
Journal of Multivariate Analysis 71, 1�23 (1999)

Shortcomings of Generalized Affine Invariant
Skewness Measures

Steffen Gutjahr, Norbert Henze and Martin Folkers

Universita� t Karlsruhe, Karlsruhe, Germany

Received February 2, 1996

This paper studies the asymptotic behavior of a generalization of Mardia's affine
invariant measure of (sample) multivariate skewness. If the underlying distribution
is elliptically symmetric, the limiting distribution is a finite sum of weighted inde-
pendent /2-variates, and the weights are determined by three moments of the radial
distribution of the corresponding spherically symmetric generator. If the population
distribution has positive generalized skewness a normal limiting distribution occurs.
The results clarify the shortcomings of generalized skewness measures when used as
statistics for testing for multivariate normality. Loosely speaking, normality will be
falsely accepted for a short-tailed non-normal elliptically symmetric distribution,
and it will be correctly rejected for a long-tailed non-normal elliptically symmetric
distribution. The wrong diagnosis in the latter case, however, would be rejection
due to positive skewness. � 1999 Academic Press
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1. INTRODUCTION AND SUMMARY

Let [Xj]n
j=1 be independent copies of a d-dimensional (d�2) random

column vector X with expectation EX=+ and nonsingular covariance
matrix 7=E(X&+)(X&+)$, where the prime means transpose. Further-
more, let

X� =n&1 :
n

j=1

Xj , S=n&1 :
n

j=1

(Xj&X� )(Xj&X� )$ (1.1)

denote the mean vector and the sample covariance matrix of X1 , ..., Xn ,
respectively. Assume S is nonsingular with probability one. This will hold,
for example, if X has a continuous distribution and n�d+1 (see Eaton
and Perlman [5]).
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This paper analyzes the asymptotic behavior of bd
k=bd

k(X1 , ..., Xn), where

bdk=
1
n2

:
n

i, j=1

[(X i&X� )$ S&1(Xj&X� )]2k+1

and k is a fixed integer. Note that bd1 is Mardia's measure of multivariate
skewness (Mardia [19, 20]) for which limiting distributions were obtained
by Baringhaus and Henze [2]. The generalized skewness measure bd

k

emerges as the leading term of the (2k+1)th component of the smooth test
of fit for multivariate normality (see Klar [17]). An appealing feature of
bdk is its invariance with respect to full-rank affine transformations of
X1 , ..., Xn . Obviously, the affine invariant population counterpart of bd

k is

;d
k=E[(X1&+)$ 7&1(X2&+)]2k+1.

Under the tacit standing assumption E |X|4k+2<�, where | } | is the
Euclidean norm in Rd, ;d

k is well-defined, and mixed moments of suf-
ficiently high order exist.
To give another expression for ;d

k , let

W=7&1�2(X&+), (1.2)

where 7&1�2 is the symmetric positive definite square root of 7&1, so
that EW=0 and EWW$=Id , the unit matrix of order d. Writing W=
(W1 , ..., Wd)$, we have

;d
k= :

d

t1 , ..., t2k+1=1
\E `

2k+1

j=1

Wtj+
2

,

which shows that ;d
k is nonnegative. Moreover, regarded as a functional on

a set of probability distributions, ;d
k vanishes within the class Nd of non-

degenerate d-variate normal laws. It is thus tempting to use bd
k as a statistic

for testing the hypothesis H0 that the distribution of X belongs to Nd by
rejecting H0 for large values of bd

k . This approach, however, has the draw-
back that ;d

k is zero not only in case of multivariate normality, but also
within the much wider semiparametric class of elliptically symmetric dis-
tributions (see Section 2). In this respect, bd

k shares a general property of
components of smooth tests of fit that is crucial with regard to a proper
``diagnostic'' interpretation of the results of such tests (see Henze [10] and
Henze and Klar [13]).
The main result is that, under elliptical symmetry,

n } bd
k w�

D :
k

j=0

:j, k } /2
&(2k+1&2 j) , (1.3)
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where w�D denotes convergence in distribution. Here

