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a b s t r a c t

In extreme value theory, the extreme-value index is a parameter that controls the behavior
of a cumulative distribution function in its right tail. Estimating this parameter is thus the
first step when tackling a number of problems related to extreme events. In this paper, we
introduce an estimator of the extreme-value index in the presence of a random covariate
when the response variable is right-censored, whether its conditional distribution belongs
to the Fréchet, Weibull or Gumbel domain of attraction. The pointwise weak consistency
and asymptotic normality of the proposed estimator are established. Some illustrations on
simulations are provided and we showcase the estimator on a real set of medical data.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Studying extreme events is relevant in numerous fields of statistical applications. For instance, one can think about hy-
drology, where it is of interest to estimate the maximum level reached by seawater along a coast over a given period, or
to study extreme rainfall at a given location; in actuarial science, a major problem for an insurance firm is to estimate the
probability that a claim so large that it represents a threat to its solvency is filed. The focus in this type of problem is not in
the estimation of ‘‘central’’ parameters of the random variable of interest, such as its mean or median, but rather in the un-
derstanding of its behavior in its right tail. The basic result in extreme value theory, known as the Fisher–Tippett–Gnedenko
theorem (Fisher and Tippett [13], Gnedenko [17]) states that if (Yn) is an independent sequence of random copies of a ran-
dom variable Y such that there exist normalizing nonrandom sequences of real numbers (an) and (bn), with an > 0 and
such that the sequence

1
an


max
1≤i≤n

Yi − bn


converges in distribution to some nondegenerate limit, then the cumulative distribution function (cdf) of this limit has the
form y → GγY (ay + b), with a > 0 and b, γY ∈ R where

GγY (y) =


exp


−(1 + γYy)−1/γY


if γY ≠ 0 and 1 + γYy > 0,

exp (− exp(−y)) if γY = 0.
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If the aforementioned convergence holds, we shall say that Y (or equivalently, its cdf FY ) belongs to the domain of attraction
(DA) of GγY , with γY being the so-called extreme-value index of Y , and we write FY ∈ D(GγY ). The parameter γY drives the
behavior of GγY (and thus of FY ) in its right tail:

• if γY > 0, namely Y belongs to the Fréchet DA, then 1 − GγY is heavy-tailed i.e. it has a polynomial decay;
• if γY < 0, namely Y belongs to the Weibull DA, then 1 − GγY is short-tailed i.e. it has a support bounded to the right;
• if γY = 0, namely Y belongs to the Gumbel DA, then 1 − GγY has an exponential decay.

This makes it clear that the estimation of γY is a first step when tackling various problems in extreme value analysis, such as
the estimation of extreme quantiles of Y . Recent monographs on extreme value theory and especially univariate extreme-
value index estimation include Beirlant et al. [2] and de Haan and Ferreira [10].

In practical applications, it may happen that only incomplete information is available. Consider for instance a medical
follow-up study lasting up to time t which collects the survival times of patients for a given chronic disease. If a patient is
diagnosed with the disease at time s, his/her survival time is known if and only if he/she dies before time t . If the patient
survives until the end of the study, the only information available is that his/her survival time is not less than t − s. This
situation is the archetypal example of right-censoring, which shall be the focus of this paper. An interesting problem in this
particular case is the estimation of extreme survival times or, in other words, how long an exceptionally strong individual
can survive the disease. A preliminary step necessary to give an answer to this question is to estimate the extreme-value
index of the survival time Y ; this problem, which is much more complex than the estimation of the extreme-value index
when the data set is complete, has been investigated quite recently by Beirlant et al. [3] where asymptotic results for an
extreme-value index estimator using the data above a nonrandom threshold are derived in the context of the Hall model
(see Hall [20]), Einmahl et al. [12] in which the authors also suggest an estimator of extreme quantiles under random
right-censoring so as to provide extreme survival times for male patients suffering from AIDS, Beirlant et al. [4] where
maximum likelihood estimators are discussed, Sayah et al. [25] who focus on the heavy-tailed case and introduce a robust
estimator with respect to contamination and Worms and Worms [29] where the consistency of several estimators, coming
either from Kaplan–Meier integration or censored regression techniques, is studied. This situation should not be confused
with right-truncation, in which case no information is available at all when Y is not actually observed: a recent reference in
this case is Gardes and Stupfler [16].

Besides, it may well be the case that the survival time of a patient depends on additional random factors such as his/her
age or the pre-existence of some other medical condition. Our goal in this study is to make it possible to integrate such
information in the model by taking into account the dependency of Y on a covariate X . The problem thus becomes to
estimate the conditional extreme-value index γY (x) of Y given X = x. Recent papers on this subject when Y is noncensored
include Wang and Tsai [28] who introduced a maximum likelihood approach, Daouia et al. [8] who used a fixed number
of nonparametric conditional quantile estimators to estimate the conditional extreme-value index, Gardes and Girard [14]
who generalized the method of [8] to the case when the covariate space is infinite-dimensional, Goegebeur et al. [18] who
studied a nonparametric regression estimator whose uniform asymptotic properties are examined in Goegebeur et al. [19]
and Gardes and Stupfler [15] who introduced a smoothed local Hill estimator (see Hill [21]). All these papers consider the
case when Y given X = x belongs to the Fréchet DA; the case when the response distribution belongs to an arbitrary domain
of attraction is considered in Daouia et al. [7], who generalized the method of [8] to this context and Stupfler [26] who
introduced a generalization of the popular moment estimator of Dekkers et al. [11]. To the best of our knowledge, the only
paper tackling this problemwhen Y is right-censored is Ndao et al. [23]; their work is, however, restricted to the case when
Y is heavy-tailed. Our focus here is to devise an estimator which works regardless of whether or not the tail of Y is heavy.

The outline of this paper is as follows. In Section 2, we give a precise definition of our model. In Section 3, we define
our estimator of the conditional extreme-value index. The pointwise weak consistency and asymptotic normality of the
estimator are stated in Section 4. The finite sample performance of the estimator is studied in Section 5. In Section 6, we
revisit the medical data set of [12] by integrating additional covariate information. Proofs are deferred to Section 7.

2. Framework

Let (X1, Y1, C1), . . . , (Xn, Yn, Cn) be n independent copies of a random vector (X, Y , C) taking its values in E × (0, ∞) ×

(0, ∞) where E is a finite-dimensional linear space endowed with a norm ∥ · ∥. We assume that for all x ∈ E, given X = x,
Y and C are independent, possess continuous probability density functions (pdfs) and that the related conditional survival
functions (csfs) F Y (·|x) = 1 − FY (·|x) of Y given X = x and F C (·|x) = 1 − FC (·|x) of C given X = x belong to some
domain of attraction. Specifically, we shall work in the following setting, where we recall that the left-continuous inverse
of a nondecreasing function f is the function z → inf{y ∈ R | f (y) ≥ z}:

(M1)Y and C are positive random variables and for every x ∈ E, there exist real numbers γY (x), γC (x) and positive
functions aY (·|x), aC (·|x) such that the left-continuous inverses UY (·|x) of 1/F Y (·|x) and UC (·|x) of 1/F C (·|x) satisfy

lim
t→∞

UY (tz|x) − UY (t|x)
aY (t|x)

= DγY (x)(z) and lim
t→∞

UC (tz|x) − UC (t|x)
aC (t|x)

= DγC (x)(z)



G. Stupfler / Journal of Multivariate Analysis 144 (2016) 1–24 3

for every z > 0, where

Dγ (z) =


zγ

− 1
γ

if γ ≠ 0

log z if γ = 0.
(1)

Model (M1) is the conditional analogue of the classical extreme-value framework for Y and C , see for instance [10, p.19].
In this model, for every x ∈ E, the functions UY (·|x) and UC (·|x) have positive limits UY (∞|x) and UC (∞|x) at infinity; the
functions x → UY (∞|x) and x → UC (∞|x), which are such that

UY (∞|x) = sup{t ∈ R | F Y (t|x) > 0} and UC (∞|x) = sup{t ∈ R | F C (t|x) > 0}

are respectively called the conditional right endpoints of Y and C .
We assume that we only observe the random vectors (Xi, Ti, δi) with Ti = Yi ∧ Ci and δi = I{Yi≤Ci}, where we denote by

s ∧ t the minimum of s and t . Suppose that the following condition holds as well:
(H) For every x ∈ E, the distribution of T given X = x belongs to some domain of attraction D(GγT (x)) and we have

either

• γY (x) > 0 and γC (x) > 0;
• γY (x) < 0, γC (x) < 0 and 0 < UY (∞|x) = UC (∞|x) < ∞;
• γY (x) = γC (x) = 0 and UY (∞|x) = UC (∞|x) = ∞.

An unconditional analogue of hypothesis (H) is condition (7) in [12]. This hypothesis ensures that one works in an inter-
esting case regarding censoring: censoring in the extremes of the sample should be present to justify using an adapted
methodology, but not complete so that we can expect to recover information about the extremes of Y . For instance, any
situation in which the tail of Y is heavy and C is short-tailed, namely γY (x) > 0 and γC (x) < 0, is a so-called ‘‘completely
censored situation’’ in the extremes (see also [12]): clearly, high values of Y exceeding the right endpoint of C will be cen-
sored with probability 1 and this makes it impossible to recover anything about the right tail of Y . If on the contrary the
random variable Y is short-tailed and the tail of C is heavy, corresponding to the case γY (x) < 0 and γC (x) > 0, then we are
in an ‘‘uncensored situation’’ in which high values of T come from high values of Y with probability approaching 1 as the
sample size increases. In this situation, amethodology such as the one of [26]which does not account for the right-censoring
phenomenon will yield essentially the same results as an adapted technique provided the sample size is large enough.

