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a b s t r a c t

We design a data-dependent metric in Rd and use it to define the k-nearest neighbors
of a given point. Our metric is invariant under all affine transformations. We show that,
with this metric, the standard k-nearest neighbor regression estimate is asymptotically
consistent under the usual conditions on k, and minimal requirements on the input data.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The prediction error of standard nonparametric regression methods may be critically affected by a linear transformation
of the coordinate axes. It is typically the case for the popular k-nearest neighbor (k-NN) predictor [11,12,7,5,6], where amere
rescaling of the coordinate axes has a serious impact on the capabilities of this estimate. This is clearly an undesirable feature,
especially in applications where the data measurements represent physically different quantities, such as temperature,
blood pressure, cholesterol level, and the age of the patient. In this example, a simple change in, say, the unit measure
of the temperature parameter will lead to totally different results, and will thus force the statistician to use a somewhat
arbitrary preprocessing step prior to the k-NN estimation process. Furthermore, in several practical implementations, one
would like, for physical or economical reasons, to supply the freshly collected data to somemachine without preprocessing.

In this paper, we discuss a variation of the k-NN regression estimate whose definition is not affected by affine
transformations of the coordinate axes. Such a modification could save the user a subjective preprocessing step and would
save the manufacturer the trouble of adding input specifications.

The data set we have collected can be regarded as a collection of independent and identically distributed Rd
× R-valued

random variables Dn = {(X1, Y1), . . . , (Xn, Yn)}, independent of and with the same distribution as a generic pair (X, Y )
satisfying E|Y | < ∞. The space Rd is equipped with the standard Euclidean norm ∥ · ∥. For fixed x ∈ Rd, our goal is to

∗ Corresponding author at: LSTA & LPMA, Université Pierre et Marie Curie – Paris VI, Boîte 158, Tour 15-25, 2ème étage, 4 place Jussieu, 75252 Paris
Cedex 05, France.

E-mail addresses: gerard.biau@upmc.fr (G. Biau), lucdevroye@gmail.com (L. Devroye), vida@scs.carleton.ca (V. Dujmović), krzyzak@cs.concordia.ca
(A. Krzyżak).

0047-259X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2012.05.020

http://dx.doi.org/10.1016/j.jmva.2012.05.020
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:gerard.biau@upmc.fr
mailto:lucdevroye@gmail.com
mailto:vida@scs.carleton.ca
mailto:krzyzak@cs.concordia.ca
http://dx.doi.org/10.1016/j.jmva.2012.05.020


G. Biau et al. / Journal of Multivariate Analysis 112 (2012) 24–34 25

estimate the regression function r(x) = E[Y |X = x] using the data Dn. In this context, the usual k-NN regression estimate
takes the form

rn(x; Dn) =
1
kn

kn
i=1

Y(i)(x),

where (X(1)(x), Y(1)(x)), . . . , (X(n)(x), Y(n)(x)) is a reordering of the data according to increasing distances ∥Xi − x∥ of the
Xi’s to x. (If distance ties occur, a tie-breaking strategy must be defined. For example, if ∥Xi − x∥ = ∥Xj − x∥,Xi may be
declared ‘‘closer’’ if i < j, i.e., the tie-breaking is done by indices.) For simplicity, we will suppress Dn in the notation and
write rn(x) instead of rn(x; Dn). Stone [37] showed that, for all p ≥ 1, E[rn(X) − r(X)]p → 0 for all possible distributions
of (X, Y ) with E|Y |

p < ∞, whenever kn → ∞ and kn/n → 0 as n → ∞. Thus, the k-NN estimate behaves asymptotically
well, without exceptions. This property is called Lp universal consistency.

