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Majorants and Minorants for Elliptical Measures on R*
D. R. JENSEN

Virginia Polytechnic Institute and State University

Let u(-; Z, Gy) and y(-; R, G,) be elliptically contoured measures on R* centered
at 0, having scale parameters (X, ) and radial cdf's (G|, G,). Elliptical measures
ve(-) and vy(-), depending on (X, 2, G,,G,). are constructed such that v (C) <
UG E G)), (C:Q, G,)} <vy(C) for every symmetric convex set C < R*, with
equality for certain sets. These in turn rely on the construction of spectral lower and
upper matrix bounds for (X, ©2). Extensions include bounds for certain ensembles
and mixtures, including versions having star-shaped contours. The findings
specialize to give envelopes for some nonstandard distributions of quadratic forms,
with applications to stochastic characteristics of ballistic systems.  *" 1993 Academic

Press. Inc.

1. INTRODUCTION

Elliptically contoured measures on R* are of note in statistics and
applied probability. Especially in linear inference, multivariate statistical
inference, and time series analysis, many normal-theory results carry over
to apply in the larger class. Let EC, (0, X, G) be an elliptical distribution on
R* having location parameters 0 e R*, scale parameters X, and radial
cdf G(-) on [0, oc), and let u(-; X, G) be the corresponding measure when
0 = 0. Basic properties of these are developed in Cambanis ez @/. (1981) and
in Jensen (1984), for example. See also Fang, Kotz, and Ng (1990), Fang
and Zhang (1990), and Kariya and Sinha (1989).

Stochastic orderings are basic. Following Sherman (1955), a probability
measure u(-) on R* is said to be more peaked about 0e R* than v(-) if
#(C) = v(C) for every set C in the class C} consisting of compact convex
sets in R* symmetric under reflection through 0, i.e., x € C implies —x e C.
Denote this ordering by y > v. We have the following.

DErINITION 1. A probability measure v, is called a symmetric minorant
for (u,,u.) on RY and vy is a symmetric majorant, if v (C)<
{1,(C), t(C)} S vy (C) for every CeCk.
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In this paper we construct symmetric minorants and majorants for non-
singular elliptical measures {u(-; E, G,), u(-: €, G,)} on R*. A basic link
between peakedness and scale orderings for elliptical measures on R* is
that u(-;Q, G) =, u(-; E, G) if and only if £—€ is positive semidefinite.
Sufficiency 1s shown for nonsingular Gaussian measures in Anderson
(1955), for nonsingular elliptical measures in Das Gupta et al. (1971) and
Fefferman eral. (1972), and for singular elliptical measures in Jensen
(1984). Necessity is shown in Jensen (1984). To bound {u(-; I, G),
u(-: 82, G)}, it thus suffices to find matrices £, and Z,, such that
E.<U 1L Q) 5 Ey in the positive semidefinite ordering<{,. An outline
of the paper follows.

Section 2 comprises preliminary developments. In Section 3, which is
of independent interest, we characterize all lower and upper bounds
for positive definite matrices (A, B) under the ordering =, . Of these, the
spectral least upper and greatest lower matrix bounds for (X, Q) carry over
in Section 4 to give greatest stochastic minorants and least stochastic
majorants, in a sense to be described, for any elliptical measures
{u(-:Z, G,), u(-; Q, G,)} on R*. These findings in turn support bounds for
certain ensembles and mixtures of measures on R*, including certain
star-umimodal distributions. Section 5 specializes earlier findings to give
envelopes for certain nonstandard distributions of quadratic forms, with
applications to the performance characteristics of ballistic systems.

2. PRELIMINARIES

We first establish conventions for notation; we next review basic proper-
ties of ordering and monotonicity on spaces of interest; and we then
describe classes of distributions to be considered subsequently.