As mentioned in [12], if (M1) and (H) hold then T has conditional right endpoint UY (∞|x) = UC (∞|x) and conditional
extreme-value index

γT (x) =
γY (x)γC (x)

γY (x) + γC (x)

with the convention γT (x) = 0 if γY (x) = γC (x) = 0. In other words, if F T (·|x) is the csf of T given X = x, there exists a
positive function aT (·|x) such that the left-continuous inverse UT (·|x) of 1/F T (·|x) satisfies

∀z > 0, lim
t→∞

UT (tz|x) − UT (t|x)
aT (t|x)

= DγT (x)(z).

3. The estimators

To tackle the problem, we start by introducing an estimator of the conditional extreme-value index γT . For x ∈ E and a
sequence h = h(n) converging to 0 as n → ∞, we let Nn(x, h) be the total number of observations in the closed ball B(x, h)
with center x and radius h:

Nn(x, h) =

n
i=1

I{Xi∈B(x,h)} with B(x, h) = {x′
∈ E | ∥x − x′

∥ ≤ h},

where I{·} is the indicator function. The bandwidth sequence h(n)makes it possible to select those covariateswhich are close
enough to x. Given Nn(x, h) = l ≥ 1, we let, for i = 1, . . . , l, (Ti, ∆i) = (Ti(x, h), ∆i(x, h)) be the response pairs whose
associated covariates Xi = Xi(x, h) belong to the ball B(x, h). Let T1,l ≤ · · · ≤ Tl,l be the order statistics associated with the
sample (T1, . . . , Tl) – this way of denoting order statistics shall be used throughout the paper – and set for j = 1, 2:

M(j)
n (x, kx, h) =

1
kx

kx
i=1


log(Tl−i+1,l) − log(Tl−kx,l)

j
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if kx ∈ {1, . . . , l − 1} and 0 otherwise. Define:γT ,n(x, kx, h) = γT ,n,+(x, kx, h) +γT ,n,−(x, kx, h)

whereγT ,n,+(x, kx, h) = M(1)
n (x, kx, h)

and γT ,n,−(x, kx, h) = 1 −
1
2

1 −


M(1)

n (x, kx, h)
2

M(2)
n (x, kx, h)


−1

if

M(1)

n (x, kx, h)
2

≠ M(2)
n (x, kx, h), withγT ,n,−(x, kx, h) = 0 otherwise. The estimatorγT ,n(x, kx, h) is an adaptation of the

moment estimator of [11] to the presence of a random covariate; it follows from Theorem 1 in [26] that this quantity is a
pointwise consistent estimator of the extreme-value index γT (x) of T given X = x under mild conditions.

We then adapt an idea of [12] in order to obtain an estimator of γY (x). Given Nn(x, h) = l, let∆[1:l], . . . , ∆[l:l] be the order
statistics induced by the sample (T1, . . . , Tl): ∆[i:l] is the random variable associated with Ti,l. We define

pn(x, kx, h) =
1
kx

kx
i=1

∆[l−i+1:l],

the proportion of noncensored observations among Tl−kx+1,l, . . . , Tl,l when kx ∈ {1, . . . , l − 1} and 0 otherwise. This
estimator is the adaptation to the randomcovariate case of the estimatorp of [12]:we shall show (see the proof of Theorem1)
that under some conditions,pn(x, kx, h) is a consistent estimator of γC (x)/(γY (x) + γC (x)). Our estimator of γY (x) is then

γY ,n(x, kx, h) =
γT ,n(x, kx, h)pn(x, kx, h)

ifpn(x, kx, h) > 0 and 0 otherwise.

4. Main results

4.1. Weak consistency

We start by giving a pointwise weak consistency result for our estimator. To this end let nx = nx(n, h) = nP(X ∈ B(x, h))
be the average total number of points in the ball B(x, h) and assume that nx(n, h) > 0 for every n. Let kx = kx(n) be a
sequence of positive integers, FT ,h(·|x) be the cdf of T given X ∈ B(x, h) and UT ,h(·|x) be the left-continuous inverse of
1/F T ,h(·|x). We introduce the functions p(·|x), ph(·|x) defined by

p(t|x) =
d
dt

P(δ = 1, T ≤ t | X = x)


d
dt

FT (t|x)

and ph(t|x) =
d
dt

P(δ = 1, T ≤ t | X ∈ B(x, h))


d
dt

FT ,h(t|x)

for every t > 0 such that the denominator is nonzero and p(x) := γC (x)/(γY (x) + γC (x)) otherwise. It follows from
Lemma 1 (see Section 7) that if (M1), (H) hold and γY (x) ≠ 0, then the first of these two quantities converges to the
positive limit p(x) as t → UT (∞|x) and from Lemma 2 that the second quantity is indeed well-defined. Assume that in the
case γY (x) = γC (x) = 0, the function p(·|x) also converges to a positive limit at infinity, which we denote by p(x) for the
sake of consistency. The function x → 1 − p(x) is understood as the conditional percentage of censoring in the right tail of
Y . For u, v ∈ (1, ∞) such that u < v, we introduce the quantities

ω(logUT , u, v, x, h) = sup
t∈[u,v]

log UT ,h(t|x)
UT (t|x)


and ω(p ◦ UT , u, v, x, h) = sup

t∈[u,v]

ph(UT ,h(t|x)|x) − p(x)
 .

Our consistency result is then:

Theorem 1. Assume that (M1) and (H) hold. For some x ∈ E, assume that nx → ∞, kx → ∞, kx/nx → 0 and for some η > 0

UT (nx/kx|x)
aT (nx/kx|x)

ω


logUT ,

nx

(1 + η)kx
, n1+η

x , x, h


→ 0 as n → ∞ (2)

and ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


→ 0 as n → ∞. (3)

Then it holds that γY ,n(x, kx, h)
P

−→ γY (x) as n → ∞.
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Conditions kx → ∞ and kx/nx → 0 in Theorem 1 are standard hypotheses for the estimation of the conditional extreme-
value index. Moreover, condition nx → ∞ is necessary to make sure that there are sufficiently many observations close to
x, which is a standard assumption in the random covariate case.

We conclude this section by analyzing conditions (2) and (3). We assume that

(A1) For every x ∈ E, it holds that for all t ∈ (0,UT (∞|x)), fY (t|x) > 0 and fC (t|x) > 0.
(A2) The functions γY and γC are continuous functions on E.
(A3) For every x′

∈ B(x, h) and r > 0, we have P(X ∈ B(x′, r)) > 0 if n is large enough.
(A4) For every y ∈ R, the function F T (y|·) is continuous on E.

Note that hypothesis (A1) implies that the csf F T (·|x) is a continuous decreasing function on (0,UT (∞|x)) and hypothesis
(A2) entails that the function γT is continuous. Hypotheses (A3) and (A4) are technical conditions; see Proposition 1 in [26]
for analogues of these assumptions in the noncensored case. We can draw two consequences from this:

1. If γY (x) > 0 and γC (x) > 0 then γY (x′) > 0, γC (x′) > 0 and γT (x′) > 0 for x′ close enough to x. Corollary 1.2.10 in
[10, p.23] thus yields for n large enough and every x′

∈ B(x, h)

∀z > 1, UT (z|x′) = zγT (x′)LUT (z|x
′)

where for every x′
∈ B(x, h), LUT (·|x

′) is a slowly varying function at infinity, and

∀t > 0, F Y (t|x′) = t−1/γY (x′)LFY (t|x
′) and F C (t|x′) = t−1/γC (x′)LFC (t|x

′)

where LFY (·|x
′) and LFC (·|x

′) are continuously differentiable slowly varying functions at infinity. Especially, if

bY (t|x′) = t
L′

FY
(t|x′)

LFY (t|x
′)

and bC (t|x′) = t
L′

FC
(t|x′)

LFC (t|x
′)

then

∀t > 0, fY (t|x′) =


1

γY (x′)
− bY (t|x′)


F Y (t|x′)

t

and fC (t|x′) =


1

γC (x′)
− bC (t|x′)


F C (t|x′)

t
.

2. If γY (x) < 0 and γC (x) < 0 then γY (x′) < 0, γC (x′) < 0 and γT (x′) < 0 for x′ close enough to x. Corollary 1.2.10 in
[10, p.23] yields for n large enough and every x′

∈ B(x, h) that

∀z > 1, UT (∞|x′) − UT (z|x′) = zγT (x′)LUT (z|x
′)

where for every x′
∈ B(x, h), LUT (·|x

′) is a slowly varying function at infinity and

∀t > 0, F Y (UY (∞|x′) − t−1
|x′) = t1/γY (x′)LFY (t|x

′)

and F C (UC (∞|x′) − t−1
|x′) = t1/γC (x′)LFC (t|x

′)

where LFY (·|x
′) and LFC (·|x

′) are continuously differentiable slowly varying functions at infinity. In particular, if

bY (t|x′) =

t
L′

FY
(t|x′)

LFY (t|x
′)

if LFY (t|x
′) > 0

0 otherwise

and bC (t|x′) =

t
L′

FC
(t|x′)

LFC (t|x
′)

if LFC (t|x
′) > 0

0 otherwise,

then, recalling that UT (∞|x′) = UY (∞|x′) = UC (∞|x′) for every x′
∈ B(x, h), one may write

∀t ∈ (0,UT (∞|x′)), fY (t|x′) =


−

1
γY (x′)

− bY ((UT (∞|x′) − t)−1
|x′)


F Y (t|x′)

UT (∞|x′) − t

and fC (t|x′) =


−

1
γC (x′)

− bC ((UT (∞|x′) − t)−1
|x′)


F C (t|x′)

UT (∞|x′) − t
.
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In this framework, it is possible to reformulate the hypotheses in our main results in a more convenient fashion: let
Kx,η := [nx/(1 + η)kx, n

1+η
x ] and assume that for some α ∈ (0, 1]

sup
x′∈B(x,h)

|γY (x′) − γY (x)| ∨ |γC (x′) − γC (x)| = O (hα) (4)

and sup
z∈Kx,η

sup
x′∈B(x,h)

1
log z

log LUT (z|x
′)

LUT (z|x)

 = O (hα) (5)

where we denote by s ∨ t the maximum of two real numbers s and t . Then in case 1, if hα log nx → 0 as n → ∞, one has

UT (nx/kx|x)
aT (nx/kx|x)

ω


logUT ,

nx

(1 + η)kx
, n1+η

x , x, h


= O(hα log nx) (6)

see the discussion below Proposition 1 in [26]. In case 2, if the conditional right endpoint UT (∞|·) is such that

sup
x′∈B(x,h)

|UT (∞|x′) − UT (∞|x)| = O(hβ) (7)

with β ∈ (0, 1], then if

hα log nx → 0 and
(nx/kx)−γT (x)

LUT (nx/kx|x)
hβ

→ 0 as n → ∞ (8)

one has

UT (nx/kx|x)
aT (nx/kx|x)

ω


logUT ,

nx

(1 + η)kx
, n1+η

x , x, h


= O

hα log nx ∨

(nx/kx)−γT (x)

LUT (nx/kx|x)
hβ


, (9)

see again the discussion below Proposition 1 in [26].
The next result gives bounds of this kind when considering hypothesis (3).

