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a b s t r a c t

We present a new method for estimating the frontier of a multidimensional sample. The
estimator is based on a kernel regression on high order moments. It is assumed that the
order of the moments goes to infinity while the bandwidth of the kernel goes to zero. The
consistency of the estimator is proved under mild conditions on these two parameters.
The asymptotic normality is also established when the conditional distribution function
decreases at a polynomial rate to zero in the neighborhood of the frontier. The good
performance of the estimator is illustrated in some finite sample situations.
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1. Introduction

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X, Y ) such that their common density has a support
defined by S = {(x, y) ∈ Ω × R; 0 ≤ y ≤ g(x)} , where Ω is a compact subset of Rd. The unknown function g is called the
frontier. We address the problem of estimating g . In [22], an estimator is introduced based upon kernel regression on high
power-transformed data. In the particular case where Y given X = x is uniformly distributed it is proved that this estimator
is asymptotically Gaussian with the minimax rate of convergence for Lipschitz continuous frontier functions. Compared
to the numerous extreme-value based estimators [15,16,19–21,23,34], projection estimators [29], or piecewise polynomial
estimators [32,31,27] this estimator does not require a partition of the support S. When the conditional distribution of Y
given X is not uniform, this estimator is still convergent [22, Theorem 1] but suffers from a strong bias on finite sample
situations [22, Table 1].

Under monotonicity assumptions, the frontier can also be interpreted as the endpoint of Y given X ≤ x. Specific estima-
tion techniques have been developed in this context; see for instance [10,13,17] or [3,5,9,8] for the definition and properties
of robust estimators. Let us mention that all these techniques apply when there is no random noise in the data. In the pres-
ence of noise, a popular and efficient technique consists in using local maximum likelihood estimators; see for instance the
pioneering article of [2] and its semiparametric, kernel-based generalizations by [12,33,36]. Recently, Daouia et al. [7] have
shown that the estimation of the endpoint of Y given X ≤ x may be reduced to the estimation of the endpoint of univari-
ate independent and identically distributed random variables. This result tends to indicate that the nature of the problem
addressed here is different.
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In this paper, an estimator based on a kernel regression on high ordermoments of the variable of interest Y is introduced.
More precisely, the estimator is given by

1gn(x) =
1
apn


((a + 1)pn + 1)

µ(a+1)pn(x)µ(a+1)pn+1(x)
− (pn + 1)

µpn(x)µpn+1(x)


(1)

where (pn) is a nonrandom sequence such that pn → ∞, a > 0 and

µpn(x) =
1
n

n
i=1

Y pn
i Khn(x − Xi)

is a kernel estimator of the conditional moment mpn(x) = E(Y pn |X = x). Classically, K is a probability density function on
Rd, Khn(u) = h−d

n K(u/hn) and (hn) is a nonrandom positive sequence such that hn → 0. Note thatµpn(x) is the empirical
counterpart of themomentµpn(x) = E(Y pn Khn(x−X)), itself a smoothed version of the conditionalmomentmpn(x), namely

µpn(x) =


Ω

Khn(x − t)mpn(t) f (t) dt

where f is the probability density function of X . From a practical point of view, the use of a small window-width hn allows to
select the pairs (Xi, Yi) such that Xi is close to xwhile the use of the high power pn givesmore weight to the Yi close to g(x). It
appears therefore that our estimator would be sensitive to the presence of noise and especially of outliers. Nevertheless, we
notice that our estimator does not necessarily envelop all the data points, due to the fact that it is a difference of ratios of high
order empirical moments. This propertymakes our estimator more robust than Geffroy’s estimator [16] or the Free Disposal
Hull [10]. Moreover, similarly to [22], the kernel regression enables us to avoid the partitioning of S. Finally, we highlight
that, compared to the estimator suggested in the further work of [22, Section 6], our proposition (1) does not require the
knowledge of the conditional extreme-value index. Moreover, it benefits from an explicit formulation which is not the case
of estimators defined by optimization problems [18] such as local polynomial estimators [25,24,30].

The asymptotic properties of the estimator (1) are investigated under two different assumptions. The first one is
nonparametric, it is only assumed that

(NP) given X = x, Y is positive and has a finite right endpoint g(x).

We shall show in Section 3 that, under (NP), the estimatorgn(x) converges in probability to g(x) without any parametric
assumption neither on the distribution of X nor on the distribution of Y given X = x. Remark that, although our estimatorgn(x) is based on a kernel regression, classical results do not apply (see for instance [14, Theorem 6.11]) since the condition
pn → ∞ induces technical difficulties. The second assumption is parametric, the cumulative distribution function of Y given
X = x is assumed to be given by

(P) F(y|x) = 1 − (1 − y/g(x))α(x), ∀ y ∈ [0, g(x)].

Here, α(x) is an unknown positive function driving the behavior of the distribution tail of Y given X = x in the neighborhood
of its endpoint g(x). If α(x) < 1 then the density of Y given X = x tends to infinity as y → g(x) whereas it tends to 0 in the
case α(x) > 1. The intermediate case α(x) = 1 corresponds to the uniform distribution already investigated in [22] where
the density has a jump at the endpoint. In the general context of extreme-value theory (see for instance [11]), the conditional
distribution of Y givenX = x is said to belong to theWeibullmax-domain of attractionwith conditional extreme-value index
−1/α(x). In Section 4, the estimator is proved to be asymptotically Gaussian under (P). As expected, the asymptotic variance
depends on the tail behavior of the conditional distribution of Y given X = x through the quantity α(x). Some simulations
are proposed in Section 5 to illustrate the efficiency of our estimator and to compare it with some estimators of the frontier
estimation literature, particularly the one of [22]. Auxiliary results are postponed to Appendix A and proved in Appendix B.

2. Construction of the estimator

To motivate the construction of our estimator of g(x), let us first focus on the parametric setting (P). Let x ∈ Ω and
consider the conditional moment

mpn(x) = pn


∞

0
tpn−1F(t|x) dt = α(x) gpn(x) B(pn + 1, α(x)) (2)

where F = 1 − F and B(x, y) =
 1
0 tx−1(1 − t)y−1 dt is the Beta function. Therefore

mpn(x)
mpn+1(x)

=
1

g(x)


1 +

α(x)
pn + 1


(3)

which leads to the equation

1
g(x)

=
1
apn


((a + 1)pn + 1)

m(a+1)pn(x)
m(a+1)pn+1(x)

− (pn + 1)
mpn(x)

mpn+1(x)


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for all a > 0. On the basis of this result, the estimator of g(x) is built in two steps. First, the conditional moment mpn(x) is
replaced by its smoothed version µpn(x), and we set

1
Gn(x)

:=
1
apn


((a + 1)pn + 1)

µ(a+1)pn(x)
µ(a+1)pn+1(x)

− (pn + 1)
µpn(x)

µpn+1(x)


.

