki
, T (i)∗Ki , K

∗

i ), i = 1, . . . , n, i.i.d. from the empirical distribution

putting mass n−1 to Xi = (Y
(i)
Ki
, T (i)Ki , Ki), i = 1, . . . , n, and define

(Λ̂∗n, r̂
∗

n , δ̂
∗

n , θ̂
∗

n ) = arg max
F×R3

+

ln(Λ, r, δ, θ; X∗1 , . . . , X
∗

n ).

Theorem 3.3. (i). Under the same conditions of Theorem 3.1, for every t < T and γ ([t, T ]) > 0, d((Λ̂∗n1[0,t], r̂
∗
n , δ̂
∗
n , θ̂
∗
n ),

(Λ̂n1[0,t], r̂n, δ̂n, θ̂n))→ 0, almost surely as n→∞. If γ ({T }) > 0, we also have d((Λ̂∗n, r̂
∗
n , δ̂
∗
n , θ̂
∗
n ), (Λ̂n1[0,t], r̂n, δ̂n, θ̂n))→ 0.

(ii). Under the same conditions of Theorem 3.2, n1/3d((Λ̂∗n, r̂
∗
n , δ̂
∗
n , θ̂
∗
n ), (Λ̂n, r̂n, δ̂n, θ̂n)) = Op(1).

Theorem3.3 shows that the bootstrap estimator is consistentwith n1/3 convergence rate. To construct confidence sets for
unknown parameters, we use both bootstrap-percentile method [26] and bootstrap-t method [27]. Let ω̂n be an estimator
of one of the unknown parameters, r , δ, θ , or Λ(t) for fixed t and ω̂∗n be its bootstrap analog based on X

∗

1 , . . . , X
∗
n . Define

Hboot(x) = P(ω̂∗n ≤ x|X
∗

1 , . . . , X
∗
n ). The bootstrap (1 − 2α) percentile confidence set for ω is [H

−1
boot(α),H

−1
boot(1 − α)]. The

bootstrap-t method is based on a given studentized ‘‘pivot’’ Rn = (ω̂n − ω0)/σ̂ω,n, where σ̂ω,n is the variance estimator
of ω̂n. The distribution Gn of Rn is usually unknown and it is estimated by the bootstrap estimator Gboot defined by
Gboot(x) = P(R∗n ≤ x|X1, . . . , Xn), where R∗n = (ω̂∗n − ω̂n)/σ̂

∗
ω,n, and ω̂

∗
n and σ̂

∗
ω,n are bootstrap analogs of ω̂n and σ̂ω,n,

respectively. The resulting (1 − 2α)-confidence set for ω is [ω̂n − σ̂ω,nG−1boot(α), ω̂n − σ̂ω,nG
−1
boot(1 − α)]. Here, we use the

bootstrap variance estimator vboot,ω for σ̂ω,n. Since both Gboot and vboot,ω are approximated by Monte Carlo, we need to do
nested bootstrapping. We first generate B1 bootstrap data sets to approximate Gboot and for each given bootstrap data set,
we generate B2 bootstrap date sets to approximate vboot,ω . Simulation studies in Section 5 will display the performance of
these bootstrap estimators based on coverage probabilities and interval lengths.

4. Computation of the MLE

The difficulty to obtain theMLE is thatwehave tomaximize the log likelihood function (9) under the order restriction that
functionΛ(t) ismonotone. Direct constrained optimization of the likelihood function is computationally difficult, especially
when the inspection times for different units are different. In the following, we use EM algorithm to find theMLE iteratively.
Let Ct = {T1, . . . , TN} be the superset of all the inspection times for all subjects. For each subject i, we have degradation

observations at only a subset of these time points. The steps to get the MLE are that we first impute the sufficient statistics
such as the unobserved degradationmeasurements at the unobserved timepoints and the randomeffects given the observed
data at other points, current values of parameters. Once we do this, we are in a special case where we can get the MLE
explicitly.
Whenboth {Y (i)N , i = 1 . . . , n} and {νi, ωi, i = 1, . . . , n} are consideredobserved, {Y