Clearly, any affine transformation of the coordinate axes influences the k-NN estimate through the norm ∥ · ∥, thereby
illuminating an unpleasant face of the procedure. To illustrate this remark, assume that a nontrivial affine transformation
T : z → Az + b (that is, a nonsingular linear transformation A followed by a translation b) is applied to both x and
X1, . . . ,Xn. Examples include any number of combinations of rotations, translations, and linear rescalings. Denote by
D′

n = (T (X1), Y1), . . . , (T (Xn), Yn) the transformed sample. Then, for such a function T , one has rn(x; Dn) ≠ rn(T (x); D′
n)

in general, whereas r(X) = E[Y |T (X)] since T is bijective. Thus, to continue our discussion, we are looking in essence for a
regression estimate rn with the following property:

rn(x; Dn) = rn(T (x); D′

n). (1)

We call rn affine invariant. Affine invariance is indeed a very strong but highly desirable property. In Rd, in the context of
k-NN estimates, it suffices to be able to define an affine invariant distance measure, which is necessarily data-dependent.
With this objective in mind, we develop in the next section an estimation procedure featuring (1) which in form coincides
with the k-NN estimate, and establish its consistency in Section 3. Proofs of the most technical results are gathered in
Section 4.

It should be stressed that what we are after in this article is an estimate of r which is invariant by an affine
transformation of both the query point x and the original regressors X1, . . . ,Xn. When the sole regressors are subject to
such a transformation, it is then more natural to talk of ‘‘affine equivariant’’ regression estimates rather than of ‘‘affine
invariant’’ ones; this is more in line with the terminology used, for example, in [28,29]. These affine invariance and affine
equivariance requirements, however, are strictly equivalent.

There have been many attempts in the nonparametric literature to achieve affine invariance. One of the most natural
ones relates to the so-called transformation-retransformation proposed by Chakraborty et al. [3]. That method and many
variants have been discussed in texts such as [9,17] for pattern recognition and regression, respectively, but they have also
been used in kernel density estimation (see, e.g., [36]). It is worth noting that, computational issues aside, the transformation
step (i.e., premultiplication of the regressors by M̂−1

n , where M̂n is an affine equivariant scatter estimate) may be based on a
statistic M̂n that does not require finiteness of anymoment. A typical example is the scatter estimate proposed in [38] or [20].
Rather, our procedure takes ideas from the classical nonparametric literature using concepts such as multivariate ranks. It
is close in spirit to the approach of Paindaveine and Van Bever [31], who introduce a class of depth-based classification
procedures that are of a nearest neighbor nature.

There are also attempts at getting invariance to other transformations. The most important concept here is that
of invariance under monotone transformations of the coordinate axes. In particular, any strategy that uses only the
coordinatewise ranks of the Xi’s achieves this. The onus, then, is to show consistency of the methods under the most
general conditions possible. For example, using an Lp norm on the d-vectors of differences between ranks, one can show
that the classical k-NN regression function estimate is universally consistent in the sense of Stone [37]. This was observed
by Olshen [30], and shown by Devroye [8] (see also [15,16,10,2] for related works). Rules based upon statistically equivalent
blocks (see, e.g., [1,34,13,14], and [9, Section 21.4]) are other important examples of regression methods invariant with
respect to monotone transformations of the coordinate axes. These methods and their generalizations partition the space
with sets that contain a fixed number of data points each.

It would be interesting to consider in a future paper the possibility of morphing the input space in more general ways
than those suggested in the previous few paragraphs of the present article. It should be possible, in principle, to define
appropriate metrics to obtain invariance for interesting large classes of nonlinear transformations, and show consistent
asymptotic behaviors.

2. An affine invariant k-NN estimate

The k-NN estimate we are discussing is based upon the notion of empirical distance. Throughout, we assume that the
distribution ofX is absolutely continuouswith respect to the Lebesguemeasure onRd and that n ≥ d. Because of this density
assumption, any collection Xi1 , . . . ,Xid (1 ≤ i1 < i2 < · · · < id ≤ n) of d points among X1, . . . ,Xn are in general position
with probability 1. Consequently, there exists with probability 1 a unique hyperplane in Rd containing these d random
points, and we denote it by H(Xi1 , . . . ,Xid).
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Fig. 1. An example in dimension 2. The empirical distance between x and x′ is 4. (Note that the hyperplane defined by the pair (3, 5) indeed cuts the
segment (x, x′), so that the distance is 4, not 3.)

With this notation, the empirical distance between d-vectors x and x′ is defined as

ρn(x, x′) =


1≤i1<···<id≤n

1{segment (x,x′) intersects the hyperplane H(Xi1 ,...,Xid )}.