Proposition 1. Assume that conditions (M1), (H), (A1), (A2), (A3), (A4) hold and that for some α ∈ (0, 1] and η > 0,
conditions (4) and (5) are satisfied.

1. In case 1 above assume that for x′ close enough to x, |bY (·|x′)|, |bC (·|x′)| are regularly varying functions at infinity with
respective indices ρY (x′)/γY (x′), ρC (x′)/γC (x′), that is

|bY (t|x′)| = tρY (x′)/γY (x′)LbY (t|x
′) and |bC (t|x′)| = tρC (x′)/γC (x′)LbC (t|x

′) (10)

with the so-called conditional second-order parameter functions ρY , ρC and the slowly varying functions LbY (·|x
′), LbC (·|x

′)
satisfying, for some η > 0,

sup
x′∈B(x,h)

|ρY (x′) − ρY (x)| ∨ |ρC (x′) − ρC (x)| = O (hα) , (11)

sup
t∈UT (Kx,η |x)

sup
x′∈B(x,h)

1
log t

log LbY (t|x
′)

LbY (t|x)

 ∨ log LbC (t|x
′)

LbC (t|x)

 = O (hα) (12)

where UT (Kx,η|x) is the image of the interval Kx,η by the function UT (·|x). If ρY (x) and ρC (x) are negative, hα log nx → 0 and
the sequence

δn := |bY (UT (nx/kx|x)|x)| ∨ |bC (UT (nx/kx|x)|x)|

converges to 0 then, for η > 0 small enough, one has, as n → ∞:

ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


= O (hα log nx ∨ δn) .

2. In case 2 above assume that conditions (7) and (8) are satisfied. Assume moreover that for x′ close enough to x, |bY (·|x′)| and
|bC (·|x′)| are regularly varying functions at infinity with respective indices −ρY (x′)/γY (x′) and −ρC (x′)/γC (x′), namely

|bY (t|x′)| = t−ρY (x′)/γY (x′)LbY (t|x
′) and |bC (t|x′)| = t−ρC (x′)/γC (x′)LbC (t|x

′) (13)

with the conditional second-order parameter functions ρY , ρC satisfying (11) and the slowly varying functions LbY (·|x
′),

LbC (·|x
′) being such that for some η ∈ (0, 1)

sup
t∈Jx,η

sup
x′∈B(x,h)

1
log t

log LbY (t|x
′)

LbY (t|x)

 ∨ log LbC (t|x
′)

LbC (t|x)

 = O (hα) (14)
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where Jx,η := [(1 − η)[UT (∞|x) − UT (nx/kx|x)]−1, ∞). If ρY (x) and ρC (x) are negative and the sequence

δn := |bY ((UT (∞|x) − UT (nx/kx|x))−1
|x)| ∨ |bC ((UT (∞|x) − UT (nx/kx|x))−1

|x)|

converges to 0 then one has, as n → ∞:

ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


= O (hα log nx ∨ δn) .

This result relates hypothesis (3) in Theorem 1 to the various functions involved in the usual parametrization of the
problem. It shall allow us to recover the optimal rate of convergence of the estimator, see Theorem 2 and the developments
below for details.

4.2. Asymptotic normality

To prove a pointwise asymptotic normality result for our estimator, we need to introduce a second-order condition on
the function UT (·|x):

(M2) Conditions (M1) and (H) hold and for every x ∈ E, there exist a real number ρT (x) ≤ 0 and a function AT (·|x) of
constant sign converging to 0 at infinity such that the function UT (·|x) satisfies

∀z > 0, lim
t→∞

1
AT (t|x)


UT (tz|x) − UT (t|x)

aT (t|x)
− DγT (x)(z)


= HγT (x),ρT (x)(z)

where

HγT (x),ρT (x)(z) =

 z

1
rγT (x)−1

 r

1
sρT (x)−1ds


dr.

Hypothesis (M2) is the conditional analogue of a classical second-order condition, see for instance Definition 2.3.1 and
Corollary 2.3.4 in [10, pp.44–45]: the parameter ρT (x) is the so-called second-order parameter of T given X = x. Note that
Theorem 2.3.3 in [10, p.44] shows that the function |AT (·|x)| is regularly varying at infinity with index ρT (x). Moreover,
as shown in Lemma B.3.16 p.397 therein, if (M2) holds with γT (x) ≠ ρT (x) and ρT (x) < 0 if γT (x) > 0, then defining
qT (·|x) = aT (·|x)/UT (·|x), a second-order condition also holds for the function logUT (·|x), namely:

∀z > 0, lim
t→∞

1
QT (t|x)


logUT (tz|x) − logUT (t|x)

qT (t|x)
− DγT ,−(x)(z)


= HγT ,−(x),ρ′

T (x)(z)

with γT ,−(x) = γT (x) ∧ 0,

ρ ′

T (x) =


ρT (x) if γT (x) < ρT (x) ≤ 0
γT (x) if ρT (x) < γT (x) ≤ 0
−γT (x) if 0 < γT (x) < −ρT (x) and ℓT (x) ≠ 0
ρT (x) if (0 < γT (x) < −ρT (x) and ℓT (x) = 0)or 0 < −ρT (x) ≤ γT (x)

where we have defined

ℓT (x) = lim
t→∞


UT (t|x) −

aT (t|x)
γT (x)


and QT (·|x) has ultimately constant sign, converges to 0 at infinity and is such that |QT (·|x)| is regularly varying at infinity
with index ρ ′

T (x). Note that Lemma B.3.16 in [10, p.397] entails that one can choose

QT (t|x) =



AT (t|x) if γT (x) < ρT (x) ≤ 0

γT ,+(x) −
aT (t|x)
UT (t|x)

if ρT (x) < γT (x) ≤ 0
or 0 < γT (x) < −ρT (x) and ℓT (x) ≠ 0
or 0 < γT (x) = −ρT (x)

ρT (x)
γT (x) + ρT (x)

AT (t|x)
if 0 < γT (x) < −ρT (x) and ℓT (x) = 0
or 0 < −ρT (x) < γT (x)

with γT ,+(x) = γT (x) ∨ 0. Besides, if γT (x) > 0 and ρT (x) = 0, then one has

∀z > 0, lim
t→∞

1
QT (t|x)


logUT (tz|x) − logUT (t|x)

qT (t|x)
− log z


= 0

for every function QT (·|x) such that AT (t|x) = O(QT (t|x)) as t → ∞; especially, we can and will take QT (·|x) = AT (·|x) and
ρ ′

T (x) = 0 in this case.
We can now state the asymptotic normality of our estimator.
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Theorem 2. Assume that (M2) holds. For some x ∈ E, assume that nx → ∞, kx → ∞, kx/nx → 0,
√
kx QT (nx/kx|x) → 0 and

for some η > 0
kx

UT (nx/kx|x)
aT (nx/kx|x)

ω


logUT ,

nx

(1 + η)kx
, n1+η

x , x, h


→ 0 as n → ∞ (15)

and

kx ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


→ 0 as n → ∞. (16)

Then if γT (x) ≠ ρT (x), it holds that
kx
γY ,n(x, kx, h) − γY (x)

 d
−→ N


0,

1
p2(x)


V (γT (x)) +

γ 2
T (x)
p(x)

(1 − p(x))


where we have set

V (γT (x)) =


γ 2
T (x) + 1 if γT (x) ≥ 0

(1 − γT (x))2(1 − 2γT (x))(1 − γT (x) + 6γ 2
T (x))

(1 − 3γT (x))(1 − 4γT (x))
if γT (x) < 0.