(1)
N , . . . , Y

(n)
N , ν1, . . . , νn, ω1, . . . , ωn}

comprise the complete data. Because of the conditional structure of the complete data model given by (2) and (3), the com-
plete data likelihood function can be factored into the product of two distinct functions. Hence, given the complete data, the
log likelihood function of the parameters (Λ, r, δ, θ) is given by

l(Λ, r, δ, θ) = lN(Λ)+ lG(r, δ, θ), (13)

where

lN(Λ) =
n∑
i=1

[
N
2
logωi −

1
2

N∑
j=1

log λj −
ωi

2

N∑
j=1

(yij − νiλj)2

λj

]
(14)

and

lG(r, δ, θ) =
n∑
i=1

[(
δ −

1
2

)
logωi −

1
2
log θ −

ωi(νi − 1)2

2θ
+ δ log r − rωi − logΓ (δ)

]
, (15)
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where yij = Y
(i)
N,j − Y

(i)
N,j−1 and λj = Λ(Tj) − Λ(Tj−1), i = 1, . . . , n, j = 1, . . . ,N . The complete data sufficient statistics for

(Λ, r, δ, θ) are
n∑
i=1

ωiν
2
i ,

n∑
i=1

ωiνi,

n∑
i=1

ωi,

n∑
i=1

logωi,
n∑
i=1

ωiy2ij, j = 1, . . . ,N.

Given the sufficient statistics, the MLE of Λ(t) and the MLE of (r, δ, θ) can be obtained from lN(Λ) and lG(r, δ, θ),
respectively. From (14) and (15), we have

λ̂j =

−n+

√
n2 + 4

n∑
i=1
wiν

2
i

n∑
i=1
wiy2ij

2
n∑
i=1
wiν

2
i

, j = 1, . . . ,N, (16)

which are positive. So, Λ̂(Tj) =
∑j
k=1 λ̂k gives themaximum likelihood estimate ofΛ(t). Themaximum likelihood estimates

of (r, δ, θ) from lG(Λ, r, δ, θ) are

θ̂ =
1
n

n∑
i=1

ωi(νi − 1)2, r̂ =
δ̂

n∑
i=1
ωi/n

(17)

and δ̂ is the solution of

ψ(δ)− log δ =
1
n

n∑
i=1

logωi − log

[
1
n

n∑
i=1

ωi

]
, (18)

where ψ is the digamma function and ψ(x) − log(x) is an increasing function with limits −∞ and zero as x goes to zero
and infinity respectively [20]. Thus, Eq. (18) has a unique zero δ̂.
Let Yi,obs denote the observed components for unit i and Yi,miss denote the missing components of unit i. Also, let

Ωt = {Λ
t , r t , δt , θ t} be the current values of the parameters. Since (Yi,obs, Yi,miss) follows multivariate t distribution with

scattermatrix, sayΣ , it is well known that the conditional distribution of Yi,miss given Yi,obs again ismultivariate t distributed
and

E(Yi,miss|Yi,obs,Ωt) = η1 − I−111 I12(Yi,obs − η2), (19)

where Σ−1 = [I11, I12; I21, I22] and η1 and η2 are the mean vectors of Yi,miss and Yi,obs respectively. This can be used to
get imputed values for the unobserved degradation data at the unobserved inspection times. For subject i, the conditional
distribution of νi given Ωt is a noncentral t distribution, the conditional distribution of νi given Ωt and ωi is a normal
distribution, and the conditional distribution of wi given Ωt follows a Gamma distribution. Thus for the expectations of
the sufficient statistics at the (t + 1)th E-step, we have

E[wi|Ωt ] =
(
δ +

Ki
2

)−
(θ−1 +

Ki∑
j=1
yij)2

2(θ−1 +
Ki∑
j=1
λij)

+

Ki∑
j=1

y2ij
2λij
+
1
2θ
+ r


−1

, (20)

E[logwi|Ωt ] = − log

−
(θ−1 +

Ki∑
j=1
yij)2

2(θ−1 +
Ki∑
j=1
λij)