Put differently, ρn(x, x′) just counts the number of hyperplanes in Rd passing through d out of the points X1, . . . ,Xn, that
are separating x and x′. Roughly, ‘‘near’’ points have fewer intersections, see Fig. 1which depicts an example in dimension 2.

This hyperplane-based concept of distance is known in the multivariate rank tests literature as the empirical lift-
interdirection function [27], see also [35,26,18] for companion concepts). It was originally mentioned (but not analyzed)
in [19], and independently suggested as an affine invariant alternative to ordinary metrics in the monograph by Devroye
et al. [9, Section 11.6]. We speak throughout of distance, even though, for a fixed sample of size n, ρn is only defined with
probability 1 and is not a distancemeasure stricto sensu (in particular,ρn(x, x′) = 0does not imply thatx = x′). Nevertheless,
this empirical distance is invariant under affine transformations x → Ax + b, where A is some arbitrary nonsingular linear
map and b any offset vector (see, for instance, [27, Section 2.4]).

Now, fix x ∈ Rd and let ρn(x,Xi) be the empirical distance between x and some observation Xi in the sample X1, . . . ,Xn.
(That is, the number of hyperplanes in Rd passing through d out of the observationsX1, . . . ,Xn, that are cutting the segment
(x,Xi).) In this context, the k-NN estimate we are considering still takes the familiar form

rn(x) =
1
kn

kn
i=1

Y(i)(x),

with the important difference that now the data set (X1, Y1), . . . , (Xn, Yn) is reordered according to increasing values of
the empirical distances ρn(x,Xi), not the original Euclidean metric. By construction, the estimate rn has the desired affine
invariance property and, moreover, it coincides with the standard (Euclidean) estimate in dimension d = 1. In the next
section, we prove the following theorem. The distribution of the random variable X is denoted by µ.

Theorem 1 (Pointwise Lp Consistency). Assume that X has a probability density, that Y is bounded, and that the regression
function r is µ-almost surely continuous. Then, for µ-almost all x ∈ Rd and all p ≥ 1, if kn → ∞ and kn/n → 0,

E |rn(x) − r(x)|p → 0 as n → ∞.

The following corollary is a consequence of Theorem 1 and the Lebesgue’s dominated convergence theorem.

Corollary 1 (Global Lp Consistency). Assume that X has a probability density, that Y is bounded, and that the regression function
r is µ-almost surely continuous. Then, for all p ≥ 1, if kn → ∞ and kn/n → 0,

E |rn(X) − r(X)|p → 0 as n → ∞.

The conditions of Stone’s universal consistency theorem given in [37] are not fulfilled for our estimate. For the standard
nearest neighbor estimate, a key result used in the consistency proof by Stone is that a given data point cannot be the
nearest neighbor of more than a constant number (say, 3d) of other points. Such a universal constant does not exist after
our transformation is applied. That means that a single data point can have a large influence on the regression function
estimate. While this by itself does not imply that the estimate is not universally consistent, it certainly indicates that any
such proof will require new insights. The addition of two smoothness constraints, namely that X has a density (without,
however, imposing any continuity conditions on the density itself) and that r is µ-almost surely continuous, is sufficient.

The complexity of our procedure in terms of sample size n and dimension d is quite high. There are
 n
d


possible

choices of hyperplanes through d points. This collection of hyperplanes defines an arrangement, or partition, of Rd into
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polytopal regions, also called cells or chambers. Within each region, the distance to each data point is constant and, thus, a
preprocessing step might consist of setting up a data structure for determining to which cell a given point x ∈ Rd belongs:
this is called the point location problem. Meiser [24] showed that such a data structure exists with the following properties:
(i) it takes space O(nd+ε) for any fixed ε > 0, and (ii) point location can be performed in O(log n) time. Chazelle’s cuttings [4]
improve (i) to O(nd). Chazelle’s processing time for setting up the data structure is O(nd). Still in the preprocessing step,
one can determine for each cell in the arrangement the distances to all n data points: this can be done by walking across
the graph of cells or by brute force. When done naively, the overall set-up complexity is O(n2d+1). For each cell, one might
keep a pointer to the k nearest neighbors. Therefore, once set up, the computation of the regression function estimate takes
merely O(log n) time for point location, and O(k) time for retrieving the k nearest neighbors.

