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a b s t r a c t

The current note discusses the consistency proof for the penalizedmaximum likelihood es-
timator of a Gaussian mixture from the paper ‘Inference for multivariate normal mixtures’
by J. Chen and X. Tan. A soft spot in that proof is identified and a rigorous alternative proof
based on a uniform law of iterated logarithm is given.
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1. Introduction

Gaussian mixture models provide a flexible tool for data modeling, clustering and classification. We consider the prob-
lem of estimating the parameters of a multivariate Gaussian mixture with K components by maximizing the likelihood
function. This approach has a theoretical drawback: the likelihood function is unbounded, and the interesting maxima are
local maxima in the interior of the parameter space. Consider an estimator with µ̂1 = Y1, |Σ̂1| = ε, µ̂2 ∈ Rd arbitrary,
Σ̂2 = I, p̂1 = 1/2. Then the likelihood function tends to infinity as ε → 0 and hence the MLE is not consistent.

Two basic strategies for overcoming the unboundedness were studied in the literature: restricted optimization and
penalization of the likelihood. In the first case a lower boundon the variances or their ratios is imposed; see e.g. Hathaway [6].
In the second case a term which penalizes small variances or ratios of variances is added to the log likelihood; see e.g.
Ciuperca et al. [5], Tanaka [8], Chen et al. [4], Chen and Tan [3]. The second approach has some advantages over the first
one—there is no tuning constant to choose and the penalty function actually disappears with increasing sample size.

In the current paper I discuss the consistency proof of the penalizedMLE from Chen and Tan [3]. Among the above papers
on consistency of the penalized MLE it is the most interesting one in the context of Gaussian mixtures, since it treats the
multivariate case. Adjusting the penalty magnitude is an important issue and requires an assessment of the number of
observations with a high likelihood contribution. Such an assessment is given in Lemma 2 in Chen and Tan [3]. However its
proof seems to contain a soft spot and I was not able to fix it. In Section 2 I elaborate on the soft spot in detail. In Section 3 I
give an alternative proof of a similar statement based on a uniform law of iterated logarithm. This allows us to make Chen
and Tan’s nice consistency proof fully rigorous.
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2. Outline of Chen and Tan’s consistency proof

In the following let Ln be the log-likelihood, ϕ the normal density, Θ the set of K -component mixture parameters
(µj, Σj, pj, 1 ≤ j ≤ K), whereµ ∈ Rd, |Σ | ∈ Pd, p ∈ [0, 1],


pj = 1 andPd is the set of d×d symmetric positive definite

matrices. Two parameters are considered as equivalent if they induce the same distribution. θ0 denotes a true parameter.
The proof has roughly the following scheme:

1. Divide the parameter spaceΘ into K +1 disjoint subsetsΓ1, . . . , ΓK+1 where each subset is characterized by the number
of components whose covariances are bounded away from zero. The subset where all covariances are bounded away
from zero, ΓK+1, is regular and contains the true parameter θ0 so the classical MLE theory as in Wald [10] or Kiefer and
Wolfowitz [7] can be applied.

2. Show that asymptotically the penalized MLE θ̂n,pMLE a.s. does not lie in any subset except the regular one, that is

sup
θ∈Γi

Ln(θ) + pn(θ) − Ln(θ0) − pn(θ0) → −∞, i ∈ {1, . . . , K},

where pn : Θ → R is a penalty function.

The second step is quite involved and will be outlined more precisely. The penalty function pn fulfils several conditions; see
Chen and Tan [3]. Recall the key condition C3: p̃n(Σ) ≤ 4(log n)2 log |Σ | for |Σ | < cn−2d, where pn(θ) =

K
j=1 p̃n(Σj) and

c some positive constant. This condition is imposed in order to rule out the damaging effect of components with degenerate
covariance matrices. It will turn out that 4(log n)2 is actually not sufficient.

A key element of the proof is a uniform assessment of the number of observations, with a high contribution to the
likelihood. These are observations that are located in certain critical regions. It turns out that an appropriate choice for
such critical regions is sets

Ã(µ, Σ) := {y ∈ Rd
: (y − µ)TΣ−1(y − µ) ≤ (log |Σ |)2},

where µ and Σ correspond to a degenerate component of the point at which the likelihood is evaluated.
The contribution of observations inside such a set will be ruled out by the penalty function and the one outside can be

shown to be small enough. Precisely, following bounds are used

ϕ(y, µ, Σ) ≤

|Σ |
−

1
2 y ∈ Ã(µ, Σ),

exp


−
1
4
(y − µ)TΣ−1(y − µ)


otherwise.