2.1. Notation

Spaces of note include Euclidean n-space R" and its positive orthant R”, |
the real (n x k) matrices F,,,, the real symmetric (k x k) matrices S,, and
their positive semidefinite (S?), positive definite (S, ), and diagonal (D)
varieties. The transpose and inverse of A are designated by A’ and A ' as
appropriate. Special arrays include the unit matrix I,, and a typical
diagonal matrix D_= Diag(«,, .., 2,)e D,. Groups of transformations
acting on R” include the general linear group G/(n) and the real orthogonal
group O(n). The spectral decomposition A =3 *_ x,q,q, of A€ S} yields its
symmetric square root A'?=Y*_ alq.q].

Standard usage refers to independent, identically distributed (iid)
variates and their cumulative distribution function (cdf). £(X) designates
the law of distribution of X, with N,(p, L) as the Gaussian law on R*
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having some mean p and dispersion matrix X. F,= Fy[0, oc) is the class of
cdf’s on [0, oc), with F,[0, 1] as the subclass of cdf’s on [0, 1]. Since
probability measures on R* are tight, in what follows we drop compactness
from C% and consider equivalently the class C* consisting of symmetric
convex sets in R

2.2. Ordered Spaces

We adopt the terminology of Marshall and Olkin (1979). A set #
together with a binary relation >= is said to be linearly ordered if the rela-
tion is reflexive, transitive, antisymmetric, and complete. A partial ordering
1s reflexive, transitive, and antisymmetric, and a preordering is reflexive and
transitive. Moreover, a partially ordered set (#, =) is a lower semi-lattice
if for any two elements x, y in #, there is a greatest lower bound (glb)
X Ay in J; an upper semi-lattice if there is a least upper bound (lub) x v y
in #; and a lartice if it is both a lower and an upper semi-lattice.

In particular, (R*, >,) is ordered such that x>,y in R* if and only if
{x;2v; 1<i<k}. The space (S, =) is ordered as in Loewner (1934)
such that A>>, B in S, if and only if A—Be S}, with A>, B whenever
A—Be S, . The space (F,, =4) is partially ordered under point-wise
ordering of c¢df’s such that F2, G in (F,, = 4) if and only if F(¢) > G(1)
for every reR' . If the survival functions are ordered point-wise as
1 —G(1)=1— F(1), then G is said to be stochastically larger than F in the
usual terminology. With regard to lower and upper bounds, (R*, >,) is a
lattice with aaAb=[a, Ab,,.,a.~rb,] and avb=[a vb,.,
a, v b, where {a; A b;=min(a,, b,) and a, v b,=max(a,, b,); | <i<k};
see Vulikh (1967), for example. The space (S,,>=,) is not a lattice (cf.
Halmos, 1958, p. 142). Nonetheless, (S, , ) is shown subsequently to
have lower and upper bounds that are tight. Moreover (Fo, Z41) 18
seen to be a lattice with (F A G)(t)= mm[F (1), G(1)] and (F v G)(1)=
max[F(7), G(1)] pointwise for each re R',

A real-valued function f(-) on (¢, /n) 1s said to be order-preserving if
X322, y on ¥ implies f(x)=f(y) on R', and to be order-reversing if x =, y
on J implies f(x) < f(y) or R'. Denote by ®(#, =,) the class of order-
preserving functions, and by ® (J#, =,) the order-reversing functions,
on (J,>,). Specifically, ®(R*, >,) consists of functions f(x,, .., X;)
non-decreasing in each argument. The class ®(S,, =) is characterized
in Marshall, Walkup, an Wets (1967). Similarly, ®(F,, >4) and
® (F,, =4) consist of order-preserving and order-reversing functionals
defined on (F,, = 4)

2.3. Special Distributions

A set S < R* containing 0 € R* is said to be star-shaped about 0 € S if, for
every X € S, the line segment joining 0 to x is in S. A distribution P(-) on

H¥3 47 2.8
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R* is said to be symmetric star-unimodal about 0e R if it belongs to the
closed convex hull of the set of all uniform measures on symmetric sets in
R* that are star-shaped about 0 e R*. Let P, (0) be the collection of all such
distributions on R*. If P(-) has a continuous density f(-) on R*, then
P(-)eP.(0) if and only if, for 7> 0, the level sets B, = {xe R*: f(x) >t}
are either symmetric star-shaped about 0 e R* or they are empty. Kanter
(1977) studied mixtures of measures on R® including the class K, (0)
generated as the closed convex hull of the set of all uniform measures on
convex bodies in R¥ symmetric about 0 € R*. Further details are given by
Dharmadhikari and Joag-Dev (1988, p. 38ff.), who show that the classes
P,.(0) and K,(0) coincide. These facts are used subsequently.