One could envisage a reduction in the complexity by defining the distances not in terms of all hyperplanes that cut a line
segment, but in terms of the number of randomly drawn hyperplanes that make such a cut, where the number of random
draws is now a carefully selected number. By the concentration of binomial random variables, such random estimates of the
distances are expected to work well, while keeping the complexity reasonable. This idea will be explored elsewhere.

3. Proof of the theorem

Recall, sinceX has a probability density with respect to the Lebesguemeasure onRd, that any collectionXi1 , . . . ,Xid (1 ≤

i1 < i2 < · · · < id ≤ n) of d points among X1, . . . ,Xn defines with probability 1 a unique hyperplane H(Xi1 , . . . ,Xid) in
Rd. Thus, in the sequel, since no confusion is possible, we will freely refer to ‘‘the hyperplane H(Xi1 , . . . ,Xid) defined by
Xi1 , . . . ,Xid ’’ without further explicit mention of the probability 1 event.

Let us first fix some useful notation. The distribution of the randomvariableX is denoted byµ and its densitywith respect
to the Lebesgue measure is denoted by f . For every ε > 0, we let Bx,ε = {y ∈ Rd

: ∥y− x∥ ≤ ε} be the closed Euclidean ball
with center at x and radius ε. We write Ac for the complement of a subset A of Rd. For two random variables Z1 and Z2, the
notation

Z1 ≤st Z2
means that Z1 is stochastically dominated by Z2, that is, for all t ∈ R,

P{Z1 > t} ≤ P{Z2 > t}.

Our first goal is to show that for µ-almost all x, as kn/n → 0, the quantity maxi=1,...,kn ∥X(i)(x) − x∥ converges to 0 in
probability, i.e., for every ε > 0,

lim
n→∞

P


max
i=1,...,kn

∥X(i)(x) − x∥ > ε


= 0. (2)

So, fix such a positive ε. Let δ be a real number in (0, ε) and γn be a positive real number (eventually function of x and ε) to
be determined later. To prove identity (2), we use the following decomposition, which is valid for all x ∈ Rd:

P


max
i=1,...,kn

∥X(i)(x) − x∥ > ε


≤ P

 min
i=1,...,n
Xi∈Bc

x,ε

ρn(x,Xi) < γn

 + P

 max
i=1,...,n
Xi∈Bx,δ

ρn(x,Xi) ≥ γn


+ P {Card {i = 1, . . . , n : ∥Xi − x∥ ≤ δ} < kn}

:= A + B + C. (3)

The convergence to 0 of each of the three terms above — from which identity (2) immediately follows — are separately
analyzed in the next three paragraphs.
Analysis of A. As for now, taking an affine geometry point of view, we keep x fixed and see it as the origin of the space.
Recall that each point in the Euclidean space Rd (with the origin at x) may be described by its hyperspherical coordinates
(see, e.g., [25, Chapter 1]), which consist of a nonnegative radial coordinate r and d − 1 angular coordinates θ1, . . . , θd−1,
where θd−1 ranges over [0, 2π) and the other angles range over [0, π] (adaptation of this definition to the cases d = 1 and
d = 2 is clear). For a (d− 1)-dimensional vector Θ = (θ1, . . . , θd−1) of hyperspherical angles, we let Bx,ε(Θ) be the unique
closed ball anchored at x in the direction Θ and with diameter ε (see Fig. 2 which depicts an illustration in dimension 2).
We also let Lx(Θ) be the axis defined by x and the direction Θ , and let as well Sx,ε(Θ) be the open segment obtained as the
intersection of Lx(Θ) and the interior of Bx,ε(Θ).

Next, for fixed x, ε and Θ , we split the ball Bx,ε(Θ) into 2d−1 disjoint regions R1
x,ε(Θ), . . . , R2d−1

x,ε (Θ) as follows. First,
the Euclidean space Rd is sequentially divided into 2d−1 symmetric quadrants rotating around the axis Lx(Θ) (boundary
equalities are broken arbitrarily). Next, each region Rj

x,ε(Θ) is obtained as the intersection of one of the 2d−1 quadrants and
the ball Bx,ε(Θ).