A statement of the form

Hn(µ, Σ) :=

n
i=1

1Yi∈Ã(µ,Σ) ≤ a(n) + b(n, |Σ |), (1)

for all µ ∈ Rd, Σ ∈ Pd almost sure, is needed, where a(n) = o(n) and b(n, s) = O(n) for each s and b(n, s) log s−1/2
→ 0

as s → 0. An important detail here is that the almost sure statement has to hold simultaneously for all tuples (µ, Σ) and
not solely for each one. Given any statement with these properties one can prove the consistency of the penalized MLE, if
the penalty function fulfils a modified condition C3: p̃n(Σ) ≤ a(n) log |Σ | for |Σ | ≤ cn−2d.

Chen and Tan [3] claimed essentially the following bound (Lemma 2)

Hn(µ, Σ) ≤ 4(log n)2 + 8nM|Σ |
1/2d log |Σ |, (2)

for all (µ, Σ)with |Σ | < exp(−4d) a.s., whereM is an upper bound of the truemixture density. The proof uses an ascription
to the univariate case, which was proved in Chen et al. [4] by applying a Bernstein inequality and Borel–Cantelli Lemma.
We omit further details of this involved proof and refer to the source. Instead, we pay our attention to the ascription, which
actually does not work. The argument behind the ascription is as follows:

{y ∈ Rd
: (y − µ)TΣ−1(y − µ) ≤ (log |Σ |)2} =


y ∈ Rd

:


λ−1
j |aTj (y − µ)|2 ≤ (log |Σ |)2


⊆ {y ∈ Rd

: |aTj (y − µ)| ≤ −


λj log |Σ |, j = 1, . . . , d}

⊆ {y ∈ Rd
: |aTj (y − µ)| ≤ −


λ1 log |Σ |},

where a1, . . . , ad and λ1 ≤ · · · ≤ λd are unit length eigenvectors and the corresponding eigenvalues of Σ respectively.
Further one argues that for every bounded set B ⊂ Rd, there exists a finite subset of the unit d-sphere Q ⊂ Sd−1, such

that for every a ∈ Sd−1 there exists b ∈ Q with the following property

{y ∈ B : |aT(y − µ)| ≤ −


λ1 log |Σ |} ⊆ {y ∈ B : |bT(y − µ)| ≤ −


2λ1 log |Σ |} (3)
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and concludes

Hn(µ, Σ) ≤ max
b∈Q

n
i=1

1{|bT(Yi−µ)|≤−
√
2λ1 log |Σ |},

for every Σ ∈ Pd. Hence the problem is reduced to univariate normal samples bTY1, . . . , bTYn for finitely many b ∈ Sd−1.
But the argument seems to be not fully rigorous, since the inclusion (3) holds only given a fixed, bounded set B but not on
the whole Rd. I found no easy way to correct the ascription to the univariate case. However, there is an alternative, more
easy approach.

3. Approach based on the uniform law of iterated logarithm

For the next statements the term of the Vapnik–Chervonenkis dimension of a class of sets is needed. This combinatorial
concept serves for the characterization of the complexity of a class of sets.

Definition 1. Let X be a complete separable metric space, C ⊂ 2X a family of subsets, and D ⊂ X any finite subset. The
shatter coefficient of C with respect to D is defined by

S(D : C) := |{C ∩ D : C ∈ C}|. (4)

The VC dimension of C dim(C) is the largest integer k ∈ N such that S(D : C) = 2k for some k-element subset D of X. If
for every k there exists a finite k-element subset D ⊂ X such that S(D : C) = 2k, then dim(C) = ∞.

A class C with a finite VC dimension is called a VC class.
A class F of real valued functions X → R is called a VC-graph class if the collection of all sub-graphs of the functions in

F forms a VC class of sets in X × R.

VC classes have some comfortable properties, like being Glivenko–Cantelli or even Donsker classes; see e.g. van der Vaart
and Wellner [9].

If C is a VC class, then the class F := {1C : C ∈ C} of indicator functions is a VC-graph class satisfying conditions of
Theorem 2.13 from Alexander [2] and the next statement follows.

Theorem 1. Let C ⊂ Bd be a VC class of sets, and (Yn)n∈N a d-dimensional i.i.d. process. Then a.s.

lim sup
n→∞

sup
C∈C

 n
i=1

1C (Yi) − nPY1(C)


√
2n log log n

= sup
C∈C

(PY1(C)(1 − PY1(C)))1/2. (5)

Hence we have the following corollary.