We consider elliptical measures on R* having further structure as
follows. If unimodal about 8¢ R*, we designate £C,(0, X, G) instead as
UC.(0,Z, G), reserving the notation EC (X, G) and UC, (X, G) for
distributions centered at 0eR*, with u(.;X, G) as the corresponding
measure as before. Subsequently E (0)={EC,(L,G);ZeS;,GeF,}
designates the class of all elliptical distributions on R* centered at 0 R,
with U, (0) < E,(0) as the subclass of unimodal distributions.

We consider ensembles of distribution in E,(0) and U,(0) as follows.
Let T<R', be an index set and let {G.;te T} be a collection of cdf’s
in F,. Anticipating later applications, we first fix (X, Q) and suppose
that the scale parameters Z(a) of u(-;Z(a), G} lie on the line segment
{Ex)=aX+aQ;2€[0, 1]} connecting ¥ and £ in S, with a=1-a.
Letting (2, G) vary generates the ensemble

EJZ Q T)={EC,(E(2),G,);2e[0,1], 7€ T} (2.1)

and similarly for the ensemble U, (X, Q, T') of unimodal distributions.
More generally, with M = S and T< R', both considered as index sets,
we consider the corresponding ensemble

E M, T)={EC,(E,G,):EcM,1eT} (2.2)

in E,(0), and similarly the ensemble U,(M, T) consisting of unimodal
distributions in U,(0). We subsequently seek elliptical majorants and
minorants for such ensembles, as well as for certain mixtures over these
ensembles to be described next.

If we now take E (X,Q,7) to be a mixing family with mixing
parameters (a, t), then under measurability conditions we consider
mixtures of the type

WL, Q, H,F):j'j u(-:E(«), G.) dH(x) dF(t) (2.3)
(] T
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with E(x) = 2X + #Q and with H(-) and F(-) as cdf’s defined on [0, 1 ] and
7, respectively. More generally, with T'(-) as a probability measure on
McS;, a typical mixture over the mixing ensemble (2.2) under
measurability conditions takes the form

v(-;r.F)=j Ly(-;E, G.)dT(Z) dF(z). (2.4)

On fixing one, then another, of the mixing parameters (Z, t), we construct
the partial mixtures

(58 F)=[ w56 dFw) (2.5)

T

and

25T G) =] u(+E G,)dT(E). (2.6)
M

We return to these subsequently. Basic connections between these mixtures
and the class P,(0) of symmetric star-unimodal distributions on R* are
given in the following.

LemMma 1. Consider mixtures of the types (2.3)(2.6) over ensembles in
U, (0) consisting of elliptical distributions unimodal about ©€R*. Then
all such mixtures belong to the class P,(0) of symmetric star-unimodal
distributions.

Proof. 1t is well known that each distribution in the class U,(0) can be
represented as a mixture of uniform measures over convex bodies of the
type B(r:L)= {xe R*: x'E 'x <r} as r varies with some mixing distribu-
tion G, € F,,. Thus the generators are in P,(0); see also Kanter (1977) and
Dharmadhikan and Joag-Dev (1988). Since mixtures are convex and since
P.(0) comprises the closed convex hull of uniform measures generating the
class, it follows that mixtures of the types (2.3)-(2.6) all belong to
P0). 1

3. MATRIX EXTREMES IN S/

We next characterize the sets of lower and upper bounds for pairs of
matrices in (S, , ).
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3.1. Lower and Upper Matrix Bounds