&(q)=\d&3+q
d&2 ++\

d&2+q
d&2 + (1.4)

is the number of linearly independent surface harmonics of degree q in Rd

(see Erde� lyi et al. [6]), and /2
&(1) , /2&(3) , ..., /2

&(2k+1) are independent
/2-variates with degrees of freedom &(1), &(3), ..., &(2k+1), respectively.
The weights :0, k , ..., :k, k depend only on d and m2k , m2k+2 , m4k+2 , where
mr=E |W| r, and W is given in (1.2). The basic idea to get (1.3) is to
approximate bd

k by a V-statistic. Since the resulting kernel is degenerate, the
asymptotic distribution of nbd

k is determined by the eigenvalues of a certain
integral operator. In the present case this operator is finite-dimensional,
and the pertinent integral equation may be solved explicitly (see Section 2).
Some examples of elliptically symmetric distributions will be considered in
Section 3.
In Section 4 we show that, if ;d

k>0 and the support of the underlying
distribution has positive Lebesgue measure,

- n (bd
k&;d

k) w�
D

N(0, _2),

where the variance _2 of the limiting normal distribution depends on the
distribution of W in a way to be made explicit. As an example, we consider
mixtures of normal distributions with equal covariance matrices.
The final section addresses the diagnostic limitations of generalized

skewness measures when used as statistics for testing for multivariate
normality.

2. THE LIMIT LAW OF bd
k FOR ELLIPTICALLY

SYMMETRIC DISTRIBUTIONS

Throughout this section, the distribution of X is elliptically symmetric,
i.e., X is the affine image of a spherically distributed vector Y (see Fang et
al. [7]). Since bd

k and ;d
k are affine invariant, there is no loss of generality

in assuming that the distribution of X is spherically symmetric (for short:
spherical), i.e., X has the same distribution as HX for any orthogonal d_d
matrix H. This implies EX=0, where 0 is the origin in Rd, and (without
loss of generality) EXX$=Id so that E |X |2=d. A further standing assump-
tion is P(X=0)=0. As a consequence, we have the decomposition

X=|X | }U, U=
X
|X |

, (2.1)

3GENERALIZED SKEWNESS MEASURES



where |X| and U are independent, and the distribution of U is uniform on
the surface of the unit d-sphere (see Fang et al. [7, p. 72]). The mixed
moments of U=(U1 , ..., Ud)$ are given by

E \ `
d

j=1

U rj
j += 1

(d�2)[l]
`
d

j=1

(2l j) !
4 ljlj !

(2.2)

if rj=2lj (say) are even (1� j�d), l=�d
j=1 lj , and x[l]=x(x+1) } } } } }

(x+l&1) (see Fang et al. [7, p. 72]). Note that the left-hand side of (2.2)
is zero if at least one of the rj is odd.
In the sequel, Zn=OP(an) and Zn=oP(an) denote tightness and con-

vergence in probability to zero of Zn �an , respectively, for a sequence Zn

of random vectors and positive real numbers an . For example (recall S
from (1.1)), the multivariate Central Limit Theorem (CLT) gives

S&Id&n&1�2An=OP(n&1), (2.3)

where

An=n&1�2 :
n

j=1

(XjX$j&Id), (2.4)

and thus

S&1=Id+OP(n&1�2). (2.5)

Writing Xj=(X (1)
j , ..., X (d )

j )$, 1� j<�, and X=(X (1), ..., X (d ))$, we state
two auxiliary results which will be used repeatedly. The proofs follow by
straightforward algebra from (2.1), (2.2) and the law of large numbers.

Lemma 2.1. For any l # [1, 2, ..., 4k+2] and i1 , ..., i l # [1, 2, ..., d], we
have

(a)
1
n

:
n

j=1

`
l

&=1

X (i&)
j =E \`

l

&=1

X (i&)++oP(1)=OP(1).

(b) In particular,

1
n

:
n

j=1

`
l

&=1

X (i&)
j =oP(1)

if the distribution of X is spherical and l is odd.
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Lemma 2.2. Let l1 , l2 , l3 be nonnegative integers such that l1+l2+l3�
2k+1. If the distribution of X is spherical, then

1
n2

:
n

i, j=1

(X$iXj)
l1 (X$jX� ) l2 (X$iX� ) l3={oP(1),OP(1),

if l2+l3>0 or l1 odd
otherwise.