Second, µpn(x) is estimated by the corresponding empirical moment µpn(x). Plugging µpn(x) in 1/Gn(x) leads to the
expression (1) of the estimator 1/gn(x) of 1/g(x). In the sequel, it is assumed that
(K) the kernel K is bounded and its support is included in B, the unit ball of Rd.

Note that (K) implies that ∀ q ≥ 1,

B K

q(u) du < ∞. The following regularity assumptions are introduced.

(A1) The conditional survival function F(·|x) of Y given X = x satisfies

∀ x ∈ Ω, sup
u∈B


 1
0 ypn−1F(g(x − hnu) y|x − hnu) dy 1

0 ypn−1F(g(x) y|x) dy
− 1

 → 0 as n → ∞.

(A2) f is locally Hölder continuous with exponent ηf .
(A3) g is locally Hölder continuous with exponent ηg .
(A4) α is locally Hölder continuous with exponent ηα .

Note that assumptions (P), (A4) and log(pn) h
ηα
n → 0 imply (A1). Finally, for any real-valued function γ on Rd, the oscil-

lation of γ between two points x and x − hnu, u ∈ B, is defined by
∆γ

n (x, u) = γ (x − hnu) − γ (x).

3. Consistency

In this section, the consistency ofgn(x) is established in the nonparametric context (NP). To this end, the first step is to
prove that (3) still holds, up to an error term, whenmpn(x) is replaced by µpn(x).

Proposition 1. Let x ∈ Ω such that f (x) > 0, and assume that (NP), (K) and (A1)–(A3) hold. If pn h
ηg
n → 0, then

µpn(x)
µpn+1(x)

=
1

g(x)
(1 + o(1)).

This result is a straightforward consequence of Lemma 1. The second step consists in showing that µpn(x) can be replaced
by its empirical counterpartµpn(x). In fact, defining for the sake of simplicity

m1,pn(x) = pn

 1

0
ypn−1F1(y|x) dy (4)

where F1(y|x) := F(g(x) y|x), a slightly more general result can be established.

Proposition 2. Assume that (NP), (K) and (A1)–(A3) are satisfied. Let x ∈ Ω such that f (x) > 0. If nm1,pn(x) h
d
n → ∞ and

pn h
ηg
n → 0 as n → ∞, thenµpn(x)

µpn(x)
= 1 + oP(1).

Proof. Let, for all 1 ≤ j ≤ n,

Unj =
Y pn
j Khn(x − Xj)

nµpn(x)
.

The desired result is then tantamount to
n

j=1 Unj
P
−→ 1 as n → ∞. Let us highlight that, for all n, the (Unj)1≤j≤n are positive

independent random variables, and
n

j=1 E(Unj) = 1. According to [6, Corollary 2, p. 358], it is enough to show that, for all
ε > 0,

n
j=1 E(Unj1{Unj≥ε}) → 0 as n → ∞. Remark that the Unj can be rewritten as

Unj =
Vnj Khn(x − Xj)

nMpn(x)

where

Vnj =
Y pn
j

max
u∈B

gpn(x − hnu)
and Mpn(x) =

µpn(x)
max
u∈B

gpn(x − hnu)
.
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The (Unj)1≤j≤n being identically distributed, it is equivalent to prove that, for all ε > 0,

1
Mpn(x)

E(Vn1 Khn(x − X)1{Vn1 Khn (x−X)≥εnMpn (x)}) → 0.

Let then ε > 0 and notice that

Vn1 Khn(x − X) ≥ εnMpn(x) ⇔ hd
n Vn1 Khn(x − X) ≥ εnMpn(x) h

d
n. (5)

The left-hand side of the second inequality is positive and bounded by maxRd K . In view of Lemma 1(i), condition nm1,pn(x)
hd
n → ∞ is equivalent to n hd

n µpn(x)/g
pn(x) → ∞. Besides, pn h

ηg
n → 0 and (16) in the proof of Lemma 1(i) imply that

max
u∈B

gpn(x − hnu)
gpn(x)

→ 1

so that nMpn(x) h
d
n → ∞ as n → ∞. As a consequence, the right-hand side of (5) goes to infinity, so that

1
Mpn(x)

E(Vn1 Khn(x − X)1
{hdn Vn1 Khn (x−X)≥εnMpn (x) hdn}

) = 0

eventually, and the result is proved. �

As a consequence of the two previous results, we have the following.

Theorem 1. Suppose that (NP), (K) and (A1)–(A3) hold. Let x ∈ Ω such that f (x) > 0. If nm1,(a+1)pn(x) h
d
n → ∞ and pn h

ηg
n

→ 0, thengn(x) P
−→ g(x) as n → ∞.

Proof. Note that m1,(a+1)pn(x) ≤ m1,pn(x), which implies nm1,pn(x) h
d
n → ∞. Thus, Lemma 1(ii) entails nm1,pn+1(x) hd

n →

∞ and nm1,(a+1)pn+1(x) hd
n → ∞ as n → ∞. We can then apply Proposition 2 to rewrite the frontier estimator as

1gn(x) =
1
apn


((a + 1)pn + 1)

µ(a+1)pn(x)
µ(a+1)pn+1(x)

(1 + oP(1)) − (pn + 1)
µpn(x)

µpn+1(x)
(1 + oP(1))


. (6)

From Proposition 1, we have

µpn(x)
µpn+1(x)

→
1

g(x)
and

µ(a+1)pn(x)
µ(a+1)pn+1(x)

→
1

g(x)

as n → ∞. Replacing in (6), the conclusion follows. �

4. Asymptotic normality

We now establish the asymptotic distribution of gn(x) under the assumption (P). The parametric model enables us
to compute a more precise asymptotic expansion of µpn(x)/µpn+1(x) than under the nonparametric assumption; see
Proposition 1.