The numbers of sample points falling in each of these regions are denoted hereafter byN1
x,ε(Θ), . . . ,N2d−1

x,ε (Θ) (see Fig. 2).
Letting finally Vd be the volume of the unit d-dimensional Euclidean ball, we are now in a position to control the first term
of inequality (3).
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Fig. 2. The ball Bx,ε(Θ) and related notation. Illustration in dimension 2.

Fig. 3. The ball Bx,ε(Θ
⋆) in dimension 2.

Proposition 1. For µ-almost all x ∈ Rd and all ε > 0 small enough,

P

 min
i=1,...,n
Xi∈Bc

x,ε

ρn(x,Xi) < γn

 → 0 as n → ∞,

provided

γn = nd


Vd

22d+1
εdf (x)

2d−1

.

Proof of Proposition 1. Set

px,ε = min
j=1,...,2d−1

inf
Θ

µ


Rj
x,ε(Θ)


,

where the infimum is taken over all possible hyperspherical angles Θ . We know, according to technical Lemma 1, that for
µ-almost all x and all ε > 0 small enough,

px,ε ≥
Vd

22d
εdf (x) > 0. (4)

Thus, in the rest of the proof, we fix such an x and assume that ε is small enough so that the inequalities above are satisfied.
Let X⋆ be defined as the intersection of the line (x,X) with Bx,ε , and let Θ⋆ be the (random) hyperspherical angle

corresponding to X⋆ (see Fig. 3 for an example in dimension 2). Denote by Nx,ε(Θ
⋆) the number of hyperplanes passing

through d out of the observations X1, . . . ,Xn and cutting the segment Sx,ε(Θ
⋆). We have

P

 min
i=1,...,n
Xi∈Bc

x,ε

ρn(x,Xi) < γn

 ≤ nP

ρn(x,X⋆) < γn


= nP


Nx,ε(Θ

⋆) < γn

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≤ nP


N1

x,ε(Θ
⋆) · · ·N2d−1

x,ε (Θ⋆)

n2d−1−d
< γn


,

where the last inequality follows from technical Lemma 2. Thus,

P

 min
i=1,...,n
Xi∈Bc

x,ε

ρn(x,Xi) < γn

 ≤ n
2d−1
j=1

P

N j

x,ε(Θ
⋆) <


γnn2d−1

−d
1/2d−1

= n
2d−1
j=1

P

N j

x,ε(Θ
⋆) < γ 1/2d−1

n n1−d/2d−1


.

Clearly, conditionally on Θ⋆, each N j
x,ε(Θ

⋆) satisfies

Binomial (n, px,ε) ≤st N j
x,ε(Θ

⋆)

and consequently, by inequality (4),

Binomial

n,

Vd

22d
εdf (x)


≤st N j

x,ε(Θ
⋆).

Thus, for each j = 1, . . . , 2d−1, by Hoeffding’s inequality for binomial random variables [21], we are led to

P

N j

x,ε(Θ
⋆) < γ 1/2d−1

n n1−d/2d−1


= E

P


N j

x,ε(Θ
⋆) < γ 1/2d−1

n n1−d/2d−1
|Θ⋆


≤ exp


−2


γ 1/2d−1

n n1−d/2d−1
− n

Vd

22d
εdf (x)

2 
n



as soon as γ
1/2d−1

n n1−d/2d−1
< n Vd

22d
εdf (x). Therefore, taking

γn = nd


Vd

22d+1
εdf (x)

2d−1

,

we obtain

P

 min
i=1,...,n
Xi∈Bc

x,ε

ρn(x,Xi) < γn

 ≤ 2d−1n exp


−n


Vd

22d
εdf (x)

2 
2


.

The upper bound goes to 0 as n → ∞. �

Analysis of B. Consistency of the second term in inequality (3) is established in the following proposition.