Given (A,B) in (S}, =), we study first the class H (A, B)=
{Se S, :S<_ A and S<| B} consisting of lower bounds, and then the
class Hy(A,B)={TeS/ :T>_ A and T} B} consisting of upper
bounds. The ordering L=<, {A, B} =<, U always holds with L=0 and
U=A+B,and f A<, B, then L=A and U=B. Since A >, Sif and only
il GAG’ =, GSG’ for any G e G{(k), it suffices to consider a canonical
form in which (A, B)—(GAG',GBG')— (B '"AB'2 1,)—>(D,, I,),
where B '?AB '"?=Y* y.q,q/ is its spectral decomposition and
D. = Diag(y,, ..., 7.) contains the ordered roots of |A—7yB| =0 We
thus seek E=GLG" and F=GUG’ such that E< {D,,I,} <, F or,
equivalently, the classes H, (D, I,) and Hy(D_, I,). Since S is open, we
may require that H_ (A, B)c S/ as stipulated earlier.

First note that A>, Bon S, ifand only if {7, = --- =y, =1}, whereas
A >, B corresponds to y, > 1. If neither A =, B nor B>, A, then at least
one of two integers (r, s) can be found such that

[~ a o =1 = — a v
1/1Z 2fr>)'r+rl_1— _I’r+.\'>'\lyr+\'+l> 2Ik>0,(' (31)

Now let t=k —r—s, and let {&, > --- = ¢, >0} be the ordered eigenvalues
of EeS;}. Essential properties of the lower bounds H (D.,I,) are
summarized in the following lemma.

LEmMMA 2. Ler E=[e;] have eigenvalues {&,> ---2¢,>0), and
consider the class H (D, 1,) with D, fixed. In order that EeH (D, 1,), it
is necessary that

(i) {e;<11<i<k}, and that
(i) {e, <L 1<i<r+s}and {e;<y;r+s+1<i<k}.

Given that {e;; 1 i<k} are assigned their maximal values, a necessary and
sufficient condition that E€ H (D, 1) is that E take the form

(ili) Ey=Diag(L,, L, }, 4,41 V)

Proof. Conclusion (i) follows from the equivalence of I,2>, E and
I, =, Diag(s,, .., &). Conclusion (ii) follows on noting that if D. — E and
I, — E are to be positive semidefinite, then their diagonal elements are
necessarily nonnegative. To see necessity in conclusion (iii}, assume
first that D.—Ee S}, so that E when assigned its maximal diagonal
clements takes the form E; = Diag(H, I,, 7,4, ., - ¥« ) such that H=[#,]
with [h,=1;1<i<r}, and Diag(y,, ... y,)—HeS,. Other off-diagonal
elements vanish since the corresponding diagonal elements of D. —Ee S}
vanish. Now recalling additionally that 1, — E,e S], we conclude that
I,—He S}, hence the off-diagonal elements of H must vanish also, giving
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E, as in conclusion (ii1). Sufficiency of the form (iii) follows since the
diagonals of E,, take their maximal values, and both D, —Ey and I, —E,
are positive semidefinite by construction. |

Turning to upper bounds for the pair (D,, I, ), and thereby for (A, B),
essential properties of Hy, (D, I,) are as summarized without further proof
in the following lemma.

LemMma 3. Let F=[f,] have eigenvalues {n,z ---2n,>0}, and
consider the class Hy (D, 1) with D, fixed. In order that Fe Hy(D,, 1),
it is necessary that

(i) (1<n,<oc; 1<i<k}, and that
(i) {fuzy;1<i<r}and {f;21l;r+1<i<k}.

Given that { f;;1<i<k} are assigned their minimal values, a necessary and
sufficient condition that Fe H(D,, 1) is that F take the form

(iti) F,,=Diag(y,, ..y, 1,,1I,) witht=k—r—s.

All lower and upper bounds for (A, B) in (S, >=,) follow on mapping
back to the original space. Since A =B'?QD,Q'B'?and B=B'?QI,Q'B'?,
we conclude that Le H, (A, B) if and only if L =B'?QEQ'B'? for some
EeH (D, I,). Similarly, Ue H(A, B) if and only if U=B'?QFQ'B'?
for some FeH(D,, ;).