Proposition 3. Let x ∈ Ω such that f (x) > 0, and assume that (P), (K) and (A2)–(A4) hold. If pn h
ηg
n → 0, then

µpn(x)
µpn+1(x)

=
1

g(x)


1 +

α(x)
pn + 1


+ O


hηg
n +

hηα
n

pn


.

Proof. Remark that, retaining notations of Lemma 2, we have

Ln(pn + 1, x, u)
Ln(pn, x, u)

= 1 +
∆

g
n(x, u)
g(x)

−
∆α

n (x, u)
pn

+ O


hηg
n

pn
+

hηα
n

p2n


uniformly in u ∈ B. Using the expansion of µpn(x) provided by Lemma 2(ii) with q = 1 then yields

µpn(x)
µpn+1(x)

=
1

g(x)


1 +

α(x)
pn + 1

1 +


B Ln(pn, x, u)


∆α

n (x,u)
pn

−
∆

g
n(x,u)
g(x)


K(u) du

B Ln(pn, x, u) K(u) du
+ O


hηg
n

pn
+

hηα
n

p2n

 .

To conclude, from Lemma 2(i), Ln(pn, x, u) → 1 as n → ∞ uniformly in u ∈ B so that
B Ln(pn, x, u)


∆α

n (x,u)
pn

−
∆

g
n(x,u)
g(x)


K(u)du

B Ln(pn, x, u) K(u)du
= O


hηg
n +

hηα
n

pn


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which entails

µpn(x)
µpn+1(x)

=
1

g(x)


1 +

α(x)
pn + 1


+ O


hηg
n +

hηα
n

pn


and completes the proof of Proposition 3. �

As a straightforward consequence, we obtain a control of the bias introduced by replacing mpn(x) by µpn(x). If pn h
ηg
n → 0,

then

1
Gn(x)

=
1

g(x)
+ O


hηg
n +

hηα
n

pn


. (7)

Let us now turn to the random term.

Theorem 2. Suppose (P), (K) and (A2)–(A4) hold. Let x ∈ Ω such that f (x) > 0. If n p−α(x)
n hd

n → ∞ and pn h
ηg
n → 0 then

vn(x)
gn(x)
Gn(x)

− 1


d
−→ N


0,

∥K∥
2
2 V (α(x), a)
f (x)


, as n → ∞

where vn(x) =
√
n p−α(x)/2+1

n hd/2
n , ∥K∥

2
2 =


B K

2(x) dx and

V (α(x), a) =
α(x) + 1

a2 Γ (α(x))


2−α(x)−2

− 2
(a + 1)α(x)+1

(a + 2)α(x)+2
+ 2−α(x)−2(a + 1)α(x)


.

Proof. Our goal is to prove that the sequence of random variables

ξn(x) =
g(x)
∥K∥2


f (x)

V (α(x), a)
· vn(x)


1gn(x) −

1
Gn(x)


converges in distribution to a standard Gaussian random variable. The first step consists to use Lemma 3 in order to
linearize ξn(x):

ξn(x) =


ζ (1)
n (x) +


µpn+1(x)µpn+1(x)

− 1


ζ (2)
n (x) +


1 +

apn
pn + 1


µ(a+1)pn+1(x)µ(a+1)pn+1(x)

− 1


ζ (3)
n (x)


× un,a(x)(1 + o(1)).

Now, Proposition 2 yields

ξn(x) = un,a(x)

ζ (1)
n (x) + oP(ζ

(2)
n (x)) + oP(ζ

(3)
n (x))


(1 + o(1))

and to conclude the proof, it is sufficient to establish that

un,a(x) ζ (1)
n (x)

d
−→ N (0, 1), (8a)

un,a(x) ζ (2)
n (x)

d
−→ N (0, C2), (8b)

un,a(x) ζ (3)
n (x)

d
−→ N (0, C3), (8c)

where C2 and C3 are positive constants. Note that in fact, (8b) and (8c) are stronger than what is necessary, but their proofs
are similar to (8a). In all the sequel, we set: Z (n,c,j)

k (x) = Y cpn+j
k Khn(x − Xk), so that µcpn+j(x) = E(Z (n,c,j)(x)). To prove (8a),

remark that ζ
(1)
n (x) can be expanded as the sum of independent and centered random variables: ζ

(1)
n (x) =

n
k=1 S

(1)
n,k(x)

with

S(1)
n,k(x) =

1
n


Z (n,1,0)
k (x), Z (n,1,1)

k (x), Z (n,a+1,0)
k (x), Z (n,a+1,1)

k (x)

A(1)
n (x), (9)

A(1)
n (x) =


a(1)
n,0(x), a(1)

n,1(x), a(1)
n,2(x), a(1)

n,3(x)
t

,

a(1)
n,0(x) = −1,

a(1)
n,1(x) =

µpn(x)
µpn+1(x)

,

a(1)
n,2(x) =


1 +

apn
pn + 1


µpn+1(x)

µ(a+1)pn+1(x)
,

a(1)
n,3(x) = −


1 +

apn
pn + 1


µpn+1(x) µ(a+1)pn(x)

µ2
(a+1)pn+1(x)

,
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where At stands for the transposed matrix of A. In order to use Lyapunov’s central limit theorem (see e.g. [4, p. 312]), it
remains to prove that

1

[Var(ζ (1)
n (x))]3/2

n
k=1

E|S(1)
n,k(x)|

3
→ 0 (10)

as n → ∞, which requires to control Var(ζ (1)
n (x)) and E|S(1)

n,k(x)|
3. The variance can be rewritten as

nVar(ζ (1)
n (x)) = w(pn, pn)(x) − 2


1 +

apn
pn + 1


µpn+1(x)

µ(a+1)pn+1(x)
w(pn, (a + 1)pn)(x)

+


1 +

apn
pn + 1

2 µ2
pn+1(x)

µ2
(a+1)pn+1(x)

w((a + 1)pn, (a + 1)pn)(x)

where

w(spn + t, upn + v)(x) =


−1,

µspn+t(x)
µspn+t+1(x)


Mn(s, t, u, v)(x)


−1,

µupn+v(x)
µupn+v+1(x)

t
and Mn(s, t, u, v)(x) is the 2 × 2 covariance matrix defined by

Mn(s, t, u, v)(x) =


E(Z (n,s,t)(x) Z (n,u,v)(x)) E(Z (n,s,t)(x) Z (n,u,v+1)(x))

E(Z (n,s,t+1)(x) Z (n,u,v)(x)) E(Z (n,s,t+1)(x) Z (n,u,v+1)(x))


.