Proposition 2. For µ-almost all x ∈ Rd, all ε > 0 and all δ > 0 small enough,

P

 max
i=1,...,n
Xi∈Bx,δ

ρn(x,Xi) ≥ γn

 → 0 as n → ∞,

provided

γn = nd


Vd

22d+1
εdf (x)

2d−1

. (5)

Proof of Proposition 2. Fix x in a set ofµ-measure 1 such that f (x) > 0 and denote by Nx,δ the number of hyperplanes that
cut the ball Bx,δ . Clearly,

P

 max
i=1,...,n
Xi∈Bx,δ

ρn(x,Xi) ≥ γn

 ≤ P

Nx,δ ≥ γn


.

Observe that, with probability 1,

Nx,δ =


1≤i1<···<id≤n

1{H(Xi1 ,...,Xid )∩Bx,δ≠∅},
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whence, since X1, . . . ,Xn are identically distributed,

E[Nx,δ] =

n
d


P


H(X1, . . . ,Xd) ∩ Bx,δ ≠ ∅


≤

nd

d!
P


H(X1, . . . ,Xd) ∩ Bx,δ ≠ ∅


.

Consequently, given the choice (5) for γn and the result of technical Lemma 3, it follows that

E[Nx,δ] < γn/2

for all δ small enough, independently of n. Thus, using the bounded difference inequality [23], we obtain, still with the choice

γn = nd


Vd

22d+1
εdf (x)

2d−1

,

P

Nx,δ ≥ γn


≤ P


Nx,δ − E[Nx,δ] ≥ γn/2


≤ exp


−2

(γn/2)2

n2d−1


= exp


−


Vd

22d+1
εdf (x)

2d

n/2


.

This upper bound goes to zero as n tends to infinity, and this concludes the proof of the proposition. �

Analysis of C. To achieve the proof of identity (2), it remains to show that the third and last term of (3) converges to 0. This
is done in the following proposition.

Proposition 3. Assume that kn/n → 0 as n → ∞. Then, for µ-almost all x ∈ Rd and all δ > 0,

P {Card {i = 1, . . . , n : ∥Xi − x∥ ≤ δ} < kn} → 0 as n → ∞.

Proof of Proposition 3. Recall that the collection of all xwith µ(Bx,τ ) > 0 for all τ > 0 is called the support of µ, and note
that it may alternatively be defined as the smallest closed subset of Rd of µ-measure 1 [32, Chapter 2]. Thus, fix x in the
support of µ and set

px,δ = P{X ∈ Bx,δ},

so that px,δ > 0. Then the following chain of inequalities is valid:

P {Card {i = 1, . . . , n : ∥Xi − x∥ ≤ δ} < kn} = P

Binomial (n, px,δ) < kn


≤ P


Binomial (n, px,δ) ≤ npx,δ/2


(for all n large enough, since kn/n tends to 0)

≤ exp(−np2x,δ/2),

where the last inequality follows from Hoeffding’s inequality [21]. This terminates the proof of Proposition 3. �

We have proved so far that, for µ-almost all x, as kn/n → 0, the quantity maxi=1,...,kn ∥X(i)(x) − x∥ converges to 0 in
probability. By the elementary inequality

E


1
kn

kn
i=1

1{∥X(i)(x)−x∥>ε}


≤ P


max

i=1,...,kn
∥X(i)(x) − x∥ > ε


,

it immediately follows that, for such an x,

E


1
kn

kn
i=1

1{∥X(i)(x)−x∥>ε}


→ 0 (6)

provided kn/n → 0. We are now ready to complete the proof of Theorem 1.
Fix x in a set of µ-measure 1 such that consistency (6) holds and r is continuous at x (this is possible by the assumption

on r). Because |a + b|p ≤ 2p−1(|a|p + |b|p) for p ≥ 1, we see that

E |rn(x) − r(x)|p ≤ 2p−1E

 1
kn

kn
i=1


Y(i)(x) − r


X(i)(x)


p

+ 2p−1E

 1
kn

kn
i=1


r

X(i)(x)


− r(x)


p

.
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Thus, by Jensen’s inequality,

E |rn(x) − r(x)|p ≤ 2p−1E

 1
kn

kn
i=1


Y(i)(x) − r


X(i)(x)


p

+ 2p−1E


1
kn

kn
i=1

r 
X(i)(x)


− r(x)

p
:= 2p−1In + 2p−1Jn.