+

Ki∑
j=1

y2ij
2λij
+
1
2θ
+ r

+ ψ
(
δ +

Ki
2

)
, (21)

E[ωiνi|Ωt ] = E[ωiE(νi|ωi,Ωt)|Ωt ] = E[wi|Ωt ]

θ−1 +
Ki∑
j=1
yij

θ−1 +
Ki∑
j=1
λij

, (22)

E[ωiν2i |Ωt ] = E[ωiE(ν
2
i |ωi,Ωt)|Ωt ] = E[wi|Ωt ]


θ−1 +

Ki∑
j=1
yij

θ−1 +
Ki∑
j=1
λij


2

+

(
Ki∑
j=1

λij + θ
−1

)−1
. (23)
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Table 1
Results of Monte Carlo study for (r, δ, θ) estimates based on 1000 repeated samples for data generated from conditional Wiener process.

n = 50 n = 100
r̂n δ̂n θ̂n r̂n δ̂n θ̂n

Λ(t) = t BIAS 0.2766 0.0236 −0.0161 0.1939 0.0146 −0.0094
SD 1.3547 0.1836 0.2391 0.9321 0.1302 0.1700
BOOT-P-CP 0.932 0.905 0.924 0.936 9.957 0.940
BOOT-T-CP 0.959 0.935 0.943 0.958 9.942 0.948

Λ(t) = t2/10 BIAS 0.3553 0.0346 0.0236 0.3074 0.0122 0.0179
SD 1.4320 0.1889 0.2546 0.9903 0.1333 0.1795
BOOT-P-CP 0.933 0.921 0.924 0.935 9.939 0.937
BOOT-T-CP 0.941 0.953 0.942 0.941 9.948 0.942

Λ(t) =
√
10t BIAS 0.3764 0.0409 −0.0008 0.2845 0.0361 −0.0005

SD 1.2668 0.1801 0.2530 0.9003 0.1265 0.1801
BOOT-P-CP 0.918 0.903 0.923 0.925 9.916 0.944
BOOT-T-CP 0.942 0.958 0.928 0.949 9.948 0.946

Fig. 1. The 95% pointwise confidence interval for theΛ(t) when n = 50. The dashed lines are true functions, the solid line is the mean of the MLEs from
1000 simulations, and the dash-dotted is the 95% pointwise confidence interval for theΛ(t).

The complete algorithm consists of the following steps.
Step 1. Choose initialsΛ0(t), θ0, δ0 and r0.
Step 2. For given (Λp(t), θp, δp, rp) (p = 0, 1, 2, . . .), impute the sufficient statistics by (19)–(23).
Step 3. UpdateΛp+1 by (16) and update (θp+1, δp+1, rp+1) by (17) and (18).
Step 4. Repeat Steps 2–3 until the change of the likelihood function within pre-specified threshold.

5. Simulation

Let {Y Ki , T Ki , Ki}, i = 1, . . . , n be a random sample. We choose Ki ∈ {18, 19, 20, 21, 22} and P(Ki = k) = 1/5 for
k = 18, . . . , 22. Then T Ki are made from the order statistics of Ki random observations from uniform(0,10). The time points
are rounded to the first decimal point to make the observation times possibly tied. The degradation measurements Y Ki are
generated from conditional Wiener process, that is,

ωi ∼ Gamma(δ, r−1), νi|ωi ∼ N(1, θ/ωi),
YKi,j − YKi,j−1|(νi, ωi) ∼ N

[
νi(Λ(TKi,j)−Λ(TKi,j−1)), ω

−1
i (Λ(TKi,j)−Λ(TKi,j−1))