Since Lemma 2(iii) provides an asymptotic expansion of the matrix Mn(s, t, u, v)(x), it is therefore sufficient to compute an
asymptotic expansion of µspn+t(x)/µspn+t+1(x). Using Proposition 3 and tedious computations leads to

Var(ζ (1)
n (x)) = a2 ∥K∥

2
2 f (x) Γ 2(α(x) + 1) V (α(x), a)

1
n

1
hd
n
g2pn(x) p−α(x)−2

n (1 + o(1)). (11)

Now, focusing on the third moment, Hölder’s inequality yields

n3 E|S(1)
n,1(x)|

3
≤ 4E|a(1)

n,0(x) Z
(n,1,0)
1 (x) + a(1)

n,1(x) Z
(n,1,1)
1 (x)|3 + 4E|a(1)

n,2(x) Z
(n,a+1,0)
1 (x) + a(1)

n,3(x) Z
(n,a+1,1)
1 (x)|3.

The next step consists in applying Lemma 4 to each term on the right-hand side of this inequality. To this end, let us consider
the functions

H(1)
n,0(u) = −1,

H(1)
n,1(u) = α(x)u,

H(1)
n,2(u) =


1 +

apn
pn + 1


gapn(x)

µpn+1(x)
µ(a+1)pn+1(x)

,

H(1)
n,3(u) = −


1 +

apn
pn + 1


gapn(x)

µpn+1(x)
µ(a+1)pn+1(x)

·
α(x)u
a + 1

,

and note that there exist two sequences of measurable functions (χn,1) and (χn,2) uniformly convergent to 0 on [0, 1] such
that

max
u∈B

a(1)
n,0(x) + a(1)

n,1(x) g(x − hnu) y
 ≤ |H(1)

n,0(y)|(1 − y) +
|H(1)

n,1(y)| + χn,1(y)

pn
,

max
u∈B

a(1)
n,2(x) + a(1)

n,3(x) g(x − hnu) y
 ≤

1
gapn(x)


|H(1)

n,2(y)|(1 − y) +
|H(1)

n,3(y)| + χn,2(y)

pn


.

Since gapn(x)µpn+1(x)/µ(a+1)pn+1(x) → (a + 1)α(x) as n → ∞, the functions H(1)
n,j , j ∈ {0, 1, 2, 3} are bounded on [0, 1],

uniformly in n, and thus Lemma 4 entails that

E|S(1)
n,1(x)|

3
= O(n−3 g3pn(x) p−α(x)−3

n h−2d
n ). (12)

Combining (11) and (12), convergence (10) follows from the condition n p−α(x)
n hd

n → ∞ and therefore (8a) holds.
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Proofs of (8b) and (8c) are similar since ζ
(2)
n and ζ

(3)
n can be rewritten as

ζ (2)
n (x) =

1
n

n
k=1


Z (n,1,0)
k (x), Z (n,1,1)

k (x)
 

a(2)
n,0(x), a(2)

n,1(x)
t

ζ (3)
n (x) =

1
n

n
k=1


Z (n,a+1,0)
k (x), Z (n,a+1,1)

k (x)
 

a(3)
n,0(x), a(3)

n,1(x)
t

with clear definitions of the sequences a(j)
n,i(x), i = 0, 1, j = 2, 3. Applying Lemma 4 with

H(2)
n,0(u) = −1,

H(2)
n,1(u) = α(x)u,

H(3)
n,0(u) = gapn(x)

µpn+1(x)
µ(a+1)pn+1(x)

,

H(3)
n,1(u) = −gapn(x)

µpn+1(x)
µ(a+1)pn+1(x)

·
α(x)u
a + 1

yields E|S(j)
n,1(x)|

3
= O(n−3 g3pn(x) p−α(x)−3

n h−2d
n ), j = 2, 3. Lyapunov’s central limit theorem then gives the convergence.

Theorem 2 is therefore established. �

From the expansion

gn(x) − g(x) = Gn(x)
gn(x)
Gn(x)

− 1


+ [Gn(x) − g(x)],

the asymptotic normality ofgn(x) centered on the true function g(x) is readily obtained.

Theorem 3. Suppose (P), (K) and (A2)–(A4) hold. Let x ∈ Ω such that f (x) > 0. If n p−α(x)
n hd

n → ∞, n p−α(x)+2
n hd+2ηg

n → 0
and n p−α(x)

n hd+2ηα
n → 0, then

vn(x)
gn(x)

g(x)
− 1


d
−→ N


0,

∥K∥
2
2 V (α(x), a)
f (x)


, as n → ∞.

Let us note that n p−α(x)
n hd

n → ∞ and n p−α(x)+2
n hd+2ηg

n → 0 imply that pn h
ηg
n → 0. Besides, if we assume that α has greater

regularity than g , namely ηα ≥ ηg , then the hypotheses necessary to apply Theorem 3 can be reduced to n p−α(x)
n hd

n → ∞

and n p−α(x)+2
n hd+2ηg

n → 0. Let x ∈ Ω such that f (x) > 0 and note that the sequences

hn(x) = εα(x)−1
n n−1/(d+ηgα(x)) and pn(x) = ε

d+ηg
n nηg/(d+ηgα(x))

can be chosen to check the assumptions of Theorem 3, where (εn) is an arbitrary sequence of positive real numbers tending
to 0 such that n−δεn → 0 for all δ > 0.With such choices, the rate of convergence vn(x) of the estimator is then nηg/(d+ηgα(x))

up to a εn term. In the uniform case (that is, when α is a constant equal to 1), the rate of convergence of the estimator is then
nηg/(d+ηg ), up to the factor εn, which is also the rate of convergence for the Parzen estimator studied in [22, Theorem 2]. Let
us note that this rate of convergence has been shown to be minimax by [27] for a particular class of densities with a L1 risk.
Clearly, the rate of convergence is a decreasing function of the dimension d of the covariate X . This is often referred to as
the ‘‘curse of dimensionality’’ effect for nonparametric estimators. This problem may be overcome using semi-parametric
dimension reduction techniques; see for instance [28].

The asymptotic variance of the estimator also involves the multiplicative factor V (α(x), a). The choice of an ‘‘optimal’’
value for a by minimization of V (α(x), a) is a difficult task since it depends on the unknown value of α(x). One can observe
in Fig. 1 that, for α(x) ≤ 2, V (α(x), ·) is a decreasing function and thus large values of a should be preferred.

