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Abstract

Often the regression function appearing in fields like economics, engineering,

and biomedical sciences obeys a system of higher-order ordinary differential

equations (ODEs). The equations are usually not analytically solvable. We are

interested in inferring on the unknown parameters appearing in such equations.

Parameter estimation in first-order ODE models has been well investigated.

Bhaumik and Ghosal [4] considered a two-step Bayesian approach by putting

a finite random series prior on the regression function using a B-spline basis.

The posterior distribution of the parameter vector is induced from that of the

regression function. Although this approach is computationally fast, the Bayes

estimator is not asymptotically efficient. Bhaumik and Ghosal [5] remedied this

by directly considering the distance between the function in the nonparamet-

ric model and a Runge–Kutta (RK4) approximate solution of the ODE while

inducing the posterior distribution on the parameter. They also studied the

convergence properties of the Bayesian method based on the approximate like-

lihood obtained by the RK4 method. In this paper, we extend these ideas to

the higher-order ODE model and establish Bernstein–von Mises theorems for

the posterior distribution of the parameter vector for each method with n−1/2

contraction rate.
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1. Introduction

The regression relationship between a response variable and a predictor vari-

able, which usually stands for time, is sometimes implicitly given by a differential

equation. Consider a regression model Y = fθ(t) + ε with unknown parameter

θ ∈ Θ ⊆ Rp and t ∈ [0, 1]. The functional form of fθ is not known but fθ is5

assumed to satisfy a qth order ordinary differential equation (ODE) given by

F

(
t, fθ(t),

dfθ(t)
dt

, . . . ,
dqfθ(t)
dtq

,θ

)
= 0, (1)

where F is a known real-valued function which is sufficiently smooth in its

arguments; we shall refer to it as the binding function. Regression models

based on first-order ODE have been well studied from both non-Bayesian and

Bayesian points of view; see, e.g., [4, 5, 9, 10].10

Higher-order ODE models are encountered in different fields. For example,

the system of ODE describing the concentrations of glucose and hormone in

blood is given by

dk(t)
dt

= −m1k(t)−m2h(t) + J(t), (2)

dh(t)
dt

= −m3h(t) +m4k(t),

where k(t) and h(t) denote the glucose and hormone concentrations at time

t, respectively. Here the function J is known and m1,m2,m3 and m4 are un-15

known parameters. If we have only measurements on k, we can eliminate h by

differentiating both sides of (2) to obtain the second-order ODE for k as

d2k(t)
dt2

+ 2α
dk(t)
dt

+ ω2
0k(t) = S(t),

where α = (m1 + m3)/2, ω2
0 = m1m3 + m2m4 and S(t) = m3J(t) + dJ(t)/dt.

Another popular example is the Van der Pol oscillator used in physical and
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biological sciences. The oscillator obeys the second-order ODE

d2fθ(t)
dt2

− θ{1− f2
θ (t)}dfθ(t)

dt
+ fθ(t) = 0.

A related problem is a stochastic differential equation model where a sig-

nal is continuously observed in time with a noise process typically driven by

a Brownian motion. Bergstrom [1, 2, 3] used the maximum likelihood estima-

tion (MLE) technique to estimate the parameters involved in the higher-order

stochastic differential equation given by

dqy(t)
dtq

= A1(θ)
dq−1y(t)
dtq−1

+ . . .+Aq−1(θ)
dy(t)
dt

+Aqy(t) + b(θ) + z(t) +W (t),

where A1, . . . , Aq and b are functions on Θ, W is the noise process [8, p. 342] and

z is a deterministic function. Bergstrom [1] showed that the maximum likelihood

estimator of θ is asymptotically normal and asymptotically efficient. An efficient20

algorithm was given in Bergstrom [2] to compute the Gaussian likelihood for

estimating the parameters involved in a non-stationary higher-order stochastic

ODE. Appropriate linear transformations are used in this algorithm to avoid

the computation of the covariance matrix of the observations.

In this paper, we develop two Bayesian approaches for inference on θ by

embedding the ODE model in a nonparametric regression model, where a prior

is put on the regression function through a B-spline basis expansion technique

and the posterior is computed. The posterior on the parameter θ of the ODE

model is then induced directly by a distance minimization method, viewing θ as

a functional of the regression function. Depending on the choice of the distance

function, two different two-step Bayesian methods are obtained. In the first

approach we define

θ = arg min
η∈Θ

∫ 1

0

∣∣∣∣F
(
t, f(t,β),

df(t,β)
dt

, . . . ,
dqf(t,β)
dtq

,η

)∣∣∣∣
2

w(t)dt,

where the weight function and its first q− 1 derivatives vanish at 0 and 1. Here

β is the coefficient vector of the B-spline basis expansion. The posterior distri-

bution of θ is induced using the posterior distribution of β. The method com-

pletely avoids a numerical resolution of the ODE and hence is computationally
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very convenient. Nevertheless this approach does not produce asymptotically

efficient Bayes estimator. In our second approach, we use the Runge–Kutta

method to obtain an approximate solution fθ,rn
using rn grid points, where n

is the number of observations. This time the parameter is defined as

θ = arg min
η∈Θ

∫ 1

0

{f(t,β)− fη,rn
(t)}2g(t)dt,

where g is an appropriate weight function. This method produces an asymp-25

totically efficient Bayes estimator as shown later. As in the first approach we

get the posterior of θ from the posterior of β. For the sake of simplicity we

consider only one-dimensional regression functions. Extension to the multidi-

mensional case where the binding function F is also vector-valued can be carried

out similarly.30

The rest of the paper is organized as follows. Section 2 contains descriptions

of the estimation methods used. Convergence results are presented in Section 3.