]
,

where r = .5, δ = 4, θ = 1 and Λ(t) is chosen as one of the three functions with different shapes, t, t2/10,
√
10t . We

choose the number of subjects n = 50 and 100, respectively. We carry out a Monte Carlo study by repeating the simulation
1000 times. For each simulated degradation dataset, the bootstrap Monte Carlo size is 400. When we need the bootstrap
variance estimator to construct confidence set, for each bootstrap data, we generate 200 bootstrap datasets to approximate
variance estimator.
The bias and standard error for theMLE of (r, δ, θ) are given in Table 1. The table shows that the sample bias for (r̂n, δ̂n, θ̂n)

is small. The ratio of the standard error for the two sample sizes are close to
√
2, which indicates the convergence rate
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Table 2
The coverage probabilities (CP) and the expected length ratios (LR) of the 95% pointwise confidence intervals forΛ(t)whenΛ(t) = t .

t n = 50 n = 100
BOOT-P BOOT-T BOOT-P BOOT-T
CP LR CP LR CP LR CP LR

1 0.956 1.1644 0.952 1.0923 0.944 1.0917 0.950 1.1841
2 0.967 1.1561 0.948 1.1352 0.936 0.1492 0.946 1.1232
4 0.976 1.2338 0.955 1.1225 0.955 1.0896 0.952 1.0329
6 0.971 1.2655 0.963 1.1776 0.963 0.9474 0.958 1.0310
8 0.983 1.3169 0.969 1.1907 0.969 0.9758 0.961 1.0161
9 0.962 1.3038 0.960 1.2038 0.960 1.0018 0.959 0.9985

of (r̂n, δ̂n, θ̂n) is actually
√
n. The 95% bootstrap-percentile confidence interval coverage probability (BOOT-P-CP) and 95%

bootstrap-t confidence interval coverage probability (BOOT-T-CP) are also showed in Table 1. Both coverage probabilities
are close to the nominal value but the bootstrap-t confidence interval has more accurate CP.
Fig. 1 displays the 95% pointwise confidence intervals for the Λ(t) based on these 1000 simulations, along with three

different true functions when n = 50. The dashed lines are true functions, the solid line is the mean of the MLEs from 1000
simulations, and the dash-dotted is the 95% pointwise confidence interval. Apparently, theMLE is close and converges to the
true function. To assess the performance of the bootstrap method, Table 2 gives the coverage probabilities of the bootstrap-
percentile and bootstrap-t confidence intervals for Λ(t) when t = 1, 2, 4, 6, 8, 9 when Λ(t) = t . Table 2 also shows the
confidence interval length ratios for these two types of bootstrap confidence intervals, where the ratio is defined as expected
bootstrap confidence interval length over the confidence interval length obtained from 1000 simulations directly showed
in Fig. 1. Both types of the confidence interval perform reasonably good jobs, where the coverage probability is close to 0.95
and the length ratio is close to 1.

6. Application: bridge beam data

Elsayed and Liao [4] presented the data about the degradation of the bridge beams due to chloride ion ingression. A
sample of 20 bridge beams is observed. The field data considered are bivariate data (tj, yij), in which yij is the measurement
of the loss of strength for bridge beam i after j years, i = 1, . . . , 20, j = 10, . . . , 40. The left panel of Fig. 2 shows the bridge
beams’ strength losses from 10 to 40 years. Elsayed and Liao [4] used the data to illustrate statistical methodology by fitting
integrated geometric Brownian motion model. This model provides a good fit, however, it does not have tractable forms for
both the joint density of degradation measurements and the first passage time distribution.
We reconsider the samedata to illustrate the application of nonhomogeneousWiener processmodelwith randomeffects.

For the discussion here we assume failure occurs when the loss of strength exceeds 400 pst. On fitting the model (2) and
(3), maximum likelihood estimates were obtained as follows:

δ̂ = 2.48([0.11, 5.96]), r̂ = 0.0013([0.0000, 0.0034]), θ̂ = 200.20([125.48, 345.47]).