Theorem 2 is the conditional analogue of the asymptotic normality result stated in [12]. In particular, the asymptotic
variance of our estimator is similar to the one obtained when there is no covariate. Besides, condition

√
kx QT (nx/kx|x) → 0

as n → ∞ in Theorem 2 is a standard condition needed to control the bias of the estimator.
We conclude this paragraph by showing how Theorem 2 can be used to obtain optimal rates of convergence for our

estimator. We assume that E = Rd, d ≥ 1 is equipped with the standard Euclidean distance and that X has a probability
density function f on Rd which is continuous on its support S, assumed to have nonempty interior. If x is a point lying in the
interior of S which is such that f (x) > 0, it is straightforward to show that (A3) holds and that

nx = n

B(x,h)

f (u)du = nhdVf (x)(1 + o(1)) as n → ∞

withV being the volume of the unit ball in Rd. Set k = kx/(hdVf (x)); it is then clear that kx = khdVf (x) and that hypotheses
nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞ are equivalent to khd

→ ∞ and k/n → 0 as n → ∞. If k and h have respective
order na and n−b, with a, b > 0, the rate of convergence of the estimatorγY ,n(x, kx, h) to γY (x) is then n(a−bd)/2. Under the
hypotheses of Theorem 2, provided that (A1), (A2) and (A4) hold, one can find the optimal values for a and b in the Fréchet
and Weibull domains of attraction:

• If γY (x) > 0 and γC (x) > 0, then under the Hölder conditions (4) and (5), hypothesis (15) shall be satisfied if
√
khdhα log(nhd) → 0 as n → ∞. Besides, under assumption (10) and the Hölder conditions (11) and (12), Proposition 1

gives that hypothesis (16) is implied by
kx

|bY (UT (nx/kx|x)|x)| ∨ |bC (UT (nx/kx|x)|x)|


→ 0 as n → ∞

or, equivalently,
√

khd
n
k

γC (x)ρY (x)/(γY (x)+γC (x))
LY (n/k|x) → 0

and
√

khd
n
k

γY (x)ρC (x)/(γY (x)+γC (x))
LC (n/k|x) → 0

as n → ∞, where LC (·|x) and LY (·|x) are slowly varying functions at infinity. Recalling the bias condition
√
khd

QT (n/k|x) → 0 as n → ∞, the problem is thus to maximize the quantity a − bd under the constraints a ∈ (0, 1),
a − bd ≥ 0,

a − b(d + 2α) ≤ 0,

a − bd + 2(1 − a)
γC (x)ρY (x)

γY (x) + γC (x)
≤ 0,

a − bd + 2(1 − a)
γY (x)ρC (x)

γY (x) + γC (x)
≤ 0

and a − bd + 2(1 − a)ρ ′

T (x) ≤ 0.

Setting

ρ(x) := max


ρ ′

T (x),
γC (x)ρY (x)

γY (x) + γC (x)
,

γY (x)ρC (x)
γY (x) + γC (x)


≤ 0
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the constraints become a ∈ (0, 1), a − bd ≥ 0,

a − b(d + 2α) ≤ 0 and a − bd + 2(1 − a)ρ(x) ≤ 0.

The solution to this problem is

a∗
=

−(d + 2α)ρ(x)
α − (d + 2α)ρ(x)

and b∗
=

−ρ(x)
α − (d + 2α)ρ(x)

for which

a∗
− b∗d =

−2αρ(x)
α − (d + 2α)ρ(x)

.

The optimal convergence rate for our estimator in this case is therefore

n(a∗−b∗d)/2
= n−αρ(x)/(α−(d+2α)ρ(x)).

• If γY (x) < 0 and γC (x) < 0, then under the Hölder conditions (4), (5) and (7), hypothesis (15) shall be satisfied if (see (8))
√

khdhα log(nhd) → 0 and
√

khd (n/k)−γT (x)

LUT (n/k|x)
hβ

→ 0 as n → ∞.

Besides, under assumption (13) and the Hölder conditions (11) and (14), Proposition 1 gives that hypothesis (16) is
implied by

kx

|bY ((UT (∞|x) − UT (nx/kx|x))−1

|x)| ∨ |bC ((UT (∞|x) − UT (nx/kx|x))−1
|x)|


→ 0

or, equivalently,
√

khd
n
k

γC (x)ρY (x)/(γY (x)+γC (x))
LY (n/k|x) → 0

and
√

khd
n
k

γY (x)ρC (x)/(γY (x)+γC (x))
LC (n/k|x) → 0

as n → ∞, where LC (·|x) and LY (·|x) are slowly varying functions at infinity. Recalling the bias condition
√
khd QT (n/k|x) → 0 as n → ∞, the problem thus consists in maximizing the quantity a − bd under the constraints

a ∈ (0, 1), a − bd ≥ 0,

a − b(d + 2α) ≤ 0,
a − 2(1 − a)γT (x) − b(d + 2β) ≤ 0,

a − bd + 2(1 − a)
γC (x)ρY (x)

γY (x) + γC (x)
≤ 0,

a − bd + 2(1 − a)
γY (x)ρC (x)

γY (x) + γC (x)
≤ 0

and a − bd + 2(1 − a)ρ ′

T (x) ≤ 0.

Assume now that the functions γY and γC are at least as regular as UT (∞|·), namely that β ≤ α. In this case, since
γT (x) < 0, the constraints reduce to a ∈ (0, 1), a − bd ≥ 0,

a − bd + 2(1 − a)ρ(x) ≤ 0
and a − 2(1 − a)γT (x) − b(d + 2β) ≤ 0

where

ρ(x) := max


ρ ′

T (x),
γC (x)ρY (x)

γY (x) + γC (x)
,

γY (x)ρC (x)
γY (x) + γC (x)


≤ 0.

The solution to this problem is

a∗
=

−(d + 2β)ρ(x) − dγT (x)
β − (d + 2β)ρ(x) − dγT (x)

and b∗
=

−ρ(x) − γT (x)
β − (d + 2β)ρ(x) − dγT (x)

for which

a∗
− b∗d =

−2βρ(x)
β − (d + 2β)ρ(x) − dγT (x)

.

The optimal convergence rate for our estimator in this case is then

n(a∗−b∗d)/2
= n−βρ(x)/(β−(d+2β)ρ(x)−dγT (x)).
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5. Simulation study

In this paragraph, we carry out a simulation study to get a grasp of how our estimator behaves in a finite sample situation.
We consider the case E = R equipped with the standard Euclidean norm and a covariate X which is uniformly distributed
on [0, 1] ⊂ E. Moreover, we let γY : [0, 1] → R and γC : [0, 1] → R be the positive functions defined by

∀x ∈ [0, 1], γY (x) =
2
3

+
1
6
sin(2πx) and γC (x) = 5 +

1
3
sin(2πx).

We shall now give details about the different models we use in this finite-sample study as far as the distribution of (Y , C)
given X = x is concerned.

5.1. The models

Fréchet–Fréchet case. Our first model is

∀t > 0, F Y (t|x) =

1 + t−ρ/γY (x)1/ρ and F C (t|x) =


1 + t−ρ/γC (x)1/ρ

where the parameter ρ is chosen to be independent of x, in the set {−1.5, −1, −0.5}. In particular, Y and C given X = x are
Burr type XII distributed. In this case, F Y (·|x) and F C (·|x) both belong to the Fréchet DA for every x ∈ [0, 1] with respective
conditional extreme-value indices γY (x) and γC (x). Finally, the conditional percentage p of censoring in the right tail is such
that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1]. We now examine the validity of the second-order condition (M2). Let us first
recall that if a continuous and strictly increasing survival function G is such that

G(t) = t−1/γ C1 + D1tρ/γ
+ o


tρ/γ


as t → ∞

where γ > 0, ρ < 0 and C1, D1 are nonzero constants, it is straightforward to show that the inverse V of 1/G is such that

V (z) = zγ (C2 + D2zρ
+ o (zρ)) as z → ∞

where C2, D2 are nonzero constants. The related distribution then satisfies the second-order condition with a second-order
parameter equal to ρ. Here, the function F T (·|x) = F Y (·|x)F C (·|x) is continuous and strictly increasing and

F T (t|x) = t−1/γT (x)

1 +

1
ρ
tρ/γC (x)

+ o

tρ/γC (x) as t → ∞

because γY (x) < γC (x), so that the second-order condition (M2) is satisfied in this example, with conditional second-order
parameter ρT (x) = ργT (x)/γC (x) = ργY (x)/(γY (x) + γC (x)).
Weibull–Weibull case. The second model is

∀t ∈ [0, g(x)], F Y (t|x) =
0(2/γY (x))
02(1/γY (x))

 1

t/g(x)
v1/γY (x)−1(1 − v)1/γY (x)−1dv

and F C (t|x) =
0(2/γC (x))
02(1/γC (x))

 1

t/g(x)
v1/γC (x)−1(1 − v)1/γC (x)−1dv

where 0 : (0, ∞) → R is Euler’s Gamma function:

∀z > 0, 0(z) =


∞

0
e−t tz−1dt

and the conditional right endpoint function g is defined by

∀x ∈ [0, 1], g(x) = 1 − c + 8cx(1 − x)

with c ∈ {0.1, 0.2, 0.3}. Here, given X = x, Y/g(x) is a Beta(1/γY (x), 1/γY (x)) random variable and C/g(x) is a
Beta(1/γC (x), 1/γC (x)) randomvariable. Especially, Y and C givenX = xbelong to theWeibull DA,with common conditional
right endpoint g(x), respective conditional extreme-value indices −γY (x) and −γC (x) and the conditional percentage p of
censoring in the right tail being such that 0.86 ≤ p(x) ≤ 0.91 for all x ∈ [0, 1]. To check that the second-order condition
holds, we notice again that if a continuous and strictly increasing survival function G is such that

G(t) = (θ − t)−1/γ C1 + D1(θ − t)ρ/γ
+ o


(θ − t)ρ/γ


as t ↑ θ

where γ , ρ < 0, C1 and D1 are both nonzero and θ is a constant, it is easy to prove that the inverse V of 1/G is such that

θ − V (z) = zγ (C2 + D2zρ
+ o (zρ)) as z → ∞
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where C2, D2 are nonzero constants. The related distribution then satisfies the second-order condition with a second-order
parameter equal to ρ. Here, the function F T (·|x) = F Y (·|x)F C (·|x) is continuous, strictly increasing and

F T (t|x) ∝ (g(x) − t)−1/γT (x)


1 +


1 − γ −1

Y (x)
1 + γY (x)

+
1 − γ −1

C (x)
1 + γC (x)


1 −

t
g(x)


(1 + o(1))


as t ↑ g(x), see the asymptotic expansion of the cdf of a Beta random variable in [2, p.68]. It is easy to see that

∀x ∈ [0, 1],
1 − γ −1

Y (x)
1 + γY (x)

+
1 − γ −1

C (x)
1 + γC (x)

≠ 0

except for two values of xwhich are approximately equal to x1 = 0.1661 and x2 = 0.3339. For x different from x1 and x2, the
second-order condition (M2) is thus satisfied, with conditional second-order parameter ρT (x) = γT (x). When x ∈ {x1, x2},
straightforward computations entail

F T (t|x) ∝ (g(x) − t)−1/γT (x)


1 +


(1 − γ −1

Y (x))(2 − γ −1
Y (x))

2(1 + 2γY (x))
+

(1 − γ −1
C (x))(2 − γ −1

C (x))
2(1 + 2γC (x))

+
(1 − γ −1

Y (x))(1 − γ −1
C (x))

(1 + γY (x))(1 + γC (x))


1 −

t
g(x)

2
(1 + o(1))


as t ↑ g(x); the coefficient before the [1−t/g(x)]2 term can be shown to be nonzero for x ∈ {x1, x2}, so that the second-order
condition (M2) is satisfied with conditional second-order parameter ρT (x) = 2γT (x).
Gumbel–Gumbel case. The third model is

∀t > 0, F Y (t|x) = F C (t|x) =
2

1 + exp(q(x)t)

where q is the function defined by

∀x ∈ [0, 1], q(x) = 1 +
1
2
sin(2πx).