The algorithms associated with the different methods are described in Section 4.

Section 5 reports the results of a simulation study. Proofs of the results are given

in Section 6. The Appendix provides a useful description of the Runge–Kutta35

method for solving higher-order ODEs.

2. Description of proposed methodology

We observe n samples t1, . . . , tn of the predictor variable along with the

corresponding values Y1, . . . , Yn of the response variable. The relation between

the two variables is modeled by non-linear regression40

Yi = fθ(ti) + εi, i ∈ {1, . . . , n} (3)

where the unknown parameter θ belongs to a compact subset Θ of Rp. The

regression function fθ is not given explicitly but is assumed to be q times dif-

ferentiable on an open set containing [0, 1] and satisfies the higher-order ODE

given by

F (t, fθ(t), f (1)
θ (t), . . . , f (q)

θ (t),θ) = 0, (4)
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where for every fixed θ, we assume that F (·, ·,θ) ∈ Cm−q+1[(0, 1) × Rq+1] for45

some integer m ≥ q. Then, by successive differentiation we have fθ ∈ Cm[(0, 1)].

We also assume that the function θ 7→ fθ(·) is two times continuously differen-

tiable. We do not assume that the true regression function f0 satisfies the ODE

(4) for any value of θ, i.e., the model may be misspecified, but only assume the

mild regularity condition f0 ∈ Cm([0, 1]).50

The regression errors ε1, . . . , εn are assumed to be independently and iden-

tically distributed with mean zero and finite fourth order moment. Let the

common variance be denoted by σ2
0 . We use N (0, σ2) as the working model for

the error, which may be different from the true distribution of the errors. We

treat σ2 as a nuisance parameter and assign an inverse gamma prior on σ2 with55

shape and scale parameters a and b respectively. Additionally it is assumed that

t1, . . . , tn form a random sample from distribution G with density g.

Due to the intractable nature of the likelihood function, the standard method

of assigning a prior distribution on the parameter of interest θ and then updat-

ing to the posterior distribution is extremely computationally expensive. To60

avoid the problem, we embed the parametric model implicitly given by the so-

lution of the ODE in a nonparametric regression model, where we assign a prior

distribution on the regression function using the basis expansion method of con-

structing priors on infinite-dimensional spaces. Then the parameter θ can be

viewed as a functional of the regression function.65

In the basis expansion method, a prior is induced on the regression function

through that on the coefficient vector. The assumed normal regression model

conjugacy can be obtained by using a multivariate normal prior. The resulting

posterior distribution directly induces a posterior distribution on the parameter

of interest. We refer to this technique as the Bayesian two-step method.70

The functional expressing the parameter in terms of the regression function,

can be defined by minimization method as in a minimum contrast estimation

approach. Depending on the choice of our distance, we can define different func-

tionals and hence different two-step posterior distributions. Below we describe

two such methods, one building on a distance based on the differential equation’s75
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structure and the other based on a numerical solution of the equation. The first

approach avoids numerical resolution of the differential equation and hence is

computationally faster but is incapable of giving asymptotically efficient Bayes

estimators. The second approach is computationally more involved but will be

shown to produce asymptotically efficient Bayes estimators.80

Let us denote Y = (Y1, . . . , Yn)> and t = (t1, . . . , tn)>. The true joint

distribution of (ti, εi) is denoted by P0. Assume that for all i ∈ {1, . . . , n},
Yi = f(ti) + εi, where f is a sufficiently smooth function. We construct a finite

random series prior for f using a B-spline basis expansion

f(t) = f(t,β) =
kn+m−1∑

j=1

βjNj(t)

with coefficients β = (β1, . . . , βkn+m−1)>, where {Nj(·)}kn+m−1
j=1 are the B-

spline basis functions of order m with uniformly spread kn − 1 interior knots;

see Chapter IX of De Boor [6]. It is then possible to express the nonparametric

model as a linear model controlled by the parameter β

Y = Xnβ + ε,

where Xn = ((Nj(ti)))1≤i≤n,1≤j≤kn+m−1. Given σ2, we let β have the (kn +

m− 1)-dimensional multivariate normal prior

β ∼ N (0, σ2n2k−1
n Ikn+m−1).

Using normal-inverse gamma conjugacy, a simple calculation yields that the85

conditional posterior distribution of β given σ2 is

N
[(
XT
nXn +

kn
n2
Ikn+m−1

)−1

XT
n Y , σ

2

(
XT
nXn +

kn
n2
Ikn+m−1

)−1
]
. (5)

2.1. Two-step Bayesian Method (TSB)

Since the parameter θ is defined only within the ODE model but the re-

gression function in the nonparametric model can be general, it is essential to

extend the definition of the parameter θ for any smooth regression function.90
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Naturally, the extended definition must agree with the original definition on the

ODE model.