In parentheses give the 95% confidence intervals for the unknown parameters by bootstrap-t method. Small value of r̂ and
large value of θ̂ indicate strong evidence of existing of the random effects. One reason to explain this is that the original data
have smoother sample paths than seen with Wiener processes. The right panel of Fig. 2 (solid line) is the nonparametric
estimate of Λ(t). The dashed lines are 95% pointwise confidence band for Λ(t). The variabilities of the MLEs are obtained
by bootstrap-t method.
In Fig. 3, for an illustrative set of units (i = 3, 7, 10, 14, 20), the observed degradation paths Yi(t) together with the fitted

values which were computed from Λ̂i(t) = ν̂iΛ̂(t), where ν̂i is the estimated random effect for unit i computed from (20).
As we can see, the Wiener process model with random effects fits the data quite well. The TTF distribution function F(t) is
easily estimated by inserting parameter estimates in (5). The MLE of F(t) is given by the left panel of Fig. 4, along with the
95% pointwise confidence band computed by Bootstrap method. The right panel of Fig. 4 plots the Kaplan–Meier estimated,
computed from follow-up of each unit until it crosses the failure threshold. The estimated curve, based on nonhomogeneous
Wiener process with random effects appears to follow the data very well.

7. Conclusion

We develop a nonhomogeneous Wiener process model with random effects for degradation analysis. The probability
distribution of sample path measurements at discrete time points has a simple closed form, as does the time to failure
distribution. This model defines a wide class of time to failure distributions with different choices of the degradation
function. Consistency and convergence rate are established for the MLE. Current research is investigating the asymptotic
distribution of the MLE.
The imperfect procedures and equipment can producemeasurement errors in the degradation experiment. An extension

of our model, similar to that described in [10], can take measurement errors into account. We may add independent errors
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Fig. 2. Bridge beams’ strength loss over time.

Fig. 3. The fitted curves for units 3, 7, 10, 14, 20.

Fig. 4. Estimates of the failure time distribution function F(t).
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or intercorrelated measurement errors since readings on test items made at the same time under the same test conditions
can be highly correlated. For example, assume the degradation measurements at t1 < t2 < · · · < tn are given by

Y (ti) = Λ(ti)+ σ1W (Λ(ti))+ σ2εi, (24)
where εi denotes the measurement error and is assumed to be distributed as N(0, 1). Parameter inference of this model
is straightforward, but the nonparametric estimation need additional research. Note that the increments of (24) are not
independent anymore. Even when the measurement times are the same for all subjects, there is no closed form for the MLE.
After incorporating the random effects into themodel, the likelihood function gets muchmore complicated. There aremany
challenges for both finding efficient algorithms and deriving large sample properties for the estimators.
Another interesting extension for current model is when we have covariate information. For example, in accelerated

degradation experiment, the stress level such as temperature is the covariate. Bagdonavicius and Nikulin [28] incorporated
the covariates by replacing Λ(t) by Λ(tex

Tβ), where x is the covariate vector. Lawless and Crowder [16] treated scale
parameter of the Gamma process as a function of x to accommodate the covariate. Similar to Cox model, we may study
the proportional mean model replacingΛ(t) byΛ(t)ex

Tβ to incorporate the covariate information. For all these models, we
can study the likelihood inference in a similar way.
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Appendix

Let Pn denote the empirical measure and Gn denote the empirical process. Let C or Ci, i = 1, 2, . . . , stand for generic
constants which may change from line to line in the proof. Denote α = (Λ, r, δ, θ).
Proof of Theorem 3.1. LetMn(α) = n−1ln(Λ, r, δ, θ) = Pnmα(X) andM(α) = Pmα(X), where

mα(X) = log

[
Γ
(
δ + K

2

)
Γ (δ)

]
−
K
2
log r −

1
2
log |A| −

(
δ +

K
2

)
log

[
1+

1
2r
(y− λ)′A−1(y− λ)

]
.

We first show that α̂n = (Λ̂n, r̂n, δ̂n, θ̂n) is uniformly bounded. Note that (r̂n, δ̂n, θ̂n) is bounded since they are in a bounded
compact setR3

+
. Let α̃n = (Λ̂n + εΛ, r̂n, δ̂n, θ̂n) for any given ε andΛ. SinceMn(α̃) ≤ Mn(α̂), it follows that

0 ≥ lim
ε↓0

1
ε
[Mn(α̃)−Mn(α̂)]

= Pn


−
1
2

 K∑
j=1

λKj

λ̂nKj
+

K∑
j=1
λKj

θ̂−1n +
K∑
j=1
λ̂nKj

− δ̂n +
K
2

2r̂n + (y− λ̂)′Â−1(y− λ̂)

×

−
K∑
j=1
λKj

(
K∑
j=1
yKj + θ̂−1n

)2
(
θ̂−1n +

K∑
j=1
λ̂nKj

)2 +

K∑
j=1

y2KjλKj

λ̂2nKj




.