In this model, q(x)Y and q(x)C given X = x have a common logistic distribution, which is an example of distribution belong-
ing to the Gumbel DA. Here the function p is constant equal to 1/2. To check that the second-order condition holds here, we
check instead the second-order von Mises condition (see [10, p.49]): remark that since Y and C have the same conditional
distribution, we have UT (z|x) = UY (

√
z|x). This entails

zU ′′

T (z|x)
U ′

T (z|x)
+ 1 =

1
2

√
zU ′′

Y (
√
z|x)

U ′

Y (
√
z|x)

+ 1


.

Because UY (z|x) = [q(x)]−1 log(2z − 1) we get

zU ′′

T (z|x)
U ′

T (z|x)
+ 1 = −

1
2(2

√
z − 1)

andwemay thus apply Theorem 2.3.12 p.49 in [10] to obtain that the conditional distribution of T satisfies the second-order
condition (M2) with AT (z|x) being the right-hand side of the above equation, yielding ρ(x) = −1/2 for every x.

To see how the estimator behaves in uncensored cases, namely when inference in the extremes is possible but the cor-
rection due to the presence of censoring is not needed, we also consider the three models below where the right tail of Y is
much lighter than that of C:
Gumbel–Fréchet case. In this model,

∀t > 0, F Y (t|x) =
2

1 + exp(q(x)t)
and F C (t|x) =


1 + t−ρ/γC (x)1/ρ

where q(x) = 1 + 0.5 sin(2πx) and ρ = −1. Here, given X = x, q(x)Y has a logistic distribution and C is Burr type XII
distributed.
Weibull–Fréchet case. Here,

∀t > 0, F Y (t|x) =
0(2/γY (x))
02(1/γY (x))

 1

t/g(x)
v1/γY (x)−1(1 − v)1/γY (x)−1dv

and F C (t|x) =

1 + t−ρ/γC (x)1/ρ

where g(x) = 1− c + 8cx(1− x), c = 0.1 and ρ = −1. Here, given X = x, Y/g(x) is Beta(1/γY (x), 1/γY (x)) distributed and
C is Burr type XII distributed.
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Weibull–Gumbel case. In the final model,

∀t > 0, F Y (t|x) =
0(2/γY (x))
02(1/γY (x))

 1

t/g(x)
v1/γY (x)−1(1 − v)1/γY (x)−1dv

and F C (t|x) =
2

1 + exp(q(x)t)

where g(x) = 1− c + 8cx(1− x), c = 0.1 and q(x) = 1+ 0.5 sin(2πx). Here, given X = x, Y/g(x) is Beta(1/γY (x), 1/γY (x))
distributed and q(x)C has a logistic distribution.

5.2. Selecting the tuning parameters kx and h

Our goal is to estimate the conditional extreme-value index γY on a grid of points {x1, . . . , xM} of [0, 1]. To this aim, two
parameters have to be chosen: the bandwidth h and the number of log-spacings kx. We adapt a selection procedure that was
introduced in [15]:

(1) For every bandwidth h in a grid {h1, . . . , hP} of possible values of h, we make a preliminary choice of kx. Letγi,j(k) =γY ,n(xi, k, hj) and ⌊·⌋ denote the floor function: for each i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and k ∈ {qi,j +1, . . . ,Nn(xi, hj)−

qi,j}, where qi,j = ⌊Nn(xi, hj)/10⌋ ∨ 1, we introduce the set Ei,j,k =
γi,j(ℓ), ℓ ∈ {k − qi,j, . . . , k + qi,j}


. We compute

the standard deviation Σi,j(k) of the set Ei,j,k for every possible value of k and we record the number Ki,j for which this
standard deviation reaches its first local minimum and is less than its average value. Namely, Ki,j = qi,j + 1 if Σi,j is
increasing, Ki,j = Nn(xi, hj) − qi,j if Σi,j is decreasing and

Ki,j = min

k such that Σi,j(k) ≤ Σi,j(k − 1) ∧ Σi,j(k + 1)

and Σi,j(k) ≤
1

Nn(xi, hj) − 2qi,j

Nn(xi,hj)−qi,j
l=qi,j+1

Σi,j(l)


otherwise, where we extendΣi,j by settingΣi,j(qi,j) = Σi,j(qi,j +1) andΣi,j(Nn(xi, hj)−qi,j +1) = Σi,j(Nn(xi, hj)−qi,j).
We then select the value ki,j such thatγi,j(ki,j) is the median of the set Ei,j,Ki,j .

The main idea of the first part of this procedure is that, for a given point xi and a given bandwidth hj, the number
of order statistics is chosen in the first reasonable region of stability of the Hill plot related to the function k →γY ,n(xi, k, hj).

(2) We now select the bandwidth h: let q′ be a positive integer such that 2q′
+ 1 < P . For each i ∈ {1, . . . ,M} and

j ∈ {q′
+ 1, . . . , P − q′

}, let Fi,j =
γi,ℓ(ki,ℓ), ℓ ∈ {j − q′, . . . , j + q′

}

and compute the standard deviation σi(j) of

Fi,j. Our objective function is then the average of these quantities over the grid {x1, . . . , xM}:

σ(j) =
1
M

M
i=1

σi(j).

We next record the integer j∗ such that σ(j∗) is the first local minimum of the application j → σ(j) which is less than
the average value of σ . In other words, j∗ = q′

+ 1 if σ is increasing, j∗ = P − q′ if σ is decreasing and

j∗ = min

j such that σ(j) ≤ σ(j − 1) ∧ σ(j + 1) and σ(j) ≤

1
P − 2q′

P−q′
l=q′+1

σ(l)


otherwise, where we extend σ by setting σ(q′) = σ(q′
+ 1) and σ(P − q′

+ 1) = σ(P − q′). The selected bandwidth is
then independent of x and is given by h∗

= hj∗ .
In doing so, we require that h∗ be not too large, to ensure that the computation of our estimator is carried out only

using covariateswhich are close to x, and the estimation carried out for bandwidths in a neighborhood of h∗ is reasonably
stable. The selected number of log-spacings is thus given, for x = xi, by k∗

xi = ki,j∗ .

We choose here to estimate the conditional extreme-value index on a grid of M = 50 evenly spaced points in [0, 1].
Regarding the selection procedure, we test P = 25 evenly spaced values of h ranging from 0.05 to 0.25 and we set q′

= 1.

5.3. Results

We give in Table 1 the empirical mean squared errors (MSEs) of our estimator, averaged over theM points of the grid, for
N = 100 independent samples of size n = 1000, along with the minimal and maximal MSEs obtained. One can see that in
the Fréchet–Fréchet case, the MSE of our estimator increases as |ρ| approaches 0: this is not surprising since the conditional
second-order parameter of T , known to play a major role in the performance of the estimators of the extreme-value index,
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Table 1
MSEs associated to the estimator γY in all cases. Between brackets:
minimal and maximal mean squared errors recorded.

Situation Moment estimatorγY

Censored cases

Fréchet–Fréchet model
ρ = −0.5 0.177 [0.0138, 0.550]
ρ = −1 0.0639 [0.0139, 0.170]
ρ = −1.5 0.0491 [0.00563, 0.146]

Weibull–Weibull model
c = 0.1 0.0451 [0.00956, 0.138]
c = 0.2 0.0505 [0.0146, 0.165]
c = 0.3 0.0494 [0.0125, 0.137]

Gumbel–Gumbel model 0.0840 [0.0172, 0.334]

Uncensored cases

Gumbel–Fréchet model 0.0352 [0.00476, 0.102]
Weibull–Fréchet model 0.0375 [0.00587, 0.144]
Weibull–Gumbel model 0.0364 [0.00750, 0.0997]

is proportional to ρ in this case. TheWeibull–Weibull case seems to show that the quality of the estimates does not depend
on the value of the common endpoint, and this could be expected as well since we know that how the estimator performs
should only depend on the value of the second-order parameter and of the censoring percentage in the extremes. Finally,
in the cases tested here, the estimator performs much better in the uncensored cases than in the censored cases at the
finite-sample level. Some illustrations are given in Figs. 1 and 2, where the estimates corresponding to the 5% quantile,
median and 95% quantile of the MSE are represented in each case for our estimator.