We use a projection method, i.e., locating a parameter value such that the

solution of the ODE for that parameter value is, in some sense, closest to the

targeted regression function, among all possible regression functions described

by the ODE model. A sensible choice of a distance is given by the ODE itself.

If f belongs to the ODE model, then F
(
·, f(·,β), f (1)(·,β), . . . , f (q)(·,β),θ

)
is

identically 0 for some value of θ. This suggests, for an arbitrary smooth function

f , the value of θ that makes some appropriate norm of the function F closest

to 0 may be defined as the parameter value corresponding to f . That is, define

a functional θ = θ(f) by

θ = arg min
η∈Θ

∥∥∥F
(
·, f(·,β), f (1)(·,β), . . . , f (q)(·,β),η

)∥∥∥
w
, (6)

where f (r)(t,β) = dr

dtr f(t,β) for every r ∈ {1, . . . , q}, and ‖φ‖2w =
∫
|φ(t)|2w(t)dt

stands for the squared L2-norm with respect to a nonnegative weight function

w. Clearly, θ(fθ) = θ, so the new definition of the parameter θ truly extends

the original definition. The true value of the parameter is defined by

θ0 = arg min
η∈Θ

∥∥∥F
(
·, f0(·), f (1)

0 (·), . . . , f (q)
0 (·),η

)∥∥∥
w
. (7)

We induce posterior distribution on θ through the posterior of β given by (5).

Note that in the well-specified case where fθ0 is the true regression function with

corresponding true parameter θ0, then the minimum is automatically located at

the true value θ0. Multiple minima of (6) are allowed (in which case we choose

the value of θ arbitrarily among all minima), but for good large-sample behavior

of the posterior distribution, the true value must be uniquely defined. In fact

we shall assume that the location of the minimum (7) is strongly separated in

the sense that the minimum value is not approached by other parameter values

not close to the true value, i.e., for all ε > 0,

inf
η:‖η−θ0‖≥ε

∥∥∥F
(
·, f0(·), f (1)

0 (·), . . . , f (q)
0 (·),η

)∥∥∥
w

>
∥∥∥F
(
·, f0(·), f (1)

0 (·), . . . , f (q)
0 (·),θ0

)∥∥∥
w
. (8)
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Note that if the ODE model is identifiable, the uniqueness of θ0 is automatically

satisfied, but the strong separation condition will be an additional condition.

2.2. Runge–Kutta Two-Step Bayesian Method (RKTSB)95

Here we use the same nonparametric model and prior specifications as in the

two-step Bayesian method, but θ and θ0 are defined by

θ = arg min
η∈Θ

∫ 1

0

|f(t,β)− fη,rn
(t)|2g(t)dt, (9)

θ0 = arg min
η∈Θ

∫ 1

0

|f0(t)− fη(t)|2g(t)dt,

g being the density function of the regressor variable. We also assume the strong

separability condition that, for all ε > 0,

inf
η:‖η−θ0‖≥ε

∫ 1

0

|f0(t)− fη(t)|2g(t)dt >
∫ 1

0

|f0(t)− fθ0(t)|2g(t)dt,

i.e.,
∫ 1

0
|f0(t)− fη(t)|2g(t)dt has a well separated unique minimum at θ0.

3. Asymptotic properties

3.1. Two-step Bayesian Method (TSB)100

Let h(·) = (f(·,β), f (1)(·,β), . . . , f (q)(·,β))> and h0 stand for h with f

being replaced by f0. We assume that w is sufficiently smooth and w as well as

its first q − 1 derivatives vanish at 0 and 1. Let

G(t,h(t),θ) = {DθF (t,h(t),θ)}> F (t,h(t),θ),

where D• stands for the differentiation operation with respect to the indicated

argument at its stated value.

The key step in studying asymptotic properties of the two-step Bayesian

method is a linearization step representing the nonlinear functional θ of f as an

approximate linear functional. The following lemma controls the error in the105

linearziation step. Below an � bn means that an/bn → 0 as n → ∞, Cm(E)

refers to the space of m times continuously differentiable functions on an open
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set containing E and the symbols Ai, and A,j stand for the ith row and jth

column of a matrix A, respectively. The symbol oP (1) stands for a sequence of

random variables converging in P -probability to 0.110

Lemma 1. Let the matrix M(h0,θ0) =
∫ 1

0
Dθ0 {G(t,h0(t),θ0)}w(t)dt be non-

singular and assume that (8) holds. If m > 2q+2 and n1/2m � kn � n1/(4q+4),

then there exists En ⊆ Θ× Cm[(0, 1)] with Π(Ecn|t,Y ) = oP0(1), such that

sup
(θ,h)∈En

∥∥∥
√
n(θ − θ0)− {M(h0,θ0)}−1√

n {Γ(f)− Γ(f0)}
∥∥∥→ 0,

where

Γ(z) = −
q∑

r=0

∫ 1

0

(−1)r
dr

dtr
[Dh0 {G(t,h0(t),θ0)}w(t)],r z(t)dt

is a linear functional of z for any function z : [0, 1] 7→ R.

Denoting

A(t) = −{M(h0,θ0)}−1
q∑

r=0

(−1)r
dr

dtr
[Dh0 {G(t,h0(t),θ0)}w(t)],r ,

we have

{M(h0,θ0)}−1 Γ(f) =
∫ 1

0

A(t)β>N(t)dt = H>n β, (10)

where H>n =
∫ 1

0
A(t)N>(t)dt, a matrix of order p × (kn + m − 1). Then

in order to approximate the posterior distribution of θ, it suffices to study the

asymptotic posterior distribution of the linear functional of β given by (10). The115

next theorem describes the approximate posterior distribution of
√
n (θ − θ0).