Letting Λ = −Λ̂n and after a straightforward algebra, this yields Pn
∑K
j=1 λ̂nKj ≤ C1Pn(C2 +

∑K
j=1 yKj)

2
+ C3, where the

right-hand side converges to a finite number by Condition A3 and the strong law of large numbers. On the other hand, we
have

lim sup
n→∞

Pn
K∑
j=1

λ̂nKj = lim sup
n→∞

PnΛ̂n(TK ,K )

≥ lim sup
n→∞

Pn{1[t,T ](TK ,K )Λ̂n(TK ,K )}

≥ lim sup
n→∞

Λ̂n(t)Pn{1[t,T ](TK ,K )}

≥ γ ([t, T ]) lim sup
n→∞

Λ̂n(t).
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Hence Λ̂n(s) is uniformly bounded almost surely for s ∈ [0, t] if γ ([t, T ]) > 0 for some 0 < t < T or for s ∈ [0, T ]
if γ ([T ]) > 0. Then by Helly’s selection Theorem and the compactness of F × R3

+
, it follows that α̂n has a subsequence

α̂n′ converging to α+ = (Λ+, r+, δ+, θ+), where Λ+ is an increasing bounded function defined on [0, t] for a t < T and
it can be defined on [0, T ] if γ ([T ]) > 0. Following the same argument as in proving Theorem 4.1 of [23], we can show
that M(α+) ≥ M(α0). This implies that α+ = α0 a.e. in µ. Finally, the dominated convergence theorem yields the strong
consistency of α̂n in the metric d. �

Proof of Theorem 3.2. We derive the rate of convergence of α̂n = (Λ̂n, r̂n, δ̂nθ̂n) by checking the conditions in Theorem
3.2.5 or Corollary 3.2.6 of van der [29]. Since α0 is the maximum of M(α), then the first derivative is zero at α0 and
the second derivative is negative definite. Thus, for α in a neighborhood of α0, then there exists a constant C such that
M(α)−M(α0) ≤ −Cd2(α, α0).
Let Mρ = {mα(X) − mα0(X) : d(α, α0) < ρ} be a class of functions. To find the convergence rate, we need

to find φ(ρ) such that E supd(α,α0)<ρ ‖Gn‖Mρ ≤ Cφ(ρ). We shall find the bracket entropy number for class Mδ . Let
Fρ = {Λ ∈ F : ‖Λ − Λ0‖µ ≤ ρ}. Since Fρ is the class of monotone function, it is well known that the set of all
monotone functions possess a bracketing entropy of the order 1/ε. Therefore, for any ε > 0, there exists a set of brackets
[Λl1,Λ

u
1], . . . , [Λ

l
q,Λ

u
q] with q < exp(M1/ε), such that for any Λ ∈ Fρ , Λli(t) < Λ(t) < Λui (t) for all t ∈ [Tl, Tu]

for some i and ‖Λui − Λ
l
i‖
2
µ ≤ ε2. From Lemma 8.2 in [24], we also can make these bracketing functions satisfying that

Λui − Λ
l
i ≤ γ1 = 2ε2 andΛ

l
i ≥ γ2 = Λ0(Tl) − ε2 with ε2 = (

√
ε2 + δ2/C)2/3 for all t ∈ [Tl, Tu] and i for sufficient small ε

and ρ. Moreover, by Conditions B3 and B4, there exists a constant a > 0 such that Λ0(TK ,j) − Λ0(TK ,j−1) > 2a, and hence
we haveΛli(TK ,j)−Λ

u
i (TK ,j−1) ≥ Λ0(TK ,j)−Λ0(TK ,j−1)− 2ε2 ≥ 2(a− ε2) ≥ γ3 for all i = 1, . . . , q and j = 1, . . . , K .