6. Real data example

In this section, we introduce a medical data set, provided by Dr P. J. Solomon and the Australian National Centre in HIV
Epidemiology and Clinical Research; see Ripley and Solomon [24], Venables and Ripley [27] and the data set aids2, part of
the packageMASS in R. In the context of extreme value analysis, this data setwas considered by [12,23]. The data set contains
information collected after a follow-up study on 2843 patients diagnosedwith AIDS before July 1st, 1991. Especially, for each
patient, the data set gives his/her age at the time of diagnosis and, if the patient died before the end of the study, his/her
date of death. There are only 89 female patients in this study, so we chose to retain the 2754 male patients of the data set.
Our variable of interest is the survival time Y of a patient which is randomly right-censored as is usually the case in such
follow-up studies. The covariate we consider is the age of a patient at the time of diagnosis. A scatterplot of the data is given
in Fig. 3.

Our first goal is to provide an estimate of the conditional extreme-value index of Y using our estimator. A look at the
scatterplot shows that data for patients aged either less than 20 or more than 65 when diagnosed with AIDS is very scarce,
so we focus on patients aged between xmin = 20 and xmax = 65. We use the selection procedure detailed in Section 5.2: the
bandwidth h is chosen among h1 ≤ · · · ≤ h25 where the hi are evenly spaced and

h1 = 0.05(xmax − xmin) and h25 = 0.25(xmax − xmin).

This leads us to choose h∗
= 3.75. The estimate of the conditional extreme-value index γY on 25 evenly spaced points in

[xmin, xmax] is represented in Fig. 4.
This estimate is only a first step in the assessment of the tail heaviness of the conditional distribution of Y given X = x,

however. A further interesting step is to estimate conditional extreme quantiles of this distribution, where the conditional
quantile function qY (·|x) is defined in terms of the generalized inverse of F Y (·|x):

qY (ε|x) = inf{t ∈ R | F Y (t|x) ≤ ε}.

Note at this point that qY (ε|x) is the (1 − ε)-conditional quantile of Y in the usual sense. We propose an adaptation of the
extreme quantile estimator of [12], which is itself an adaptation of the classical extreme quantile estimator, see for instance
Theorem4.3.1 in [10, p.134].We letF Y ,n(·, h|x) be the straightforward conditional adaptation of the Kaplan–Meier estimator
for the csf of Y given X = x (see Beran [5]). Besides, given Nn(x, h) = l, we set for kx ∈ {1, . . . , l − 1}

an(x, kx, h) = Tl−kx,l
γT ,n,+(x, kx, h)(1 −γT ,n,−(x, kx, h))pn(x, kx, h)

and 0 otherwise. An estimator of the conditional extreme quantile qY (ε|x), where ε is a small positive number, is then

qY ,n(ε, x, kx, h) = Tl−kx,l +an(x, kx, h)DγT ,n(x,kx,h)

F Y ,n(Tl−kx,l, h|x)/ε

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Fig. 1. Censored cases: the true function γY (solid line) and its estimator γY (dashed line). Top row: Fréchet–Fréchet model, case ρ = −1. Middle
row: Weibull–Weibull model, case c = 0.1. Bottom row: Gumbel–Gumbel model. Left: case corresponding to the 5% quantile of the MSE. Middle: case
corresponding to the median of the MSE. Right: case corresponding to the 95% quantile of the MSE.

if kx ∈ {1, . . . , l − 1} and 0 otherwise, where the function D was introduced in (1). In our case, we set h = h∗; for
x ∈ [xmin, xmax], the number of log-spacings kx is chosen by applying the first step of the selection procedure introduced in
Section 5.2.

We give some results in Fig. 5, where estimates of the extreme quantile curve x → qY ,n(ε, x, k∗
x , h

∗) are represented
for an exceedance level ε ∈ {0.01, 0.005, 0.002, 0.001}. One can see in this figure that these estimates are fairly stable
for patients aged between 20 and 53 years and decrease sharply afterwards. This may be interpreted as a consequence
of immunosenescence, namely the deterioration of the immune system as age increases. This phenomenon is of course
especially critical in the case of AIDS, since HIV targets cells of the immune system; the significant effect of increasing age
on survival rates for AIDS has been shown numerous times in the medical literature, see e.g. Ripley and Solomon [24], Luo
et al. [22], Darby et al. [9] and Balslev et al. [1], among others. Besides, one can see that the estimate of the extreme quantile
curve for ε = 0.001 yields, in the range [20, 53], survival times around 13 years and as high as 16 years. This is in line
with Figure 1(b) of [12], which does not consider any covariate information and gives a value of this extreme survival time
between 15 and 19 years while using a different estimator of the extreme-value index.

7. Proofs

Before giving a proof of Theorem 1, we need some preliminary results. Lemma 1, which is essentially contained in [12],
gives a useful representation of p(x).

Lemma 1. Let Y , C be two independent positive random variables having respective survival functions F Y , F C , respective pdfs fY ,
fC and common right endpoint U(∞) = UY (∞) = UC (∞). Define for t > 0

p(t) =
d
dt

P(Y ≤ C, Y ∧ C ≤ t)


d
dt

P(Y ∧ C ≤ t)
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Fig. 2. Uncensored cases: the true functionγY (solid line) and its estimatorγY (dashed line). Top row:Gumbel–Fréchetmodel.Middle row:Weibull–Fréchet
model. Bottom row:Weibull–Gumbel model. Left: case corresponding to the 5% quantile of theMSE. Middle: case corresponding to themedian of theMSE.
Right: case corresponding to the 95% quantile of the MSE.

Fig. 3. Scatterplot of the AIDS data: x-axis: age of the patient at the time of diagnosis, y-axis: survival time (in years).
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Fig. 4. AIDS data: estimatorγY . x-axis: age of the patient at the time of diagnosis.

Fig. 5. AIDS data: estimation of the conditional extreme quantile of the survival time. Full line: level ε = 0.01, dashed line: level ε = 0.005, dashed–dotted
line: ε = 0.002, dotted line: level ε = 0.001. x-axis: age of the patient at the time of diagnosis, y-axis: survival time (in years).

whenever the denominator is nonzero, and p := γC/(γY + γC ) otherwise. Then one has

p(t) =
F C (t)fY (t)

F C (t)fY (t) + F Y (t)fC (t)

whenever the denominator is nonzero. In particular, p(t) ≤ 1 for every t > 0. If moreover Y and C belong respectively to D(GγY )
and D(GγC ) and either
• γY > 0 and γC > 0;
• γY < 0, γC < 0 and 0 < U(∞) < ∞,

then p(t) → p as t → U(∞).

Lemma 2 is a partial generalization of Lemma 1 to the random covariate case.

Lemma 2. Assume that the functions (x, t) → fY (t|x) and (x, t) → fC (t|x) are continuous on E × (0, ∞). Then given
X ∈ B(x, h), T has pdf

fT ,h(t|x) := E(F C (t|X)fY (t|X) + F Y (t|X)fC (t|X) | X ∈ B(x, h))

and we have

∀t > 0, ph(t|x) =
E(F C (t|X)fY (t|X) | X ∈ B(x, h))

E(F C (t|X)fY (t|X) | X ∈ B(x, h)) + E(F Y (t|X)fC (t|X) | X ∈ B(x, h))

whenever the denominator is nonzero. In particular, ph(t|x) ≤ 1 for every t > 0.



G. Stupfler / Journal of Multivariate Analysis 144 (2016) 1–24 17

Proof of Lemma 2. Remark that

FT ,h(t|x) = P(Y ≤ C, Y ≤ t | X ∈ B(x, h)) + P(C ≤ Y , C ≤ t | X ∈ B(x, h)).

The independence of Y and C given X and Tonelli’s theorem yields

P(Y ≤ C, Y ≤ t | X ∈ B(x, h)) = E
 t

0
F C (z|X)fY (z|X)dz | X ∈ B(x, h)


=

 t

0
E

F C (z|X)fY (z|X) | X ∈ B(x, h)


dz (17)

and P(C ≤ Y , C ≤ t | X ∈ B(x, h)) = E
 t

0
F Y (z|X)fC (z|X)dz | X ∈ B(x, h)


=

 t

0
E

F Y (z|X)fC (z|X) | X ∈ B(x, h)


dz.

The regularity hypotheses on fY and fC make it clear that both of the above integrands are continuous as functions of z, so
that FT ,h(·|x) has a continuous derivative which is

d
dt

FT ,h(t|x) = E(F C (t|X)fY (t|X) + F Y (t|X)fC (t|X) | X ∈ B(x, h)) = fT ,h(t|x). (18)

This is the first desired result. Moreover,

P(δ = 1, T ≤ t | X ∈ B(x, h)) = P(Y ≤ C, Y ≤ t | X ∈ B(x, h)).

From (17), we get

d
dt

P(δ = 1, T ≤ t | X ∈ B(x, h)) = E

F C (t|X)fY (t|X) | X ∈ B(x, h)


. (19)

Combining (18) and (19) concludes the proof. �

We then state a couple of useful technical results. The first one gives the conditional distribution of the random pairs
(Ti, ∆i).

Lemma 3. Given Nn(x, h) = l ≥ 1, the random pairs (Ti, ∆i), 1 ≤ i ≤ l, are independent and identically distributed random
variables whose common distribution is that of (T , δ) given X ∈ B(x, h).

Proof of Lemma 3. The proof of this result is similar to that of Lemma 2 in [26]: if (t1, . . . , tl) ∈ Rl and (d1, . . . , dl) ∈ {0, 1}l,
then since the random vectors (Xi, Ti, δi) have the same distribution, it holds that

P


l

i=1

{Ti ≤ ti, ∆i = di},Nn(x, h) = l


=


n
l


P


l

i=1

{Ti ≤ ti, δi = di, Xi ∈ B(x, h)}



×

n
i=l+1

P (Xi ∉ B(x, h)) .

The independence of the random pairs (Xi, Ti, δi), i = 1, . . . , n entails that the above probability is

l
i=1

P(T ≤ ti, δ = di | X ∈ B(x, h)) ×


n
l

 l
i=1

P (Xi ∈ B(x, h))
n

i=l+1

P (Xi ∉ B(x, h))


.