However, both statements above require a precise knowledge of the function x → α(x), which is often unrealistic. In
view of these remarks, it may be of interest to estimate α(x). From (3), the following estimator is considered:

αn(x) = (pn + 1)
gn(x) µpn(x)µpn+1(x)

− 1


,

and its weak consistency is established under the same assumptions as in Theorem 3.

Proposition 4. Under the assumptions of Theorem 3,αn(x) = α(x) + OP(pn/vn(x)).

Proof. Define

αn(x) = (pn + 1)

Gn(x)

µpn(x)
µpn+1(x)

− 1

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Fig. 1. Graphs of the functions a → V (α, a). Solid line α = 1.25, dashed line α = 1.75, dashed–dotted line α = 2, dotted line α = 2.25.

and let us focus first on the random term

vn(x)
pn

(αn(x) − αn(x)) = vn(x)


[gn(x) − Gn(x)]

µpn(x)µpn+1(x)
− Gn(x)

µpn+1(x)µpn+1(x)
·

ζ
(2)
n (x)

µpn+1(x)


(1 + o(1))

with notations of Lemma 3. Recall that, from Proposition 1, µpn(x)/µpn+1(x) → 1/g(x), from Proposition 2, µpn(x)/µpn(x)
P
−→ 1 and from (7), Gn(x) → g(x) as n → ∞ so that

vn(x)
pn

(αn(x) − αn(x)) = vn(x)


(gn(x) − Gn(x))


1

g(x)
+ oP(1)


− g(x)

ζ
(2)
n (x)

µpn+1(x)
(1 + oP(1))


.

Besides, applying Theorem 2 yields vn(x)(gn(x) − Gn(x)) = OP(1). Now,

vn(x)
ζ

(2)
n (x)

µpn+1(x)
=

vn(x)
µpn+1(x) un,a(x)

un,a(x) ζ (2)
n (x) = OP(1),

from (21) and since un,a(x) ζ
(2)
n (x) is asymptotically Gaussian (see (8b)). As a preliminary conclusion, we have

vn(x)
pn

(αn(x) − αn(x)) = OP(1).

Turning to the bias term, (7) and Proposition 3 yield

αn(x) = α(x) + (pn + 1)O

hηg
n +

hηα
n

pn


= α(x) + o(pn/vn(x)),

which completes the proof. �

Meanwhile, the density function f (x) can be estimated with the classical kernel estimator:

fn(x) =
1
n

n
i=1

Khn(x − Xi).

Since [35], it is well-known thatfn(x) P
−→ f (x) when n hd

n → ∞. By pluggingαn(x) andfn(x) in the asymptotic variance of
Theorem 3, classical arguments thus yield the following.

Corollary 1. Under the assumptions of Theorem 3,

vn(x)

 fn(x)
V (αn(x), a)

gn(x)
g(x)

− 1


d
−→ N


0, ∥K∥

2
2


, as n → ∞.

Pointwise confidence intervals for the frontier may then be built using this result.
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5. Numerical experiments

The behavior of the proposed frontier estimator is investigated on different situations. In particular, we examine the case
d = 1 where X is uniformly distributed on Ω = [0, 1] and the case d = 2 where X = (X1, X2) is uniformly distributed on
Ω = [0, 1]2.

– Let us first focus on the case d = 1. Three frontiers are considered:

g1(x) =


1 + exp


−60 (x − 1/4)2


if x ∈ [0, 1/3] ,

1 + exp (−5/12) if x ∈ ]1/3, 2/3] ,
1 + 5 exp (−5/12) − 6 exp (−5/12) x if x ∈ ]2/3, 5/6] ,
6x − 4 if x ∈ ]5/6, 1] ,

g2(x) =


1
10

+ sin(πx)


11
10

−
1
2

exp


−64


x −

1
2

2


,

g3(x) =
5
4

− 2x(1 − x).

Note that g1 is continuous but not differentiable at x = 1/3, x = 2/3 and x = 5/6 while g2 and g3 are infinitely
differentiable.

In the parametric setting (P), two different models for the function α(x) are considered: a constant function α1(x) =

1.25 and α2(x) = 1.25 + 0.5| cos(2πx)|.
In the nonparametric setting (NP), the simulated model is given by

F(y|x) = C(x)(1 − y/g3(x))α2(x) + (1 − C(x))(1 − y/g3(x))α2(x)+1/4, ∀ y ∈ [0, g3(x)], (13)

with C(x) = c + sin(2πx)/16 and c ∈ {1/8, 3/8, 5/8, 7/8}. Let us highlight that (13) can be seen as a ‘‘contamination’’
of the parametric model (P): the smaller c is, the larger the contamination is.

The uniform kernel is chosen

K(x) =
1
2
1[−1,1](x)

with associated bandwidth h(m)
n = 2σ(X)/n1/(1+α∞) and p(m)

n = n1/(1+α∞)/
√
log(n), where n = 500 is the sample size,σ(X) is the empirical standard deviation of X and α∞ = maxΩ α < ∞ since α is continuous and Ω is a compact subset

of R. These sequences are chosen to check the hypotheses of Theorem 1. Note that the multiplicative constantσ(X) has
been suggested by [22], whereas the constant 2 was empirically chosen. An alternative approach would be the selection
of the bandwidth by cross-validation. Härdle andMarron [26] have shown that this method is asymptotically optimal for
the regression function estimation. Establishing a similar result for the estimation of conditional moments of high order
is an open problem.

– In the case d = 2, we limit ourselves to a unique model

g(x, y) = 1 + 3g1(x)y/20, and α(x, y) = 1.25 + 0.5| cos(2πx) sin(2πy)|,

the kernel being

K(x, y) =
1
4
1[−1,1]×[−1,1](x, y),

with bandwidth h(m)
n = 4

√σ(X1)σ(X2)/n1/(2+α∞) and p(m)
n = n1/(2+α∞)/

√
log(n). The sample size is fixed to n = 1000.

Our estimator is compared to the two estimators proposed by [22,16]. Let us recall that, similarly togn(x), Girard and Jacob’s
estimator [22] is based on a kernel regression on high power transformed data. On the contrary, the estimator in [16] is
based on the extreme values of the sample and does not involve any smoothing. For Girard and Jacob’s estimator, we set
h(gj)
n = 4σ(X)/

√
n and p(gj)

n =
√
n/ log(n) if d = 1, and h(gj)

n = 4
√σ(X1)σ(X2)/n1/3 and p(gj)

n = n1/3/
√
log(n) when d = 2.