Corollary 2. Let (Yn)n∈N be a d-dimensional i.i.d. process and

Ed :=

{y ∈ Rd

: (y − µ)TA(y − µ) ≤ 1} : µ ∈ Rd, A ∈ Rd×d s.p.d.

.

Then a.s. there exists N ∈ N such that
n

i=1

1{Yi∈C} ≤
3
4


n log log n + nPY1(C) for all n ≥ Nand all C ∈ Ed. (6)

Remark 1. The constant 3/4 can be replaced by any other constant greater than
√
2/2.

Proof. Akama and Irie [1] have shown that the VC-dimension of the set Ed is (d2 + 3d)/2. From Theorem 1 follows: for any
ε > 0 a.s. there exists N ∈ N such that

sup
C∈Ed

n
i=1

1C (Yi) − nPY1(C)

√
2n log log n

≤ sup
c∈Ed

(PY1(C)(1 − PY1(C)))1/2 + ε for all n ≥ N

⇒

n
i=1

1C (Yi) ≤ nPY1(C) + (1/2 + ε)

2n log log n for all n ≥ N, C ∈ Ed. �

With the above corollary we can a.s. uniformly bound the number of i.i.d. observations generated by a bounded Lebesgue
density falling into an elliptical region in Rd.
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Corollary 3. Let (Yn)n∈N be i.i.d. variables with a bounded Lebesgue density f , and M := supy f (y). Then a.s. there exists N ∈ N
such that

n
i=1

1{(Yi−µ)TΣ−1(Yi−µ)≤(log |Σ |)2} ≤
3
4


n log log n +

nMπd/2

Γ
 d
2 + 1

 |Σ |
1
2 (log |Σ |)d (7)

for every µ ∈ Rd, Σ ∈ Rd×d symmetric positive definite and n ≥ N.

Proof. First we show PY1(C) ≤ M πd/2

Γ ( d
2 +1)

|Σ |
1
2 (log |Σ |)d for the ellipse C = {(y − µ)TΣ−1(y − µ) ≤ (log |Σ |)2} and then

we apply Corollary 2.
PY1 has Lebesgue density f ≤ M . Hence PY1(C) ≤ Mλd(C). The Lebesgue measure of the ellipsoid C is given by

λd(C) = |Σ |
1/2λd({yTy ≤ (log |Σ |)2}) by the invariance of λd w.r.t. translations and the substitution rule. For the measure

of the sphere it holds λd({yTy ≤ (log |Σ |)2}) =
πd/2

Γ ( d
2 +1)

(log |Σ |)d. �

A bound as in (1) with functions a(n) =
√
2n log log n and b(n, |Σ |) =

nMπd/2

Γ ( d
2 +1)

|Σ |
1
2 (log |Σ |)d is obtained.

4. Conclusion

In the presented work the soft spot in the consistency proof in Chen and Tan [3] was identified, namely the ascription to
the univariate case in Lemma 2 there. The introduced alternative in form of Corollary 3 fits almost seamless in Chen’s con-
sistency proof. Merely the condition C3 on the penalty function has to be strengthened to p̃n(Σ) ≤ ( 3

4

√
n log log n) log |Σ |

for |Σ | < cn−2d for some c > 0. However, it is not a problem, since the example penalty function with p̃n(Σ) =

−n−1(tr(Σ−1) + log |Σ |) fulfills this requirement. To see this, assume that |Σ | < n−2d. Then it holds for the eigenvalues of
Σ:

d
i=1 λi < n−2d and hence λ1 = λmin < n−2. Now, write the trace as the sum of the eigenvalues: tr(Σ−1) = λ−1

1 +· · ·+

λ−1
d > λ−1

min > n2. Finally −n−1(tr(Σ−1) + log |Σ |) < −n + n−12d log n < −( 3
4

√
n log log n)2d log n for n large enough.

The theoretical background for the new approach is given by Alexander’s uniform lawof iterated logarithm for VC classes.
Elaborated arguments involving Bernstein’s inequality and Borel–Cantelli lemma needed for the one-dimensional case as in
Chen et al. [4] are avoided and the proof becomes thereby shorter and more simple.

Moreover, the introduced approach, together with the general proof principle as in Chen and Tan [3] resp. Chen et al. [4]
can be used to prove consistency results for penalizedMLE for mixtures of distributions with similar properties, like gamma
distributions.
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