We denote the posterior probability measure of the two-step method by Π∗n.

Theorem 1. Let us denote

µ∗n =
√
nH>n (X>nXn)−1X>n Y −

√
n {M(h0,θ0)}−1 Γ(f0),

Σ∗n = nH>n (X>nXn)−1Hn

and D = ((
∫ 1

0
Ak(t)Ak′(t)dt))k,k′=1,...,p. If D is non-singular, then under the

conditions of Lemma 1,120

∥∥Π∗n
{√

n(θ − θ0) ∈ ·|t,Y
}
−N

(
µ∗n, σ

2
0Σ∗n

)∥∥
TV

= oP0(1).
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Remark 1. Following the steps of the proof of Lemma 4 of Bhaumik and

Ghosal [4], it can be proved that both µ∗n and Σ∗n are stochastically bounded.

Hence, with high true probability the posterior distribution of θ contracts at θ0

at the rate n−1/2.

Remark 2. Similar results will follow for deterministic covariates provided that

sup
t∈[0,1]

|Qn(t)−Q(t)| = o(k−1
n ),

where Qn is the empirical distribution function of the covariate sample and Q is125

a distribution function with positive density on [0,1]. Note that this condition

holds with probability tending to 1 when the covariates are random.

3.2. Runge–Kutta Two-Step Bayesian Method (RKTSB)

In RKTSB we assume that the matrix

J(θ0) = −
∫ 1

0

f̈θ0(t){f0(t)− fθ0(t)}g(t)dt+
∫ 1

0

{ḟθ0(t)}>{ḟθ0(t)}g(t)dt

is nonsingular, where ḟθ0 refers to the vector derivative of fθ at θ = θ0 and f̈θ0130

is the matrix of mixed partial derivatives of order two at θ = θ0. Note that in

the well-specified case, the first term vanishes and hence J(θ0) equals the second

term which is positive definite. Let us denote C(t) = {J(θ0)}−1{ḟθ0(t)}> and

G>n =
∫ 1

0
C(t)N>(t)g(t)dt. Also, we denote the posterior probability measure

of RKTSB by Π∗∗n . Now we have the following result.135

Theorem 2. Let

µ∗∗n =
√
nG>n

(
X>nXn

)−1
X>n Y −

√
n{J(θ0)}−1

∫ 1

0

{ḟθ0(t)}>f0(t)g(t),

Σ∗∗n = nG>n
(
X>nXn

)−1
Gn,

B = ((〈Ck(·), Ck′(·)〉g))k,k′=1,...,p,

where 〈·, ·〉g refers to inner product with respect to the density g. If B is non-

singular, then for rn � n1/8, m ≥ 3 and n1/(2m) � kn � n1/4,

∥∥Π∗∗n {
√
n (θ − θ0) ∈ ·|t,Y } − N

(
µ∗∗n , σ

2
0Σ∗∗n

)∥∥
TV

= oP0(1).
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We also get the following important corollary.

Corollary 1. When the regression model (3) is correctly specified and the true140

distribution of error is Gaussian, the Bayes estimator based on Π∗∗n is asymp-

totically efficient.

As in the two-step Bayesian approach, if the regressor is deterministic, we also

get similar results under appropriate conditions.

Remark 3. We do not require that the true regression function f0 is a solution145

of the ODE. Like any statistical model, an ODE model is only a relatively

simple mathematical description of a phenomenon under study and is deemed

only approximate in real life. Nonetheless the parameter values stand for certain

characteristics of the system. Although the model may be misspecified, we may

be interested in the parameters rather than the regression function described by150

the ODE model. Our posterior concentration results show that the definition

of θ0 as the parameter value which brings the ODE model closest to the true

regression function is appropriate.

Remark 4. Note that in both approaches the true regression function is as-

sumed to have a certain degree of smoothness to ensure the contraction rate155

n−1/2, which obviously cannot be improved by exploiting additional smooth-

ness, if it exists, in the regression function as a function of the predictor variable

t. Therefore, the issue of adapting with smoothness does not arise in the context

of ODE models. As a result, we may simply choose the number of knots of the

spline functions guided by the conditions given in Lemma 1 or Theorem 2, as ap-160

propriate, corresponding to the minimum allowed smoothness level m and then

the knots themselves deterministically, for instance as uniformly spread out.

This avoids putting priors on these quantities and hence substantially simplifies

the computation.

Remark 5. In the frequentist framework, nonlinear least squares (NLS) is a165

popular way of estimating θ. In the absence of an explicit functional form of the
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regression function, the likelihood function can be computed numerically using

the RK4 method ODE solver with a sufficient number of grid points, so that the

error in the ODE solver can be appropriately controlled. Then using arguments

similar to those in Section 3.2, it can be concluded that the estimator is also170

asymptotically normal with mean θ0 and dispersion matrix given by Σ∗∗n . It

is then an asymptotically efficient estimator of θ in the well-specified setting.

The computational method for NLS is given in Section 4.3. We compare this

technique with the Bayesian techniques in the simulation study.