3.2. Spectral Bounds

If we require that lower and upper bounds for diagonal matrices be
diagonal, then (D,, >=,) is seen to be a lattice on imbedding it in (R*, > ;).
Then the gib and lub of (D, I,) are D, A, =Ey and D, vI,=F,,
precisely as defined in Lemmas | and 2. This is in turn prompts the
following.

DeFiNITION 2. The matrices given by A A B=B'?Q(D. A I;) Q'B'?
and Av B=B'’Q(D, v 1,) Q'B"? are called the spectral glb and the
spectral lub for (A, B) in (S, =)

Properties of these spectral extremes are studied next. The main issues
include the possible interchangeability of A and B, and whether the spectral
bounds are tight. Both are answered affirmatively in developments
culminating in Theorem 1.

With regard to the reduction (A, B)— (D, 1,), we may take instead
(A.B)—>(I,, A""?BA " '"?) > (I,, D,). Here D, is the diagonal matrix
D,=Diag(f,,...0,) with {0<8,<---<6,} as the reverse-ordered
roots of |B—0A| =0, where A '?BA '?=Y*_ 0.p,p, is the spectral

i=1
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decomposition with P=[p,, .., p, 1€ O(k). Proceeding as before, define
BAA=A""P(I, AD,)PA'"? and BvA=A"?P(I,vD,)PA" To
investigate whether the spectral bounds are invariant with regard to
decomposition, i.c., whether AAB=B A A and A v B=B v A, we first
note several duality relations. These are D, =D LILiAaDy=(D,vI) !
L vD,=(D,aAL) " (D, AL)D,vI)=D,, and B?Q=A"PD, "
and A '?PD?=B '’Q. The latter expressions follow on establishing
relationships between the normalized eigenvectors of {B '“AB 'Iq,=
v,q9,; 1<i<k} and {A '"BA '?p,=0.p,; 1<i<k}. Our principal
findings with regard to the lower and upper spectral bounds are as follows.

(SN

LEMMA 4. Let {AAB,Av B} and {BAr A Bv A} be spectral glb's
and lub’s as defined, and let C(a) = xA + aB witha=1—-&e [0, 1]. Then for
any (A, B) in (S5, 2.)

(1) AAB (2A+3IB)<, A v B for each 2€ [0, 1];
(ii) ¢(A AB) < {d(Cla)); 2 [0, 1]} < ¢(A v B) for each ¢e
(S, =L ); and
(iii) AAB=BAAandAvB=BvA.
Moreover, the bounds are tight in the sense that

(iv) if{AB}<  Tand T, Av B, then T=A v B, and
(v) if {A,B}=_Sand Sx=_AAB, then S=A A B.

Proof. Conclusion (i) in the form A A B<{, {A, B} < A v B follows
from Lemmas | and2, so that A A B, (2A+4aB)=<, A v B for each
a€[0,1]. This in turn implies (ii) in view of the monotonicity of
®(S;,>.). To see conclusion (iii), note that if A=<, B, then
AAB=A=BArAand AvB=B=Bv A. Otherwise let B =B'?Q and
B, =A'?PD, '* observe that A A B=B{(D. A I,)B,; and recall that
BAA=A""P(I, A D,)P’A"2% From the duality relations cited earlier it
follows that I, ADy=(D,v L) '=(D,AL)D ', so that BAA=
A'?PD; 3D, A L) D, '?P'A'?=By(D, A 1,)B,. But another duality
asserts that B) =B}, so that A A B=B A A as claimed. The assertion
AvB=Bv A follows similarly. To establish (iv), first suppose that
{A,B} <, T and T=<; AvB. Then since D,=QB '"AB~'?Q and
D.vI,=QB '"*(A v B)B '2Q, the ordering A <, T<; A v B implies

D,<, QB '*TB 'Qx,D, v I, (3.2)
whereas B=<{; T=<{, A v B gives

I,<.QB "TB Q< D, vI. (3.3)
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Letting ¢; = [0, .., 0, 1, 0, ..., 0] have unity in the ith coordinate and zeros
elsewhere, we infer from (3.2) and (3.3) that