Since Nn(x, h) is a binomial random variable with parameters n and P(X ∈ B(x, h)), the result follows. �

The next lemma, whose proof can be found in [26], is a pivotal technical tool for the proofs of Theorems 1 and 2.

Lemma 4. Let (Sn) be a sequence of random variables. Assume that there exist a triangular array of events (Aij)0≤j≤i and a
sequence of non-empty sets (In) contained in {1, . . . , n} such that

• for every n the Anl, 0 ≤ l ≤ n, have positive probability, are pairwise disjoint and
n

l=0

P(Anl) = 1;

• it holds that


l∈In P(Anl) → 1 as n → ∞.
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If one has for every ε > 0

sup
l∈In

P(|Sn| > ε|Anl) → 0 as n → ∞,

then Sn
P

−→ 0 as n → ∞.

This result will be applied in the followingway: remark that sinceNn(x, h) is a binomial randomvariablewith parameters
n and P(X ∈ B(x, h)), it is a consequence of Chebyshev’s inequality that for all η ∈ (0, 1),

n1−η
x

Nn(x, h)
nx

− 1
 P
−→ 0 as n → ∞.

If Ix := N ∩


1 − n−1/4

x


nx,

1 + n−1/4

x


nx


– this notation will be used in the remainder of Section 7 – then this entails

l∈Ix

P(Nn(x, h) = l) → 1 as n → ∞.

The final lemma, contained in [26], makes it possible to understand a bit more about the asymptotic behavior of certain
random variables which appear in our proofs.

Lemma 5. Let Wi, i ≥ 1 be independent standard Pareto random variables, i.e. having cdf w → 1 − 1/w on (1, ∞). Assume
that nx → ∞, kx → ∞ and kx/nx → 0 as n → ∞. Then for every ε > 0 it holds that

sup
l∈Ix

P
kxl Wl−kx,l − 1

 > ε


→ 0 as n → ∞.

Wemay now prove Theorem 1.

Proof of Theorem 1. Write

γY ,n(x, kx, h) − γY (x) =
1pn(x, kx, h)


(γT ,n(x, kx, h) − γT (x)) −

γT (x)
p(x)

(pn(x, kx, h) − p(x))


.

Following [12], we note that if V is a standard uniform random variable which is independent of (X, Y , C), then:

P(V ≤ ph(T |x), T ≤ t0 | X ∈ B(x, h)) =

 t0

0
ph(t|x)fT ,h(t|x)dt

= P(δ = 1, T ≤ t0 | X ∈ B(x, h))

so that given X ∈ B(x, h), the random pairs (T , I{V≤ph(T |x)}) and (T , δ) have the same distribution. Consequently, if Vi, i ≥ 1
is an independent sequence of standard uniform random variables which are independent of the (Xi, Yi, Ci), then given
Nn(x, h) = l, it is a consequence of Lemma 3 that the distribution of (γT ,n(x, kx, h),pn(x, kx, h)) is that of (γT ,n(x, kx, h),pn(x, kx, h)), with

pn(x, kx, h) :=
1
kx

kx
i=1

I{V[l−i+1:l]≤ph(Tl−i+1,l|x)}

if kx ∈ {1, . . . , l− 1} and 0 otherwise, where V[1:l], . . . , V[l:l] are the order statistics induced by T1,l, . . . , Tl,l. Moreover, since
the Vi, i ≥ 1 are standard uniform variables independent of the (Xi, Yi, Ci), so are the V[i:l], 1 ≤ i ≤ l. Introducing, given
Nn(x, h) = l, the quantity

pn(x, kx, h) :=
1
kx

kx
i=1

I{Vi≤ph(Tl−i+1,l|x)}

if kx ∈ {1, . . . , l − 1} and 0 otherwise, we obtain

γY ,n(x, kx, h) − γY (x)
d
=

1
pn(x, kx, h)


(γT ,n(x, kx, h) − γT (x)) −

γT (x)
p(x)

(pn(x, kx, h) − p(x))


.

It is thus enough to show the consistency of γT ,n(x, kx, h) and pn(x, kx, h). The consistency of the former quantity is an
immediate consequence of Theorem 1 in [26]. To prove the consistency of pn(x, kx, h), note that

pn(x, kx, h) − p(x) =


Bkx

kx
− p(x)


− Sn,1 + Sn,2
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where

Bkx =

kx
i=1

I{Vi≤p(x)}, (20)

Sn,1 = I{Nn(x,h)≤kx}

kx
i=1

I{Vi≤p(x)} (21)

and Sn,2 =

n
l=kx+1


1
kx

kx
i=1

I{Vi≤ph(Tl−i+1,l|x)} − I{Vi≤p(x)}


I{Nn(x,h)=l}. (22)

As a consequence, Bkx is a binomial random variable with parameters kx and p(x) which is independent ofγT ,n(x, kx, h) and
Tchebychev’s inequality entails

pn(x, kx, h) − p(x) = −Sn,1 + Sn,2 + oP(1) as n → ∞.

Further, for every ε > 0,

P(|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞

so that Sn,1
P

−→ 0 as n → ∞. Besides, ifWi, i ≥ 1 are independent standard Pareto randomvariables, then the distribution of
the randomvector (T1, . . . , Tl) givenNn(x, h) = l ≥ 1 is the distribution of the random vector (UT ,h(W1|x), . . . ,UT ,h(Wl|x)),
see Lemma 3. Let n be so large that kx < inf Ix. The equality

∀a, b ∈ [0, 1], E
I{V≤a} − I{V≤b}

 = |a − b|

valid for every standard uniform random variable V , entails for every l ∈ Ix

E(|Sn,2| | Nn(x, h) = l) ≤
1
kx

kx
i=1

E(|ph(Tl−i+1,l|x) − p(x)| |Nn(x, h) = l)

=
1
kx

kx
i=1

E|ph(UT ,h(Wl−i+1,l|x)|x) − p(x)|.

Clearly, for every κ > 0, if n is so large that

ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


≤
κ

2

we have by Lemma 2 that

E(|Sn,2| | Nn(x, h) = l) ≤
κ

2
+ 2 sup

l∈Ix
P

{Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η

x }

. (23)

Lemma 5 entails

sup
l∈Ix

P(Wl−kx+1,l < nx/(1 + η)kx) = sup
l∈Ix

P

kx
nx

Wl−kx+1,l − 1 < −
η

1 + η


→ 0 as n → ∞,

and since theWi are independent standard Pareto random variables, we get

sup
l∈Ix

P

Wl,l > n1+η

x


= sup

l∈Ix


1 −


1 − n−1−η

x

l
≤ 1 −


1 − n−1−η

x

3nx/2
→ 0 as n → ∞.

In other words

sup
l∈Ix

P({Wl−kx+1,l < nx/(1 + η)kx} ∪ {Wl,l > n1+η
x }) ≤

κ

4
(24)

for n large enough, so that combining (23) and (24), we find that E(|Sn,2| | Nn(x, h) = l) → 0 uniformly in l ∈ Ix as n → ∞.
According to Markov’s inequality, we have for every ε > 0

sup
l∈Ix

P(|Sn,2| > ε | Nn(x, h) = l) ≤ sup
l∈Ix

E(|Sn,2| | Nn(x, h) = l)
ε

→ 0 as n → ∞.

Lemma 4 then entails Sn,2
P

−→ 0 as n → ∞ and the proof is complete. �

We proceed by proving the pointwise asymptotic normality of the estimator.
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Proof of Theorem 2. Recall from the proof of Theorem 1 the equality

γY ,n(x, kx, h) − γY (x)
d
=

1
pn(x, kx, h)


(γT ,n(x, kx, h) − γT (x)) −

γT (x)
p(x)

(pn(x, kx, h) − p(x))


.

The asymptotic normality ofγT ,n(x, kx, h),
kx
γT ,n(x, kx, h) − γT (x)

 d
−→ N (0, V (γT (x))) (25)

is contained in Theorem 2 of [26]. We now recall the representation

pn(x, kx, h) − p(x) =


Bkx

kx
− p(x)


− Sn,1 + Sn,2

with Bkx , Sn,1 and Sn,2 as in (20)–(22). Note that, from (21), one has for every ε > 0

P(

kx|Sn,1| > ε) ≤ P(Nn(x, h) ≤ kx) → 0 as n → ∞

so that
√
kx|Sn,1|

P
−→ 0 as n → ∞. Let n be so large that kx < inf Ix. Let further Wi, i ≥ 1 be independent standard Pareto

random variables which are independent of the Vi and note that, from Lemma 3 and (22), one has given Nn(x, h) = l ∈ Ix:

Sn,2
d
=

1
kx

kx
i=1

I{Vi≤ph(UT ,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)} =: S ′

n.

Further,
kx|S ′

n| ≤ 2

kxI

{Wl−kx+1,l<nx/(1+η)kx}∪{Wl,l>n1+η
x }

+


kx


1
kx

kx
i=1

I{Vi≤ph(UT ,h(Wl−i+1,l|x)|x)} − I{Vi≤p(x)}


× I
{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η

x }
.

Since the expectation of the second term on the right-hand side of this inequality is

1
√
kx

kx
i=1

E

|ph(UT ,h(Wl−i+1,l|x)|x) − p(x)|I

{nx/(1+η)kx≤Wl−kx+1,l≤Wl,l≤n1+η
x }


we may, for every κ > 0, bound it from above by

kxω

p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


≤
κ

2

for n sufficiently large. From (24) and Markov’s inequality, we get for every ε > 0

sup
l∈Ix

P(

kx|Sn,2| > ε | Nn(x, h) = l) ≤ κ

if n is large enough. By Lemma 4, this entails
√
kx|Sn,2|

P
−→ 0 as n → ∞. Consequently

kx

pn(x, kx, h) − p(x)


=


kx


Bkx

kx
− p(x)


+ oP(1).