4. Algorithms175

For a given data set, the algorithms associated with each method are briefly

described below.

4.1. Algorithm for TSB method

Step 1: Draw a posterior sample for σ2. Because of conjugacy σ2 has an

inverse gamma posterior with shape and scale parameters (n + 2a)/2 and b +180

Y >{In − (X>nXn + n−2knIkn+m−1)−1}Y /2, respectively.

Step 2: Draw a sample from the conditional posterior of β given σ2 as

mentioned in (5).

Step 3: Obtain a posterior sample of θ from that of β using (6).

Step 4: Repeat the above steps until a sufficient number of samples has been185

collected. Obtain the Bayes estimate (pointwise posterior mean or median) and

95% credible interval of each component of θ.

4.2. Algorithm for RKTSB method

Step 1: Draw a posterior sample for σ2 as in Algorithm 4.1.

Step 2: Draw a sample from the conditional posterior of β given σ2 as190

mentioned in (5).

Step 3: Obtain the numerical solution of the ODE fη,rn
(t) for every t on a

fine grid in [0, 1] and every η on a fine grid in Θ using the Runge–Kutta method.

12



Step 4: Obtain a posterior sample for θ from that of β by solving the

nonlinear optimization problem (9). As the initial choice of θ we choose the195

estimate obtained from the two-step Bayesian method.

Step 5: Repeat the above steps until a sufficient number of samples has been

collected and obtain the Bayes estimate and credible intervals as before.

4.3. Algorithm for NLS method

Step 1: Obtain the numerical solution of the ODE fη,rn
(t) at every point200

t on a fine grid in [0, 1] and every η on a fine grid in Θ using Runge–Kutta

method. Find the function values at any intermediate t by spline interpolation.

Step 2: Estimate θ by

θ̂ = arg min
η∈Θ

n∑

i=1

{Yi − fη,rn
(ti)}2.

Step 3: Obtain the 95% confidence interval of θ using the fact that for large

n,
√
n (θ̂−θ0) follows approximately a normal distribution with mean zero and

dispersion matrix σ2
0 [
∫ 1

0
{ḟθ0(t)}>ḟθ0(t)dt]−1. This matrix is the inverse Fisher

information as obtained in the proof of Corollary 1. To construct the confidence

interval we estimate σ2 by

σ̂2 = n−1
n∑

i=1

{Yi − fθ̂,rn
(ti)}2

and plug-in for σ2
0 . Thus the approximate 95% confidence interval for θj is

centered at θ̂j with length

2
τ0.025√
n
σ̂

[(∫ 1

0

{ḟθ̂(t)}>ḟθ̂(t)dt
)−1

]1/2

j,j

for all j ∈ {1, . . . , p}, τ0.025 being the 97.5% percentile of a standard normal

distribution and Aj,j stands for the jth diagonal element of the matrix A.

5. Simulation study205

We consider the van der Pol equation

d2fθ(t)
dt2

− θ{1− f2
θ (t)}dfθ(t)

dt
+ fθ(t) = 0, t ∈ [0, 1]

13
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Figure 1: A sample trajectory of van der Pol equation for θ = 1

with the initial conditions fθ(0) = 2, f ′θ(0) = 0, to study the posterior distribu-

tion of θ.

The above system is not analytically solvable. This equation has been used to

model a variety of physical and biological phenomena. For instance, in biology,

the van der Pol equation is used to model coupled neurons in the gastric mill210

circuit of the stomatogastric ganglion. In seismology, this equation is often used

to model the interaction of two plates in a geological fault.

We consider the situation where the true regression function belongs to the

solution set. The true parameter is taken to be θ0 = 1. A sample trajectory

is shown in Figure 1. For a sample of size n, the predictor variables t1, . . . , tn215

are drawn from the U(0, 1) distribution. Samples of sizes 50, 100 and 500 are

considered. We simulate 1000 replications for each case. Under each replication,

a sample of size 1000 is drawn from the posterior distribution of θ using two-

step Bayesian method (TSB) and RKTSB and then 95% equal tailed credible

intervals are obtained. The simulation results are summarized in Tables 1–3.220

We choose the number of grid points in the order of n0.26 to construct the nu-

merical solution of the ODE. We calculate the coverage and the average length

of the corresponding credible interval over the 1000 replications. We also com-

pare the two methods with the nonlinear least squares (NLS) technique based

on exhaustive numerical solution of the ODE where we construct a 95% con-225

14



fidence interval using asymptotic normality. The estimated standard errors of

the interval length and coverage are given in parentheses in the tables.

The true distribution of error is taken to be either N [0, (0.1)2] or the scaled

t distribution with 6 degrees of freedom, or a centered and scaled gamma dis-

tribution with both shape and scale parameters 1. The scaling and centering230

are done in order to make the mean 0 and standard deviation 0.1. We put an

inverse gamma prior on σ2 with shape and scale parameters being 99 and 1,

respectively.

The choice of prior parameters is guided by the estimate of error variance

from the data. This helps maintain reasonable size and coverage of credible235

intervals. But in larger sample sizes the effect of the prior diminishes and any

sensible choice will lead to similar results. We take m = 7 and m = 4 for TSB

and RKTSB respectively. We choose kn as 3, 3 and 4 for n = 50, n = 100

and n = 500 respectively in TSB. In RKTSB the choices are 3, 3 and 4 for

n = 50, n = 100 and n = 500 respectively. The choices of m and asymptotic240

orders of kn are done in accordance with Lemma 1 and Theorem 2, respectively.