7 <c/QB 'TB ?Qe,; <y,  1<i<r (34)
1<c/QB '?TB "2Qe¢,<1, r+l<i<k (3.5)

Combining these and letting W =[(D, v 1,) — Q'B~'*TB '?Q], we find
that ¢;We; =0, so that the diagonal elements of W are zero. But since
W2, 0, this implies that W=0 and thus T=B'"?Q(D. v I,)Q'B'?>=
A v B as claimed in conclusion (iv). The proof for (v) proceeds similarly,
to complete the proof. |

4. SYMMETRIC MAJORANTS AND MINORANTS

Elliptically contoured majorants and minorants for {u(-;XL, G),
p(-; @, G)} follow directly from the foregoing developments. In addition,
with G fixed, these bounds are seen to apply to every such elliptical
measure whose scale parameters liec on a line segment connecting £ and Q
as in the ensemble (2.1). Details are supplied in the following, where £ and
Q correspond respectively to A and B in the notation of Section 3.

THEOREM 1. Let {u(-; %, G), u(-; R, G)} be any elliptically contoured
measures on R*; let v (-; G)=u(-;Z v @, Gyand vy (-;G)=pu(-; L A , G);
and write E(a)=oX + aQ with x=1—4ae [0, 1].

(i) All elliptically symmetric minorants and majorants for
{u(-; E, G), u(-; R, G)}, with radial cdf G, are generated by

p( L G) <, {u( 5 G), u(:Q,G)} <, 14 U, G) (4.1)

as L ranges over H (X, Q) and as U ranges over Hy (X, Q).

(i1) The bounds v, (C;G)< {p(C;E(n), G);2e [0, 1]} vy (C; G)
hold for every C e C*.

(1) The bounds in (ii) are sharp in the sense that v (C,;G)=
wW(C 3L, G) and u(C,; Q, Gy = vy (C,; G) for some sets (C,, C,) in C~.

(iv) If sz 1 in expression (3.1), then equality holds in (ii) for some
CeC*, giving

Ym(C G)=p(C L, G) = p(C; Q, G) =vu(C; G). (42)
Proof. Conclusion (i) follows from Lemmas 2 and 3 and the equiva-

lence between peakedness and scale orderings for elliptical measures on R*
with G fixed, as noted earlier. Conclusion (ii) follows by construction from
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Lemma 4. The remaining conclusions follow on examining the problem in
the canonical form of Lemma 4. To these ends let D (r) = Diag(y,, .., 7,)
and M=D, v I,, where D, =P'Q '?ZQ ~'?P as in Section 3. It is clear
that the joint marginal measures of the first r elements corresponding to
p(;D.,G) and v,(-;G) are both equal to pu(-;D.(r),G) on R"
Equivalently, we have that u(Cy;D., G)=v,(C,; G) for every cylinder set
C,< R* having sections in L, =Sp(p,, ... p,). Transforming back to the
original space shows that u(C,; Z, G)=v,_,(C,; G) with C, as the image of
C,, and the set C, of conclusion (iii) may be identified similarly. A parallel
development identifies C in conclusion (iv) as the image of a cylinder set
having symmetric convex sections in L,=Sp(p, ., Pr+s)s since C* is
closed under nonsingular linear transformations. This completes our
proof. |

We next consider elliptical measures having different radial distributions.
A basic connection between peakedness ordering on R*, and the stochastic
ordering of radial distributions on R’ , is that u(-; E, G,) =, u(-; £, G,) if
and only if G,(1)>= G,(¢) for every teR', ; see Jensen (1984). That is, for
fixed C and I, the functional u(C; X, G) as G varies is in ®(F,, = 4). If
G, 24 G,, then elliptically symmetric minorants and majorants follow
directly as

G EVQ G)X, {5 G, u( 2, G <, u(EAQ G (43)

P

Our principal findings under boundedness and measurability assumptions
are the following.