Firstly, for arbitrary ε > 0, we have

Jn = E


1
kn

kn
i=1

r 
X(i)(x)


− r(x)

p 1{∥X(i)(x)−x∥>ε}


+ E


1
kn

kn
i=1

r 
X(i)(x)


− r(x)

p 1{∥X(i)(x)−x∥≤ε}


,

whence

Jn ≤ 2pζ p E


1
kn

kn
i=1

1{∥X(i)(x)−x∥>ε}


+


sup

y∈Rd:∥y−x∥≤ε

|r(y) − r(x)|

p

(since |Y | ≤ ζ ).

The first term on the right-hand side of the latter inequality tends to 0 by (6) as kn/n → 0, whereas the rightmost one can
be made arbitrarily small as ε → 0 since r is continuous at x. This proves that Jn → 0 as n → ∞.

Next, by successive applications of inequalities of Marcinkiewicz and Zygmund [22] (see also [33, pp. 59–60]), we have
for some positive constant Cp depending only on p,

In ≤ Cp E


1
k2n

kn
i=1

Y(i)(x) − r

X(i)(x)

2p/2

≤
(2ζ )pCp

kp/2n
(since |Y | ≤ ζ ).

Consequently, In → 0 as kn → ∞, and this concludes the proof of the theorem.

4. Some technical lemmas

The notation of this section is identical to that of Section 3. In particular, it is assumed throughout thatX has a probability
density f with respect to the Lebesguemeasure λ on Rd. This requirement implies that any collection Xi1 , . . . ,Xid (1 ≤ i1 <

i2 < · · · < id ≤ n) of d points among X1, . . . ,Xn define with probability 1 a unique hyperplane H(Xi1 , . . . ,Xid) in Rd. Recall
finally that, for x ∈ Rd and ε > 0, we set

px,ε = min
j=1,...,2d−1

inf
Θ

µ


Rj
x,ε(Θ)


,

where the infimum is taken over all possible hyperspherical angles Θ , and the regions Rj
x,ε(Θ), j = 1, . . . , 2d−1, define a

partition of the ball Bx,ε(Θ). Recall also that the numbers of sample points falling in each of these regions are denoted by
N1

x,ε(Θ), . . . ,N2d−1
x,ε (Θ). For a better understanding of the next lemmas, the reader should refer to Figs. 2 and 3.

Lemma 1. For µ-almost all x ∈ Rd and all ε > 0 small enough,

px,ε ≥
Vd

22d
εdf (x) > 0.

Proof of Lemma 1. We let x be a Lebesgue point of f , that is, an x such that for any collection A of subsets of B0,1 with the
property that for all A ∈ A, λ(A) ≥ cλ(B0,1) for some fixed c > 0,

lim
ε→0

sup
A∈A



x+εA f (y)dy
λ{x + εA}

− f (x)

 = 0, (7)

where x + εA = {y ∈ Rd
: (y − x)/ε ∈ A}. As f is a density, we know that µ-almost all x satisfy this property (see, for

instance, [39]). Moreover, since f is µ-almost surely positive, we may also assume that f (x) > 0.
Thus, keep such an x fixed. Fix also j ∈ {1, . . . , 2d−1

}, and set

pjx,ε = inf
Θ

µ


Rj
x,ε(Θ)


.

Taking for A the collection of regions Rj
0,1(Θ) when the hyperspherical angle Θ varies, that is,

A =


Rj

0,1(Θ) : Θ ∈ [0, π]
d−2

× [0, 2π)


,
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and observing that

λ


Rj
x,ε(Θ)


=

Vd

2d−1

ε

2

d
,

we may write, for each j = 1, . . . , 2d−1, 2d−1pjx,ε
Vd(ε/2)d

− f (x)

 =

infΘ

µ


Rj
x,ε(Θ)


λ


Rj

x,ε(Θ)
 − f (x)


=

 infA∈A


x+εA f (y)dy
λ{x + εA}

− f (x)


≤ sup

A∈A



x+εA f (y)dy
λ{x + εA}

− f (x)

 .
The conclusion follows from identity (7). �

Lemma 2. Fix x ∈ Rd, ε > 0 and Θ ∈ [0, π]
d−2

× [0, 2π). Let Nx,ε(Θ) be the number of hyperplanes passing through d out of
the observations X1, . . . ,Xn and cutting the segment Sx,ε(Θ). Then, with probability 1,

Nx,ε(Θ) ≥
N1

x,ε(Θ) · · ·N2d−1
x,ε (Θ)

n2d−1−d
.