The appropriate multiples to the chosen asymptotic orders are determined using

cross validation. The weight function for TSB is chosen as w(t) = t2(1 − t)2

which satisfies the constraints of having value zero and having first derivative

zero at both 0 and 1.245

Note the similarity in the outputs corresponding to RKTSB and NLS for

large n because of asymptotic efficiency while TSB intervals are much wider.

The asymptotic variance for NLS is derived through the delta method which

usually underestimates the true variance for small sample sizes. This explains

the low coverage of the NLS confidence intervals for n = 50. However, TSB250

is computationally much faster. Each replication in TSB took around 30 sec-

onds. In contrast, each replication in RKTSB took around 60 seconds and each

replication in NLS took around 2 seconds. But in the latter case the runtime

is not comparable to those of the Bayesian methods since here we just obtain

an estimate of θ in each replication whereas in Bayesian methods we need to255

draw an entire posterior sample at each replication. We also plot the densities

15



Table 1: Coverages and average lengths of the Bayesian credible intervals and

confidence intervals for Gaussian error

n RKTSB TSB NLS

coverage length coverage length coverage length

(se) (se) (se) (se) (se) (se)

50 θ 93.2 0.55 94.6 4.4 87.2 0.58

(0.04) (0.32) (0.03) (1.98) (0.05) (0.52)

100 θ 95.1 0.34 95.8 2.55 95.1 0.32

(0.02) (0.05) (0.02) (1.11) (0.02) (0.03)

500 θ 95.5 0.14 97.0 0.85 95.1 0.14

(0.01) (0.01) (0.01) (0.17) (0.01) (0.01)

corresponding to one posterior sample of θ obtained from each Bayesian method

in Figures 2 and 3, respectively, for the Gaussian error.

6. Proofs

We use the operators E0 and var0 to denote expectation and variance with260

respect to P0.

Proof (Lemma 1). By the definitions of θ and θ0 we have

∫ 1

0

G{t,h(t),θ}w(t)dt = 0,
∫ 1

0

G{t,h0(t),θ0}w(t)dt = 0.

Subtracting the second equation from the first and applying the mean-value

theorem, we get

∫ 1

0

Dθ0{G(t,h0(t),θ0)}w(t)dt(θ − θ0)

+
∫ 1

0

Dh0{G(t,h0(t),θ0)}w(t){h(t)− h0(t)}dt

+O

(
sup
t∈[0,1]

‖h(t)− h0(t)‖2
)

+O(‖θ − θ0‖2) = 0.
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Figure 2: Density curve corresponding to posterior sample of θ obtained by TSB

method for n = 50, n = 100 and n = 500, respectively, for Gaussian error
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Figure 3: Density curve corresponding to posterior sample of θ obtained by

RKTSB for n = 50, n = 100 and n = 500, respectively, for Gaussian error
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Table 2: Coverages and average lengths of the Bayesian credible intervals and

confidence intervals for scaled t6 error

n RKTSB TSB NLS

coverage length coverage length coverage length

(se) (se) (se) (se) (se) (se)

50 θ 92.9 0.54 92.9 4.41 86.1 0.58

(0.04) (0.25) (0.04) (2.02) (0.05) (0.52)

100 θ 94.1 0.34 95.4 2.53 93.5 0.32

(0.02) (0.05) (0.02) (1.14) (0.02) (0.05)

500 θ 94.9 0.14 97.4 0.85 94.7 0.14

(0.01) (0.01) (0.01) (0.18) (0.01) (0.01)

Now we shall show that the second summand is a linear functional of f − f0.

Note that this term can be written as
q∑

r=0

∫ 1

0

[Dh0{G(t,h0(t),θ0)}w(t)],r {f (r)(t,β)− f (r)
0 (t)}dt.

We shall show that every term of this sum is a linear functional of f − f0. We

observe that for each r ∈ {0, . . . , q},
∫ 1

0

[Dh0{G(t,h0(t),θ0)}w(t)],r {f (r)(t,β)− f (r)
0 (t)}dt

= (−1)r
∫ 1

0

dr

dtr
[Dh0{G(t,h0(t),θ0)}w(t)],r {f(t,β)− f0(t)}dt

using integration by parts and the fact that the function w and its first q − 1

derivatives vanish at 0 and 1. Proceeding this way we get

M(h0,θ0)(θ−θ0)−Γ(f−f0)+O

(
sup
t∈[0,1]

‖h(t)− h0(t)‖2
)

+O(‖θ − θ0‖2) = 0.