Since r is in a compact set, we can construct an ε-net for r , r1, . . . , rp, with p = M2/ε such that for any r there is s such
that |rs− r| ≤ ε. Similarly we have an ε-net for δ, δ1, . . . , δp and an ε-net for θ , θ1, . . . , θp. We can construct a set of brackets
forMρ : [mli,s,m

u
i,s], i = 1, . . . , q and s = 1, . . . , p, where

mli,s = log
Γ (δs − ε +

K
2 )

Γ (δs + ε)
−
K
2
log rs + ε −

1
2
log

(
1+ (θs + ε)

K∑
j=1

λui

)
−
1
2

K∑
j=1

log λuj,i

−

(
δs + ε +

K
2

)
log

1+
1

2(rs − ε)

−
(
K∑
j=1
yj + (θs + ε)−1

)2
K∑
j=1
λuj,i + (θs − ε)

−1

+

K∑
j=1

y2j
λlj,i
+ (θs + ε)

−1



−mα0(X)

and

mui,s = log
Γ (δs + ε +

K
2 )

Γ (δs − ε)
−
K
2
log rs − ε −

1
2
log

(
1+ (θs − ε)

K∑
j=1

λlj,i

)
−
1
2

K∑
j=1

log λlj,i

−

(
δs − ε +

K
2

)
log

1+
1

2(rs + ε)

−
(
K∑
j=1
yj + (θs − ε)−1

)2
K∑
j=1
λlj,i + (θs + ε)

−1

+

K∑
j=1

y2j
λuj,i
+ (θs − ε)

−1



−mα0(X),

where λlj,i = Λ
l
i(TK ,j)−Λ

u
i (TK ,j−1) and λ

u
j,i = Λ

u
i (TK ,j)−Λ

l
i(TK ,j−1). In the following, we show that ‖m

u
i,j,s−m

l
i,j,s‖P,B ≤ Cε

2

where ‖ · ‖P,B is the ‘‘Bernstein norm’’ defined by

‖f ‖P,B =
√
2P(e|f | − 1− |f |).

Since 2(ex − 1− x) ≤ x2ex for x > 0, we have ‖f ‖2P,B ≤ P(e
|f |
|f |2). With simple algebra, we can see thatmui,j,s −m

l
i,j,s are all

uniformly bounded and there exists a constant C such that

‖mui,s −m
l
i,s‖P,B ≤ Cε

2.

This shows that the total number of ε-brackets forMρ will be of orderM1/ε exp(CM2/ε) and

logN[ ](ε, M̃ρ, ‖ · ‖P,B) ≤
C
ε
.
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Similarly, we can show that P(mα(X)−mα0(X)) ≤ Cρ
2 for anymα(X)−mα0(X) ∈ Mρ(α0). By Lemma 3.4.3 of van der [29]

or Lemma 8.3 of van der [30],

E∗P ‖Gn‖Mρ ≤ CJ[ ](ρ,Mρ, ‖ · ‖P,B)
(
1+

J[ ](ρ,Mρ, ‖ · ‖P,B)
ρ2
√
n

)
,

where

J[ ](ρ,Mρ, ‖ · ‖P,B) =
∫ ρ

0

√
1+ logN[ ](ε,Mρ(α0), ‖ · ‖P,B)dε

= C
∫ ρ

0

√
1+

1
ε
dε ≤ C

∫ ρ

0
ε−1/2dε ≤ Cρ1/2.

So,φn(ρ) = ρ1/2(1+ρ1/2/(ρ2
√
n)) = ρ1/2+ρ−1/

√
n, andφn(ρ)/ρ is a decreasing function ofρ, and n2/3φn(n−1/3) = 2n1/2.

So, by Theorem 3.2.5 of van der [29], we have n1/3d(α̂n, α0) = Op(1). �

Proof of Theorem 3.3. The consistency and the convergence rate of the bootstrap estimators can be shown by imitating the
proofs in Theorems 3.1 and 3.2. We omit the details here. �
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