To highlight the key idea of the proof, let

Vn, k(X1 , ..., Xn)=
1
n2

:
n

i, j=1

hk(Xi , Xj) (2.6)

denote the V-statistic with kernel

hk(x, y)=(x$y)2k+1 (x, y #Rd), (2.7)

and put

h1, k(x)=Ehk(x, X) (x #Rd). (2.8)

The fact that h1, k#0 for spherically distributed X implies a nondegenerate
limiting distribution for nVn, k (see, e.g., Gregory [8]). Since

bdk=Vn, k(S&1�2(X1&X� ), ..., S&1�2(Xn&X� )),

where S&1�2 is the positive definite symmetric square root of S&1, is a
V-statistic with estimated parameters, the idea is to perform an asymptotic
expansion in order to replace bd

k by an asymptotically equivalent V-statistic
without estimated parameters. This will be accomplished at the cost of a
replacement of the kernel hk by a more complicated kernel hk* given below.

Proposition 2.3. If the distribution of X is spherically symmetric with
unit covariance matrix, then

n } bd
k=

1
n

:
n

i, j=1

hk*(Xi , Xj)+oP(1), (2.9)

where

hk*(x, y)=(x$y)2k+1&
(2k+1)! m2k

k ! (d�2)[k] 4k
( |x| 2k+| y|2k) } x$y

+
(d+2k)(2k+1)! m2

2k

k ! d(d�2)[k] 4k
} x$y
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and mr=E |X | r, 1�r�4k+2. Moreover,

Ehk*(x, X )=0, x #Rd. (2.10)

Proof. The first step is to use (2.5) in order to get

n } bdk=
1
n

:
n

i, j=1

[(Xi&X� )$ (Xj&X� )]2k+1+oP(1). (2.11)

To this end, letting Zi=Xi&X� =(Z (1)
i , ..., Z (d)

i )$, (2.5) gives

n } bd
k=

1
n

:
n

i, j=1

(Z$iZj)
2k+1+ :

2k

r=0
\2k+1

r + Dr ,

where Dr=n&1 �n
i, j=1 (Z$iZj)

r (Z$iOP(n&1�2) Zj)
2k+1&r. Since D2k=oP(1)

implies Dr=oP(1) for each r�2k, we have to show D2k=oP(1). Now,
D2k=tr(OP(n&1�2) R2k), where tr denotes trace and

R2k=
1
n

:
n

i, j=1

Zi (Z$iZj)
2k Z$j

= :
d

t1 , ..., t2k=1
\n&1�2 :

n

i=1

Z (t1)
i } } }Z (t2k)

i Zi+
_\n&1�2 :

n

j=1

Z (t1)
j } } }Z (t2k)

j Zj +$.
Noting that E(Z (t1)

1 } } }Z (t2k)
1 Z1)=0 by spherical symmetry, the CLT and

Slutzky's lemma yield R2k=OP(1) and hence D2k=oP(1), as was to be
shown.
From (2.11) we obtain

n } bd
k=�

(2k+1)! (&1) l2+l3

l1 ! l2! l3 ! l4!
Tn(l1 , l2 , l3 , l4)=oP(1), (2.12)

where Tn(l1 , l2 , l3 , l4)=n&1 �n
i, j=1 (X$iXj)

l1 (X$jX� ) l2 (X$iX� )l3 (X� $X� ) l4 and the
sum in (2.12) is over all nonnegative integers l1 , ..., l4 satisfying �4

&=1 l&=
2k+1. Invoking Lemma 2.2, a careful analysis shows that Tn(l1 , l2 , l3 , l4)
is asymptotically negligible except for the cases

(1) l1=2k+1,

(2) l1=2k, l2=1,

(3) l1=2k, l3=1,

(4) l1=2k, l4=1,

(5) l1=2k&1, l2=l3=1.
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We claim that

Tn(2k, 1, 0, 0)=
(2k) ! m2k

k ! (d�2)[k] 4k
}
1
n

:
n

i, j=1

|X j |
2k X$iXj+oP(1), (2.13)