Using the steps of the proofs of Lemmas 2 and 3 of Bhaumik and Ghosal [4], we

can prove the posterior consistency of θ. Let εn > 0 and define En = {(h,θ) :

supt∈[0,1] ‖h(t)− h0(t)‖ ≤ εn, ‖θ − θ0‖ ≤ εn}. Hence for some sequence εn → 0,

18



Table 3: Coverages and average lengths of the Bayesian credible intervals and

confidence intervals for centered and scaled Gamma(1,1) error

n RKTSB TSB NLS

coverage length coverage length coverage length

(se) (se) (se) (se) (se) (se)

50 θ 92.5 0.55 92.5 4.36 86.3 0.6

(0.04) (0.29) (0.04) (2.00) (0.05) (0.56)

100 θ 95.4 0.34 95.4 2.54 94.1 0.32

(0.02) (0.05) (0.02) (1.13) (0.02) (0.07)

500 θ 94.0 0.14 96.0 0.85 93.4 0.14

(0.01) (0.01) (0.01) (0.19) (0.01) (0.01)

Π(Ecn|t,Y ) = oP0(1) and on En

√
n(θ − θ0) = [{M(h0,θ0)}−1 + o(1)]

√
nΓ(f − f0)

+
√
n sup
t∈[0,1]

‖h(t)− h0(t)‖2O(1).

As in Lemma 4 of Bhaumik and Ghosal [4],
√
nΓ(f − f0) assigns most of its

mass inside a large compact set. Now by proceeding as in Lemma 2 of Bhaumik

and Ghosal [4], we can assert that on En, the second term on the display is o(1)

and the conclusion follows. �265

Proof (Theorem 1). By Lemma 1 and (10), it suffices to show that for any

σ2 in a neighborhood of σ2
0 ,

∥∥Π∗n[
√
nH>n β −

√
n{M(h0,θ0)}−1Γ(f0) ∈ ·|t,Y , σ2]−N (µ∗n, σ

2Σ∗n)
∥∥
TV

is oP0(1). Note that the conditional posterior distribution of H>n β is a normal

distribution with mean vector

H>n
(
X>nXn + n−2knIkn+m−1

)−1
X>n Y

and dispersion matrix

σ2H>n
(
X>nXn + n−2knIkn+m−1

)−1
Hn,
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respectively. We compute the Kullback–Leibler divergence between two Gaus-

sian distributions and show that it converges in P0-probability to 0 to prove the

assertion. The rest of the proof is similar to that of Theorem 3 of Bhaumik and

Ghosal [4]. �

Proof (Theorem 2). Note that
∫ 1

0
C(t)β>N(t)g(t)dt = G>nβ, where

G>n =
∫ 1

0

C(t)N>(t)g(t)dt

which is a matrix of order p × (kn + m − 1). We can derive the posterior270

consistency of σ2 as in Lemma 11 of Bhaumik and Ghosal [5]. Proceeding as in

Lemma 9 of Bhaumik and Ghosal [5], it can be shown that on a set with high

posterior probability
∥∥∥∥
√
n (θ − θ0)−

[√
nG>nβ −

√
n{J(θ0)}−1

∫ 1

0

{ḟθ0(t)}>f0(t)g(t)
]∥∥∥∥→ 0

as n → ∞. Then it suffices to show that for any neighborhood N of σ2
0 ,

uniformly in σ2 ∈ N , the total variation distance between

Π∗∗n

[√
nG>nβ −

√
n{J(θ0)}−1

∫ 1

0

{ḟθ0(t)}>f0(t)g(t) ∈ ·|t,Y , σ2

]

and N (µ∗∗n , σ
2Σ∗∗n ) is oP0(1). The rest of the proof follows from that of Theo-

rem 4.2 of Bhaumik and Ghosal [5]. �275

Proof (Corollary 1). The log-likelihood of the correctly specified model is

given by

`θ0(t, Y ) = − lnσ0 −
1

2σ2
0

|Y − fθ0(t)|2 + ln g(t).

Thus ˙̀
θ0(t, Y ) = −σ−2

0 {ḟθ0(t)}>{Y −fθ0(t)} and the Fisher information is given

by I(θ0) = σ−2
0

∫ 1

0
{ḟθ0(t)}>ḟθ0(t)g(t)dt. Following the proof of Lemma 10 of

Bhaumik and Ghosal [5] we get

σ2
0Σ∗∗n

P0→ σ2
0{J(θ0)}−1

∫ 1

0

{ḟθ0(t)}>ḟθ0(t)g(t)dt [{J(θ0)}−1]>.

This limit is equal to {I(θ0)}−1 if the regression function and the error distri-

bution are correctly specified. �
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Appendix: Runge–Kutta method for higher order ODE280

Often the differential equation has the form

F
(
t, fθ(t), f (1)

θ (t), . . . , f (q)
θ (t),θ

)

= f
(q)
θ (t)−H

(
t, fθ(t), f (1)

θ (t), . . . , f (q−1)
θ (t),θ

)
= 0

with initial conditions f (ν)
θ (0) = cν for all ν ∈ {0, . . . , q − 1}, and H is a known

function. Note that t can be treated as a state variable χ(t) = t which satisfies

the qth order ODE χ(q)(t) = 0 with initial conditions χ(0) = 0, χ(1)(0) = 1 and

χ(j)(0) = 0 for all j ∈ {2, . . . , q − 1}. Denoting ψθ(·) = (fθ(·), χ(·)), we can

rewrite the ODE as

ψ
(q)
θ (t) = H{ψθ(t), . . . ,ψ(q−1)

θ (t)},

where H = (H(·), 0). Given rn equispaced grid points a1 = 0, a2, . . . , arn
with

common difference r−1
n , the approximate solution to (1) is given by ψθ,rn(·) =

(fθ,rn(·), χrn(·)), where rn is chosen so that rn � n1/8; here n denotes the

number of observations. Let zk = (ψθ,rn
(ak),ψ(1)

θ,rn
(ak), . . . ,ψ(q−1)

θ,rn
(ak)) stand

for the vector formed by the function ψθ,rn
and its q − 1 derivatives at the kth285

grid point ak for all k ∈ {1, . . . , rn}. For each ν ∈ {1, . . . , q − 1}, we define

T ν(ak, zk, rn) = ψ
(ν)
θ,rn

(ak) +
1

2!rn
ψ

(ν+1)
θ,rn

(ak) + · · ·

+
1

r
(q−ν−1)
n (q − ν)!