The L1-errors associated to each estimator are computed on 500 replications of the initial sample of size n and theminimum,
maximum andmean L1-errors are reported in Table 1. Note that for themoment estimator, these results were obtainedwith
a = 15, the constant a having been chosen after intensive simulations.

It appears that, in all the considered situations, our moment estimator yields better results than both the estimators of
[22,16]. For a fixed frontier, all the estimators perform better on the situation α(x) = α1(x) than on the situation α(x) =

α2(x). This behavior is a consequence of α2(x) > α1(x): as α(x) increases, the simulated points tend to move away from the
frontier g(x). This phenomenon is illustrated in the case d = 1 in Figs. 2 and 3. On each of the upper panels the best situation
is represented, i.e. the replication that yields the smallest L1-error forgn in Table 1. Similarly, the worst situation is depicted
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Table 1
Mean L1-errors and [minimum, maximum] L1-errors associated to the estimators in the different situations.

Situation Moment estimator Girard–Jacob estimator Geffroy estimator

Case d = 1, model (P)

α(x) = α1
Frontier g1 0.082 [0.051, 0.117] 0.089 [0.052, 0.135] 0.107 [0.058, 0.168]
Frontier g2 0.045 [0.032, 0.070] 0.047 [0.031, 0.078] 0.050 [0.029, 0.089]

α(x) = α2(x)
Frontier g1 0.109 [0.073, 0.179] 0.162 [0.093, 0.241] 0.169 [0.087, 0.248]
Frontier g2 0.064 [0.042, 0.088] 0.067 [0.037, 0.099] 0.072 [0.041, 0.115]

Case d = 1, model (13)

c = 7/8 0.055 [0.032, 0.101] 0.108 [0.070, 0.157] 0.107 [0.067, 0.174]
c = 5/8 0.058 [0.032, 0.101] 0.116 [0.076, 0.161] 0.112 [0.069, 0.154]
c = 3/8 0.063 [0.030, 0.111] 0.127 [0.083, 0.171] 0.122 [0.062, 0.177]
c = 1/8 0.070 [0.037, 0.136] 0.137 [0.086, 0.190] 0.131 [0.085, 0.194]

Case d = 2, model (P) 0.036 [0.024, 0.058] 0.146 [0.105, 0.195] 0.176 [0.124, 0.213]

on the lower panels, i.e. the replication that yields the largest L1-error forgn in Table 1. In all cases,gn is superimposed to the
frontier g . Finally, we show in Fig. 4 some 95% pointwise confidence intervals obtained thanks to Corollary 1 for the frontier
g1 with α(x) = α2(x) and a parameter a = 3, in both the best situation (top panel) and the worst situation (bottom panel).
These intervals are globally satisfactory.

When d = 2, scatter plots (g(Xi),g(Xi)), i = 1, . . . , n are represented in Fig. 5,g being either our moment estimator or
Girard and Jacob’s estimator. The best and worst situations are depicted for these two estimators. It appears that the points
associated to the moment estimator are closer to the line y = x than the points associated to Girard and Jacob’s estimator.
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Appendix A. Auxiliary results

First, some results on the moments µpn(x) andm1,pn(x) are provided; see (4) for a definition.

Lemma 1. Suppose that (NP), (K) and (A1)–(A3) hold. Let x ∈ Ω such that f (x) > 0. If pn h
ηg
n → 0, then

(i) µpn(x) = f (x) gpn(x)m1,pn(x)(1 + o(1));
(ii) m1,pn(x) = m1,pn+1(x)(1 + o(1)).

The next result of this section is technical: it provides precise expansions of the smoothed moment E(Y pn K q
hn(X − x)) when

pn → ∞, hn → 0 and for all q ≥ 1. It will be useful for the proof of our next lemmas and of Theorem 2.

Lemma 2. Suppose (P), (K) and (A2)–(A4) hold. For all q ≥ 1, u ∈ B, n ∈ N \ {0} and x ∈ Ω such that f (x) > 0, let

Ln(pn, x, u) =
f (x − hnu) Γ (α(x − hnu) + 1)

f (x) Γ (α(x) + 1)
exp


pn

∆
g
n(x, u)
g(x)

− log(pn)∆α
n (x, u)


Λn(q, pn, x) = hd(q−1)

n

E(Y pn K q
hn(X − x))

f (x) gpn(x)
.

If pn h
ηg
n → 0, then

(i) Ln(pn, x, u) → 1 as n → ∞ uniformly in u ∈ B;
(ii) for all q ≥ 1,

Λn(q, pn, x)
α(x)B(pn + 1, α(x))

=


B
Ln(pn, x, u)


1 −

pn
2


∆

g
n(x, u)
g(x)

2

K q(u) du

−
1
pn


B
Ln(pn, x, u)

∆α
n (x, u)
2

[α(x − hnu) + α(x) + 1] K q(u) du + O


hηg
n

pn
+

hηα
n

p2n


;

(iii) moreover, there exist δ1, δ2 ∈ R such that for all q ≥ 1,
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Fig. 2. Case d = 1 and α(x) = α1: the frontier g1 (solid line) and its moment estimategn (dotted line) with a = 15. Top: best situation, bottom: worst
situation.

Λn(q, pn, x)

Γ (α(x) + 1) p−α(x)
n

=


B
Ln(pn, x, u)


1 +

δ1

pn
−

pn
2


∆

g
n(x, u)
g(x)

2

K q(u) du

−
1
pn


B
Ln(pn, x, u)

∆α
n (x, u)
2

[α(x − hnu) + α(x) + 1] K q(u) du

+
δ2

p2n


B
K q(u) du + o(p−2

n ).

Our next lemma consists in linearizing

ξn(x) =
g(x)
∥K∥2


f (x)

V (α(x), a)
· vn(x)


1gn(x) −

1
Gn(x)


appearing in Theorem 2.
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Fig. 3. Case d = 1 and α(x) = α2(x): the frontier g1 (solid line) and its moment estimategn (dotted line) with a = 15. Top: best situation, bottom: worst
situation.