THEOREM 2. Let E (M, T) be an ensemble as in (2.2); suppose that
M is bounded such that E,<, 2 Ey for every E€ M, and define
FM(’):SuplETGr(I) and Fm(t):infreTGr(t)~

(i) For the ensemble (2.2) bounds of the type
#(’EM’Fm)gp)u(’E» Fm)<p#(~E’ Gr)<pu(s5* FM)<pu(*Em’ FM)

and
#(';EM& Fm)<p #{';EMa Gz)<p#(>5a Gr)<pu(';sm’ Gr)<p,u(';3m’ FM)

hold for every elliptical measure (-, E, G.) in the ensemble E (M, T).
(1)  For mixtures of the type (2.4) the bounds

3 B, Fo) <o (G EmL F)Sp (G L F)
<p (G B FYS, (5 By Fu)

hold uniformly for every such measure.
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(i) Alternatively, the bounds
#( - EM’ Fm)<p "2( N r» Fm)<p \‘( ;r’ F)<p VZ('; ra FM)<p N(’ Em9 FM)
hold uniformly for every mixture of the type (2.4).

Proof. Conclusion (i) follows from Theorem 1, from properties of E,,
and Ey, and from the fact that F () and F, (¢} are themselves cdf’s.
Conclusions {ii) and (iii) follow from conclusion (i) and the convexity of
mixtures, to conclude our proof. ||

In summary, it is seen that elliptical measures may serve as sym-
metric majorants and minorants for pairs (Theorem 1) and ensembles
(Theorem 2(i)) of elliptical measures on R*. Less intuitive is the fact that
elliptical measures also may serve as symmetric majorants and minorants
for certain star-unimodal mixtures in P, (0). Specifically, the inner and
outer bounds of Theorem 2(ii) and the outer bounds of Theorem 2(iii})
constitute pairs of elliptical measures. In contrast, the inner bounds of
Theorem 2(iii) show that symmetric star-unimodal measures may serve as
symmetric majorants and minorants for certain star-unimodal mixtures in
P.(0). While tighter, these inner bounds do require evaluation of the
indicated partial mixtures from (2.6). Although little is known about the
latter and other distributions in P, (0) generally, much is now known about
elliptical measures and their properties, and research continues apace.
Recent treatises on this topic include the works of Fang, Kotz, and Ng
(1990), Fang and Zhang (1990), and Kariya and Sinha (1989), for
example.

5. SOME APPLICATIONS

Applications of the foregoing results are developed in the context of
distributions of quadratic forms and normal-theory confidence sets in
linear models.

5.1. Distributions of Quadratic Forms

Consider the distribution of the definite quadratic form Qy(Y)=
Y'M'MY in one of two Gaussian laws having zero means, dispersion
matrices (A, A), and corresponding measures u(-; A) and u(-;A) on R*.
In canonical form with Y — Z =MY, we consider equivalently the form
Q(Z)=127'7 together with measures u(-;X) and u(-;€) such that
Y =MAM' and Q = MAM'. The cdf’s for Q(Z) under the two models have
the structure

Gy(t)=pu(B(1):£)=G(t; 0y, .., 6,) (5.1)
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and
Gao()y=p(B(1); Q)=G(1; 0, ..., 0), (5.2)

say, with B(1)= {zeR* :zz<t}. Here |{6,> --- 20, }and {0, > - 2w, }
are the ordered eigenvalues of X and £, respectively. Now letting
E.=EZAQ and E,=XvQ have eigenvalues {&, > ---2¢,} and
{y:= -+ =7+, respectively, we apply results from Section 4 to obtain the
bounds

G710 o 7)) S Ap(B(1); a2+ Q) 2€ [0, 1]} G &y, . &) (5.3)

for all reR' . Moreover, as ¢ varies this provides an envelope containing
all c¢df’s G(t) corresponding to a Gaussian ensemble {u(-;E);Ee M},
such that £ <, Ex| E,,, as well as mixtures of these over M. Series
expansions for G(z;y,, .., 7x) and G(t; &, ..., &, ) are developed in Johnson
and Kotz (1970) together with further references.