ψ
(q−1)
θ,rn

(ak),

T q(ak, zk, rn) = 0.

Now let kρ(ak) = H(U1, . . . ,U q) with U1, . . . ,U q as given in Table 4.

“Table 4 here”

Following Eq. (4.16) of Henrici [7, p. 169] we define

Φν(ak, zk, rn) = T ν(ak, zk, rn) +
1

r
(q−ν)
n (q − ν + 1)!

4∑

ρ=1

γνρkρ(ak),
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where the coefficients γνρ are given by

γν1 =
(q − ν + 1)2

(q − ν + 2)(q − ν + 3)
,

γν2 = γν3 =
2(q − ν + 1)

(q − ν + 2)(q − ν + 3)
,

γν4 =
1− q + ν

(q − ν + 2)(q − ν + 3)

for all ν ∈ {1, . . . , q}. Then the sequence z1, . . . , zrn can be constructed by the

recurrence relation

zk+1 = zk + r−1
n

(
Φ1(ak, zk, rn), . . . ,Φq(ak, zk, rn)

)>
.

By the proof of Theorem 4.2 of Henrici [7, p. 174], we have

sup
t∈[0,1]

|fθ(t)− fθ,rn(t)| = O(r−4
n ), sup

t∈[0,1]

|ḟθ(t)− ḟθ,rn(t)| = O(r−4
n ).
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Table 4: Arguments of H

ρ 1 2 3 4

U1 ψθ,rn
(ak) ψθ,rn

(ak) ψθ,rn
(ak) + 1

2rn
ψ

(1)
θ,rn

(ak) ψθ,rn
(ak) + 1

rn
ψ

(1)
θ,rn

(ak)

+ 1
2rn
ψ

(1)
θ,rn

(ak) + 1
4r2n
ψ

(2)
θ,rn

(ak) + 1
2r2n
ψ

(2)
θ,rn

(ak)

+ 1
4r3n
ψ

(3)
θ,rn

(ak)

U2 ψ
(1)
θ,rn

(ak) ψ
(1)
θ,rn

(ak) ψ
(1)
θ,rn

(ak) + 1
2rn
ψ

(2)
θ,rn

(ak) ψ
(1)
θ,rn

(ak) + 1
rn
ψ

(2)
θ,rn

(ak)

+ 1
2rn
ψ

(2)
θ,rn

(ak) + 1
4r2n
ψ

(3)
θ,rn

(ak) + 1
2r2n
ψ

(3)
θ,rn

(ak)

+ 1
4r3n
ψ

(4)
θ,rn

(ak)
...

...
...

...
...

U q−3 ψ
(q−4)
θ,rn

(ak) ψ
(q−4)
θ,rn

(ak) ψ
(q−4)
θ,rn

(ak) + 1
2rn
ψ

(q−3)
θ,rn

(ak) ψ
(q−4)
θ,rn

(ak) + 1
rn
ψ

(q−3)
θ,rn

(ak)

+ 1
2rn
ψ

(q−3)
θ,rn

(ak) + 1
4r2n
ψ

(q−2)
θ,rn

(ak) + 1
2r2n
ψ

(q−2)
θ,rn

(ak)

+ 1
4r3n
ψ

(q−1)
θ,rn

(ak)

U q−2 ψ
(q−3)
θ,rn

(ak) ψ
(q−3)
θ,rn

(ak) ψ
(q−3)
θ,rn

(ak) + 1
2rn
ψ

(q−2)
θ,rn

(ak) ψ
(q−3)
θ,rn

(ak) + 1
rn
ψ

(q−2)
θ,rn

(ak)

+ 1
2rn
ψ

(q−2)
θ,rn

(ak) + 1
4r2n
ψ

(q−1)
θ,rn

(ak) + 1
2r2n
ψ

(q−1)
θ,rn

(ak) + 1
4r3n
k1

U q−1 ψ
(q−2)
θ,rn

(ak) ψ
(q−2)
θ,rn

(ak) ψ
(q−2)
θ,rn

(ak) + 1
2rn
ψ

(q−1)
θ,rn

(ak) ψ
(q−2)
θ,rn

(ak) + 1
rn
ψ

(q−1)
θ,rn

(ak)

+ 1
2rn
ψ

(q−1)
θ,rn

(ak) + 1
4r2n
k1 + 1

2r2n
k2

U q ψ
(q−1)
θ,rn

(ak) ψ
(q−1)
θ,rn

(ak) ψ
(q−1)
θ,rn

(ak) + 1
2rn
k2 ψ

(q−1)
θ,rn

(ak) + 1
rn
k3

+ 1
2rn
k1
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