Lemma 3. Suppose (P), (K), (A2)–(A4) hold and let x ∈ Ω such that f (x) > 0. If pn → ∞ then

ξn(x) =


ζ (1)
n (x) +


µpn+1(x)µpn+1(x)

− 1


ζ (2)
n (x) +


1 +

apn
pn + 1


µ(a+1)pn+1(x)µ(a+1)pn+1(x)

− 1


ζ (3)
n (x)


× un,a(x)(1 + o(1))

where νp(x) = µp(x) − µp(x),

ζ (1)
n (x) = ζ (2)

n (x) +


1 +

apn
pn + 1


ζ (3)
n (x)

with ζ (2)
n (x) = −νpn(x) +

µpn(x)
µpn+1(x)

νpn+1(x),

ζ (3)
n (x) =

µpn+1(x)
µ(a+1)pn+1(x)

ν(a+1)pn(x) −
µpn+1(x) µ(a+1)pn(x)

µ2
(a+1)pn+1(x)

ν(a+1)pn+1(x)
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Fig. 4. Case d = 1 and α(x) = α2(x): the frontier g1 (solid line), its moment estimategn (dotted line) with a = 3, and 95% pointwise confidence intervals
for g1 obtained via Corollary 1 (dashed–dotted lines). Top: best situation, bottom: worst situation.

and

un,a(x) =
1

a∥K∥2 Γ (α(x) + 1)


1

f (x) V (α(x), a)
pα(x)
n vn(x)
gpn(x)

.

Finally, the following result provides an asymptotic bound of the third-order moments appearing in the proofs.

Lemma 4. Suppose (P), (K), (A2)–(A4) are satisfied and pn h
ηg
n → 0 as n → ∞. Let k ∈ N, (bn,j)n∈N\{0},0≤j≤k ∈ R and x ∈ Rd

such that there exist m ∈ N and sequences of measurable functions (Hn,j), 0 ≤ j ≤ m, uniformly bounded on [0, 1] with

∀ y ∈ [0, 1] max
u∈B

 k
j=0

bn,j g j(x − hnu) yj
 ≤

m
j=0

Hn,j(y)

pjn
(1 − y)m−j.
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Fig. 5. Case d = 2: pairs (g(Xi),g(Xi)), i = 1, . . . , n associated to Girard–Jacob estimator (+) and to the moment estimator (�) with a = 15. The solid
line has equation y = x. Top: best situation, bottom: worst situation.

Let us consider

Sn(x) =
1
n

k
j=0

bn,j Y pn+j Khn(x − Xj).

Then E|Sn(x)|3 = O(n−3 g3pn(x) p−α(x)−3m
n h−2d

n ).

Appendix B. Proof of the auxiliary results

Proof of Lemma 1. (i) Recall that

µpn(x) =


B
f (x − hnu) gpn(x − hnu)m1,pn(x − hnu) K(u) du.

First, (A2) yields

sup
u∈B

 f (x − hnu)
f (x)

− 1
 = sup

u∈B

∆f
n(x, u)
f (x)

 ≤
εf h

ηf
n

f (x)
→ 0. (14)
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Second, (A3) entails

pn sup
u∈B

∆g
n(x, u)
g(x)

 ≤ pn sup
u∈B


εgh

ηg
n ∥u∥ηg

g(x)


= O(pnh

ηg
n ) (15)

so that the hypothesis pn h
ηg
n → 0 gives

log

gpn(x − hnu)

gpn(x)


= pn log


1 +

∆
g
n(x, u)
g(x)


= O


pn h

ηg
n


→ 0 (16)

uniformly in u ∈ B as n → ∞. Finally, setting

Ipn(x) :=

 1

0
ypn−1F1(y|x) dy,

one hasm1,pn(x) = pn Ipn(x), and (A1) yields

sup
u∈B

 Ipn(x − hnu)
Ipn(x)

− 1
 → 0 (17)

as n → ∞. Collecting (14), (16) and (17), the dominated convergence theorem therefore gives (i).
(ii) Pick ε > 0. The integral Ipn(x) is rewritten as

Ipn(x) =

 1

1−ε

ypn−1F1(y|x) dy


1 +

 1−ε

0 ypn−1F1(y|x) dy 1
1−ε

ypn−1F1(y|x) dy


;

with

0 ≤

 1−ε

0 ypn−1F1(y|x) dy 1
1−ε

ypn−1F1(y|x) dy
≤

1 − ε 1
1−ε

 y
1−ε

pn−1 F1(y|x) dy

≤
1 − ε

1−ε/2
1−ε

pn−1  1
1−ε/2 F1(y|x) dy

.

Because

1−ε/2
1−ε

pn−1
→ ∞ as n → ∞, we therefore get

Ipn(x) =

 1

1−ε

ypn−1F1(y|x) dy(1 + o(1)).

Since

1 ≤

 1

1−ε

ypn−1F1(y|x) dy
 1

1−ε

ypnF1(y|x) dy ≤
1

1 − ε

for all ε > 0, one has Ipn(x)/Ipn+1(x) → 1 as n → ∞. Hence, m1,pn(x)/m1,pn+1(x) → 1 as n → ∞, which completes the
proof of (ii). �

Proof of Lemma 2. (i) Let us introduce

Qn(x, u) =
f (x − hnu) Γ (α(x − hnu) + 1)

f (x) Γ (α(x) + 1)
.

Since f and α are continuous at x and Γ is continuous on (0, ∞), one has Qn(x, u) → 1 as n → ∞, uniformly in u ∈ B.
Moreover, since hηg

n pn → 0, we have

sup
u∈B

log(pn) |∆α
n (x, u)| ≤ εα hηα

n | log pn| = εα


hηg
n pn

ηα/ηg | log pn|

pηα/ηg
n

−→ 0.