Quadratic forms are germane to many developments in applied proba-
bility and statistics, including performance characteristics of certain
ballistic systems and the detection of signals from noise. In ballistics let
X e R? be the point of impact of a missile subject to chance disturbances
attributable to local turbulence; precipitation; variations in air pressure,
currents, and velocities; and other extraneous circumstances. Often X 1is
modeled stochastically as a Gaussian vector having some mean point of
impact peR* and dispersion matrix E. If r is the effective radius of the
weapon on impact and if B(r) is the ball of radius r centered at p, then the
probability of a “kill” is given by u(f(r): E). Details are given in Eckler
and Burr (1972), for example. In practice such models are often overly
simplistic. Gilliland (1968) considered more general distributions unimodal
in the sense of Anderson (1955) having convex level sets. We suppose
instead that dispersion characteristics of the trajectory vary with weather
conditions such that Q is appropriate under mild conditions, whereas X
applies in severe weather. If dispersion parameters can be modeled
reasonably for intermediate cases as E(x)=aX +af2, with x€[0,1]
reflecting the weather intensity, then the bounds (5.3) apply directly to give
envelopes for hit probabilities as r varies. These bounds now bracket the
actual probabilities, whatever may be the actual weather pattern on a given
occasion. Identical conclusions apply to mixtures of these distributions as
the weather intensity o varies randomly according to some cdf H(-) in
F[0,1] as in (2.3), giving bounds on hit probabilities for distributions of
trajectories having star-shaped contours.

Similar considerations apply in signal detection using a square law
envelope detector. Here an incoming input is either processed as a signal
or suppressed as noise according to whether or not its amplitude exceeds



STOCHASTIC MAJORANTS AND MINORANTS 281

a threshold value ¢. Under Gaussian noise the amplitude has a generalized
Rayleigh distribution and its square has a distribution of the type (5.1); see
Miller (1975), for example. The bounds (5.3) apply to distributions of the
squared amplitudes generated by the Gaussian ensemble, as well as to
mixtures over the ensemble, to give an envelope for distributions of
squared amplitudes arising from mixtures of Gaussian noise processes
having symmetric star-unimodal projections. Properties of such distribu-
tions are unknown at present and no doubt the distributions themselves
are quire complicated. Nonetheless, the stochastic bounds (5.3) apply to all
such mixtures.

5.2. Confidence Sets

Consider linear models of full rank having independent Gaussian errors
with zero means and unit variances. Under designs (X, Z) in F, ., these
models are Y=XB+e and Y=Zf +e, and the corresponding Gauss-
Markov estimators are B(X)=(X'X) 'X'Y and PZ)=(Z'Z) 'Z,
respectively. Induced measures for [B(X)— ] and [B(Z)—PB] are u(-; E)
and u(-; ), respectively, with E=(X'X) 'and Q=(Z'Z) . In addition,
with ¢, as the 100(1 — «) percentile of the chi-squared distribution having
k degrees of freedom, the confidence regions

ALT)={BeR :(B-BYL '"B-B)<1} (5.4)

and
ALQ)={peR* :(B-B)Q 'B-p) <1} (5.5)

both have confidence coeflicient 1 —a at r=c¢, under their respective
measures u(-; X) and p(-; Q).

Applying developments from Section4, again let £ ,=X A  and
Eu=L v Q, and define A(:;E,) and A(1;E,) as in (54) and (5.9)
together with their respective Gaussian measures pu(-;E,,) and u(-; Ey).
Again all regions have confidence coefficient 1 —a at t=c¢, under their
respective measures. Moreover, we see that these regions are nested by
inclusion according to

A(LE,) < {ALE), A5 R)} < AL By) (5.6)

for every e R', and thus for every a. In addition, these inclusion relations
extend to include any bounded ensemble X(Z,,, E,) of designs such that
X(E..En)={XeF,  E.<L(X'X) ' Ey}, as well as mixtures over
X(E,,. Ey) in the case of random designs. Finally, note that parallel results
carry over to include linear models having any spherical error distribution.
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