Proof of Lemma 2. If one of the N j
x,ε(Θ)(j = 1, . . . , 2d−1) is zero, then the result is trivial. Thus, in the rest of the proof, we

suppose that each N j
x,ε(Θ) is positive and note that this implies n ≥ 2d−1.

Pick sequentially 2d−1 observations, say Xi1 , . . . ,Xi2d−1 , in the 2d−1 regions R1
x,ε(Θ), . . . , R2d−1

x,ε (Θ). By construction,
the polytope defined by these 2d−1 points cuts the axis Lx,ε(Θ). Consequently, with probability 1, any hyperplane drawn
according to d out of these 2d−1 points cuts the segment Sx,ε(Θ). The desired result follows by observing that there are
exactly N1

x,ε(Θ) · · ·N2d−1
x,ε (Θ) such polytopes. �

Lemma 3. For 1 ≤ i1 < · · · < id ≤ n, let H(Xi1 , . . . ,Xid) be the hyperplane passing through d out of the observations
X1, . . . ,Xn. Then, for all x ∈ Rd,

P


H(Xi1 , . . . ,Xid) ∩ Bx,δ ≠ ∅


→ 0 as δ ↓ 0.

Proof of Lemma 3. Given two hyperplanes H and H′ in Rd, we denote by Φ(H, H′) the (dihedral) angle between H and H′.
Recall that Φ(H, H′) ∈ [0, π] and that it is defined as the angle between the corresponding normal vectors.

Fix 1 ≤ i1 < · · · < id ≤ n. Let Eδ be the event

Eδ =

∥Xij − x∥ > δ : j = 1, . . . , d − 1


,

and let H(x,Xi1 , . . . ,Xid−1) be the hyperplane passing through x and the d−1 pointsXi1 , . . . ,Xid−1 . Clearly, on Eδ , the event
{H(Xi1 , . . . ,Xid) ∩ Bx,δ ≠ ∅} is the same as

Φ


H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)


≤ Φδ


,

where Φδ is the angle formed by H(x,Xi1 , . . . ,Xid−1) and the hyperplane going trough Xi1 , . . . ,Xid−1 and tangent to Bx,δ
(see Fig. 4 for an example in dimension 2).

Thus, with this notation, we may write

P


H(Xi1 , . . . ,Xid) ∩ Bx,δ ≠ ∅


≤ P{Ec
δ } + P


H(Xi1 , . . . ,Xid) ∩ Bx,δ ≠ ∅, Eδ


≤ P{Ec

δ } + P

Φ


H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)


≤ Φδ, Eδ


.

Since X has a density, the first of the two terms above tends to zero as δ ↓ 0. To analyze the second term, first note that,
conditionally on Xi1 , . . . ,Xid−1 , the angle Φ(H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)) is absolutely continuous with respect to
the Lebesguemeasure on R. This follows from the following two observations: (i) the random variableXid has a density with
respect to the Lebesgue measure on Rd, and (ii) conditionally on Xi1 , . . . ,Xid−1 , Φ(H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)) is
obtained from Xid via translations, orthogonal transformations, and the arctan function.
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Fig. 4. The hyperplanes H(x,Xi1 , . . . ,Xid−1 ) and H(Xi1 , . . . ,Xid ), and the angle Φδ . Illustration in dimension 2.

Thus, writing

P

Φ


H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)


≤ Φδ, Eδ


= E


1Eδ

P

Φ


H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)


≤ Φδ|Xi1 , . . . ,Xid−1


and noting that, on the event Eδ , for fixed Xi1 , . . . ,Xid−1 , Φδ ↓ 0 as δ ↓ 0, we conclude by the Lebesgue’s dominated
convergence theorem that

P

Φ


H(x,Xi1 , . . . ,Xid−1), H(Xi1 , . . . ,Xid)


≤ Φδ


→ 0 as δ ↓ 0. �
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