It was already proved that supu∈B pn |∆
g
n(x, u)| → 0 as n → ∞; see (15). As a conclusion, Ln(pn, x, u) → 1 as n → ∞,

uniformly in u ∈ B.
(ii) By the definition of the Beta function,

Λn(q, pn, x)
α(x)B(pn + 1, α(x))

=


B
Qn(x, u)

Γ (pn + 1 + α(x))
Γ (pn + 1 + α(x − hnu))

gpn(x − hnu)
gpn(x)

K q(u) du. (18)
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Recall now that for all z > 0, one has

logΓ (z) =


z −

1
2


log z − z +

log 2π
2

+ 2


∞

0

arctan(t/z)
e2π t − 1

dt

(see Formula 6.1.50 p. 258 in [1]). Using the mean value theorem, simple calculations then yield

Γ (pn + 1 + α(x))
Γ (pn + 1 + α(x − hnu))

= exp(− log(pn)∆α
n (x, u))


1 −

∆α
n (x, u)
2pn

(1 + α(x − hnu) + α(x))


+ O

hηα
n

p2n


, (19)

uniformly in u ∈ B. Besides

gpn(x − hnu)
gpn(x)

= exp

pn log


1 +

∆
g
n(x, u)
g(x)



= exp

pn

∆
g
n(x, u)
g(x)

 
1 −

pn
2


∆

g
n(x, u)
g(x)

2


+ O


hηg
n

pn


(20)

uniformly in u ∈ B. Replacing (19) and (20) in (18) gives the first desired expansion.
(iii) Now, according to [37], for all κ and ι, there exist two real numbers δ1(κ, ι) and δ2(κ, ι) such that

Γ (x + κ)

Γ (x + ι)
= xκ−ι


1 +

δ1(κ, ι)

x
+

δ2(κ, ι)

x2
+ o


1
x2


.

Consequently, setting δ1 = δ1(1, α(x) + 1) and δ2 = δ2(1, α(x) + 1), we have

B(pn + 1, α(x)) = Γ (α(x)) p−α(x)
n


1 +

δ1

pn
+

δ2

p2n
+ o


1
p2n


.

Replacing in the expansion (ii) and remarking that, from (i),
B
Ln(pn, x, u)

δ2

p2n
K q(u) du =

δ2

p2n


B
K q(u) du + o


1
p2n


yields (iii). �

Proof of Lemma 3. Let us first remark that, from Lemma 2(i) and (iii) with q = 1,

µpn+1(x) = f (x) Γ (α(x) + 1) gpn+1(x) p−α(x)
n (1 + o(1)),

leading to

µpn+1(x) un,a(x) =
g(x)
a∥K∥2


f (x)

V (α(x), a)
· vn(x)(1 + o(1)), (21)

and therefore

ξn(x) =
µpn+1(x) un,a(x)

pn + 1
· apn


1gn(x) −

1
Gn(x)


(1 + o(1)). (22)

Besides,

apn


1gn(x) −

1
Gn(x)


= ((a + 1)pn + 1)

µ(a+1)pn(x) µ(a+1)pn+1(x) − µ(a+1)pn(x)µ(a+1)pn+1(x)µ(a+1)pn+1(x) µ(a+1)pn+1(x)

− (pn + 1)
µpn(x) µpn+1(x) − µpn(x)µpn+1(x)µpn+1(x) µpn+1(x)

=: D(1)
n (x) − D(2)

n (x)

with

D(1)
n (x) :=

(a + 1)pn + 1
µ(a+1)pn+1(x)

·
µ(a+1)pn+1(x)µ(a+1)pn+1(x)

·


ν(a+1)pn(x) −

µ(a+1)pn(x)
µ(a+1)pn+1(x)

ν(a+1)pn+1(x)


D(2)
n (x) :=

pn + 1
µpn+1(x)

·
µpn+1(x)µpn+1(x)

·


νpn(x) −

µpn(x)
µpn+1(x)

νpn+1(x)

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which leads to
µpn+1(x)
pn + 1

· D(1)
n (x) =


1 +

apn
pn + 1


µ(a+1)pn+1(x)µ(a+1)pn+1(x)

· ζ (3)
n (x)

µpn+1(x)
pn + 1

· D(2)
n (x) = −

µpn+1(x)µpn+1(x)
· ζ (2)

n (x).

Replacing in (22) concludes the proof of Lemma 3. �

Proof of Lemma 4. Conditioning on X yields

E|Sn(x)|3 =
1
n3


Rd

E

 k
j=0

bn,j Y pn+j Khn(x − v)


3  X = v

 f (v) dv

=
1

n3h2d
n


B

E

 k
j=0

bn,j Y pn+j


3  X = x − hnu

 K 3(u) f (x − hnu) du.

Now, given {X = x − hnu}, we haveWn(x, u) :=
Y

g(x−hnu)
≤ 1. Setting

cn(x) := (m + 1)2 sup
[0,1]

0≤j≤m
n∈N\{0}

|Hn,j|
3
· max

u∈B

g3pn(x − hnu)
g3pn(x)

,

which is a bounded sequence, Hölder’s inequality entails, given {X = x − hnu}, k
j=0

bn,j Y pn+j


3

= g3pn(x − hnu)

W pn
n (x, u)

k
j=0

bn,j W j
n(x, u)g

j(x − hnu)


3

≤ cn(x) g3pn(x)
m
j=0

1

p3jn
W 3pn

n (x, u)(1 − Wn(x, u))3(m−j).

It is therefore sufficient to prove that, for all j ∈ {0, . . . ,m}, uniformly in u ∈ B,

E(W 3pn
n (x, u)(1 − Wn(x, u))3(m−j)

|X = x − hnu) = O(p−α(x)−(3m−3j)
n ).

Because for all λ, µ ≥ 0, the function

(y, ω) →
d
dy


yλ (1 − y)µ


1{y≤Wn(x,u)(ω)}

is Lebesgue ⊗ P(·|X = x − hnu)-integrable, Fubini’s theorem gives

E(W 3pn
n (x, u)(1 − Wn(x, u))3(m−j)

|X = x − hnu) =

 1

0

d
dy


y3pn (1 − y)3(m−j) F 1(y|x − hnu) dy

since, given {X = x−hnu},Wn(x, u) has the survival function F 1(·|x−hnu). To conclude, notice that if (sn) is a real sequence
tending to infinity such that sn h

ηg
n → 0 as n → ∞ and ℓ ≥ 0, we obtain following (19) and [37] 1

0
ysn(1 − y)ℓ+α(x−hnu) dy = B(sn + 1, ℓ + α(x − hnu) + 1) = O(s−α(x)−ℓ−1

n )

uniformly in u ∈ B. Since F 1(y|x − hnu) = (1 − y)α(x−hnu), some quick computations then show that

E(W 3pn
n (x, u)(1 − Wn(x, u))3(m−j)

|X = x − hnu) = O(p−α(x)−(3m−3j)
n )

uniformly in u ∈ B, which ends the proof of Lemma 4. �
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