Recall from the proof of Theorem 1 that Bkx is a binomial random variable with parameters kx and p(x)which is independent
ofγT ,n(x, kx, h). Since

kx


Bkx

kx
− p(x)


d

−→ N (0, p(x)(1 − p(x))), (26)

as n → ∞, the convergences (25), (26) and Slutsky’s lemma entail
kx
γY ,n(x, kx, h) − γY (x)

 d
−→ N


0,

1
p2(x)


V (γT (x)) +

γ 2
T (x)
p(x)

(1 − p(x))


as n → ∞, which is the result. �

The last lemma is the converse statement of Lemma 9 in [26]. It is necessary to prove Proposition 1.

Lemma 6. Let F be a csf on R and U be the left-continuous inverse of 1/F .
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1. If F is such that

∀y ∈ R, F(y) ∈ (0, 1) ⇒ ∀δ > 0, F(y + δ) < F(y)

then U is a continuous function on (1, ∞).
2. If F is continuous on R then U is an increasing function on (1, ∞).

Proof of Lemma 6. To prove the first statement, pick α0 ∈ (1, ∞) and assume that U is not continuous at α0. In particular,
since U is left-continuous and nondecreasing,

lim
α→α0
α>α0

U(α) − U(α0) > 0.

Then necessarily 0 < F(U(α0)) ≤ 1/α0 < 1. Moreover, the above inequality entails, since U is nondecreasing,

∃δ > 0, ∀α > α0, U(α) > U(α0) + δ.

Using the definition of the function U , we obtain

∀α > α0, α0 ≤
1

F(U(α0))
≤

1

F(U(α0) + δ)
< α.

Taking the limit α ↓ α0 gives F(U(α0) + δ) = F(U(α0)), which is a contradiction.
To show the second statement, assume that α, β are such that 1 < α < β and U(α) = U(β). Then since F is

right-continuous and nonincreasing, we get

F(U(α)) = F(U(β)) ≤
1
β

<
1
α

≤ lim
t→U(α)
t<U(α)

F(t).

Hence F is not continuous at U(α), which is a contradiction. �

Proof of Proposition 1. We start by considering case 1. For n large enough and for every x′
∈ B(x, h), one has

F C (t|x′)fY (t|x′) −
1

γY (x)
G(t|x′) = rY (t, x, x′)G(t|x′)

and F Y (t|x′)fC (t|x′) −
1

γC (x)
G(t|x′) = rC (t, x, x′)G(t|x′)

with G(t|x′) = t−1/γY (x′)−1/γC (x′)−1LFY (t|x
′)LFC (t|x

′),

rY (t, x, x′) =
1

γY (x′)
−

1
γY (x)

− bY (t|x′)

and rC (t, x, x′) =
1

γC (x′)
−

1
γC (x)

− bC (t|x′).

From Lemma 2, we obtain the equality

ph(t|x) =

1
γY (x)

+
E(rY (t, x, X)G(t|X) | X ∈ B(x, h))

E(G(t|X) | X ∈ B(x, h))
1

γY (x)
+

1
γC (x)

+
E([rY (t, x, X) + rC (t, x, X)]G(t|X) | X ∈ B(x, h))

E(G(t|X) | X ∈ B(x, h))

.

If we can prove that for η > 0 small enough

sup
t∈UT ,h(Kx,η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) = O(hα log nx ∨ δn) → 0 (27)

as n → ∞, with UT ,h(Kx,η|x) being the image of the interval Kx,η by the function UT ,h(·|x), then the fact that G(·|X) is
nonnegative shall entail

sup
t∈UT ,h(Kx,η |x)

E(rY (t, x, X)G(t|X) | X ∈ B(x, h))
E(G(t|X) | X ∈ B(x, h))

 ≤ sup
t∈UT ,h(Kx,η |x)

sup
x′∈B(x,h)

|rY (t, x, x′)|

= O(hα log nx ∨ δn)

and sup
t∈UT ,h(Kx,η |x)

E(rC (t, x, X)G(t|X) | X ∈ B(x, h))
E(G(t|X) | X ∈ B(x, h))

 ≤ sup
t∈UT ,h(Kx,η |x)

sup
x′∈B(x,h)

|rC (t, x, x′)|

= O(hα log nx ∨ δn)
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of which it is a direct consequence that

ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


= O(hα log nx ∨ δn)

which is the result. To this end, we start by noting that because (see Lemma 1.2.9 in [10, p.22])

UT (nx/kx|x)
aT (nx/kx|x)

→
1

γT (x)
as n → ∞,

it is a consequence of (6) and of the mean value theorem that

sup
z∈Kx,η

UT ,h(z|x)
UT (z|x)

− 1
 → 0 as n → ∞.

Using the fact that UT (·|x) is regularly varying at infinity with index γT (x) > 0, we get for n large enough

UT ,h(Kx,η|x) ⊂ UT (Kx,2η|x).

This proves that for n large enough

sup
t∈UT ,h(Kx,η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) ≤ sup
t∈UT (Kx,2η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′).

Letting η > 0 be so small that condition (12) holds with η replaced by 2η and using this Hölder condition along with (11)
we deduce that

sup
t∈UT ,h(Kx,η |x)

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(t|x′) = O


hα log nx ∨ sup

t∈UT (Kx,2η |x)
|bY (t|x)| ∨ sup

t∈UT (Kx,2η |x)
|bC (t|x)|


.

Finally, Potter bounds for the regularly varying functions |bY (·|x)| and |bC (·|x)| (see Bingham et al. [6, p.25]), both having
negative regular variation indices, entail

lim sup
n→∞

sup
t∈UT (Kx,2η |x)

|bY (t|x)|
|bY (UT (nx/kx|x)|x)|

∨
|bC (t|x)|

|bC (UT (nx/kx|x)|x)|
< ∞

which yields (27) and the result in this case.
We now turn to case 2. We remark that

F C (t|x′)fY (t|x′) +
1

γY (x)
G(t|x′) = rY (t, x, x′)G(t|x′)

and F Y (t|x′)fC (t|x′) +
1

γC (x)
G(t|x′) = rC (t, x, x′)G(t|x′)

with

G(t|x′) =


LFY ((UT (∞|x′) − t)−1

|x′)LFC ((UT (∞|x′) − t)−1
|x′)

(UT (∞|x′) − t)1/γY (x′)+1/γC (x′)+1
if 0 < t < UT (∞|x′)

0 otherwise

and

rY (t, x, x′) =
1

γY (x)
−

1
γY (x′)

− bY ((UT (∞|x′) − t)−1
|x′),

rC (t, x, x′) =
1

γC (x)
−

1
γC (x′)

− bC ((UT (∞|x′) − t)−1
|x′).

A particular consequence of this is, according to Lemma 2:

ph(t|x) =

−
1

γY (x)
+

E(rY (t, x, X)G(t|X) | X ∈ B(x, h))
E(G(t|X) | X ∈ B(x, h))

−
1

γY (x)
−

1
γC (x)

+
E([rY (t, x, X) + rC (t, x, X)]G(t|X) | X ∈ B(x, h))

E(G(t|X) | X ∈ B(x, h))

.

Define Ix,x′,η = [UT ,h(nx/(1 + η)kx|x),UT (∞|x′)). We shall now prove that

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′) − t)−1
|x′) = O(hα log nx ∨ δn) → 0 (28)
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as n → ∞. The fact that G(·|X) is nonnegative shall then yield

ω


p ◦ UT ,

nx

(1 + η)kx
, n1+η

x , x, h


= O


hα

∨ sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′) − t)−1
|x′)


= O (hα log nx ∨ δn)

which is what we want to prove. To this aim, remark that one has (see Lemma 1.2.9 in [10, p.22])

UT (nx/kx|x)
aT (nx/kx|x)

= −
UT (∞|x)

γT (x)
[UT (∞|x) − UT (nx/kx|x)]−1(1 + o(1)) as n → ∞.

Using (9), it is a consequence of the mean value theorem that

sup
z∈Kx,η

UT ,h(z|x)
UT (z|x)

− 1
 = o(UT (∞|x) − UT (nx/kx|x)) = o


nx

kx

γT (x)

LUT (nx/kx|x)


as n → ∞. Especially, (7) and (8) entail that

sup
x′∈B(x,h)

UT (∞|x′) − UT ,h(nx/(1 + η)kx|x)
UT (∞|x) − UT (nx/kx|x)

→ (1 + η)−γT (x) as n → ∞.

The interval Ix,x′,η is therefore well-defined for all n large enough and x′
∈ B(x, h), and there exists some constant η′ > 0

such that for n large enough

∀x′
∈ B(x, h), t ∈ Ix,x′,η ⇒ (UT (∞|x′) − t)−1

∈ Jx,η′ =


1 − η′

UT (∞|x) − UT (nx/kx|x)
, ∞


.

This proves that for n large enough

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′) − t)−1
|x′) ≤ sup

z∈Jx,η′

sup
x′∈B(x,h)

(|bY | ∨ |bC |)(z|x′).

Conditions (11) and (14) then entail

sup
x′∈B(x,h)

sup
t∈Ix,x′,η

(|bY | ∨ |bC |)((UT (∞|x′) − t)−1
|x′) = O


hα log nx ∨ sup

z∈Jx,η′

|bY (z|x)| ∨ sup
z∈Jx,η′

|bC (z|x)|


.

We conclude by using Potter bounds for the regularly varying functions |bY (·|x)| and |bC (·|x)| to get

lim sup
n→∞

sup
t∈Jx,η′

|bY (t|x)|
|bY ((UT (∞|x) − UT (nx/kx|x))−1|x)|

< ∞

and lim sup
n→∞

sup
t∈Jx,η′

|bC (t|x)|
|bC ((UT (∞|x) − UT (nx/kx|x))−1|x)|

< ∞

of which (28) is a direct consequence. �
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