Tn(2k, 0, 0, 1)=
(2k) ! m2

2k

k ! (d�2)[k] 4k
}
1
n

:
n

i, j=1

X$iXj+oP(1), (2.14)

Tn(2k&1, 1, 1, 0)=
(2k) ! m2

2k

k ! d(d�2)[k] 4k
}
1
n

:
n

i, j=1

X$iXj+oP(1) (2.15)

(these terms correspond to the cases (2), (4), and (5), respectively). Note
that cases (2) and (3) are symmetrical with respect to each other. On
combining (2.12)�(2.15), (2.9) follows. To show (2.13), observe that
Tn(2k, 1, 0, 0) equals

1
n

:
n

j, l=1
_ :

d

p1 , ..., p2k=1

E \`
2k

&=1

X ( p&)+ `
2k

&=1

X ( p&)
j & X$jXl+oP(1). (2.16)

For i=1, ..., d, let ni=ni ( p1 , ..., p2k)=*[ j : 1� j�2k, pj=1]. Note that
the expectation in (2.16) vanishes if at least one of the ni is odd. Putting
ni=2li for 1�i�d, the squared-bracket term in (2.16) is

:

l1+ } } } +ld=k
l1 , ..., ld�0

(2k) !
(2l1) ! } } } (2ld) !

} E \`
d

&=1

X (&)2l&+ `
d

&=1

X (&)2l&
j , (2.17)

where, using (2.1), (2.2), and the definition of mr ,

E \`
d

&=1

X (&)2l&+= m2k(2l1) ! } } } (2ld) !
(d�2)[k] 4kl1 ! } } } ld !

.

Plugging this into (2.17) and using the multinomial theorem, (2.13) follows.
To show (2.14), note that, up to terms of order oP(1), Tn(2k, 0, 0, 1)

equals E(X$1X2)
2k } n&1 }�n

i, j=1 X$iXj . Putting

Uj=Xj�|Xj |=(U (1)
j , ..., U (d )

j )$, j=1, 2, (2.18)

and noting that U$1U2 and U (1)
2 have the same distribution, (2.1) and

(2.2) yield E(X$1X2)
2k=E |X1|

2k E |X2 |
2k E(U (1)2k

2 )=m2
2k(2k) !�(4

kk! (d�2)[k]),
from which (2.14) follows. To prove (2.15), observe that

Tn(2k&1, 1, 1, 0)=
1
n

:
n

l, m=1

X$l _ 1n2 :
n

i, j=1

(X$iXj)
2k&1 }XiX$j & Xm ,
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where the matrix within squared brackets equals

E[(X$1X2)
2k&1 X1X$2]+oP(1). (2.19)

With Uj defined in (2.18), we have

E[(X$1X2)
2k&1 X1X$2]=m2

2k } E[(U$1U2)
2k&1 U1U$2].

Since E[(U$1U2)
2k&1 U (i)

1 U ( j)
2 ]=0 if i{ j, and

E[(U$1U2)
2k&1 U (i)

1 U (i)
2 ]=

1
d
} E(U$1U2)

2k=
1
d
} E(U (1)2k

2 )

by symmetry, the reasoning given above shows that the matrix of expecta-
tions in (2.19) is c } Id , where c=m2

2k } (2k) !�(d } (d�2)
[k] 4kk !). This yields

the assertion and completes the proof of (2.9). Since (2.10) follows from the
spherical symmetry of X, the proof of Proposition 2.3 is completed. K

Theorem 2.4. Suppose X has an elliptically symmetric distribution
with expectation + and nonsingular covariance matrix 7. If E[(X&+)$
7&1(X&+)]2k+1<� and P(X=+)=0, then

nbd
k(X1 , ..., Xn) w�

D :
k

j=0

:j, k/2
&(2k+1&2 j) ,

where /2
&(1) , /

2
&(3) , ..., /

2
&(2k+1) are independent /2-variates with degrees of

freedom &(1), ..., &(2k+1), respectively, and &(q) is defined in (1.4). The
weights :0, k , ..., :k, k are given by

:j, k=
(2k+1)! m4k+2

2 j ! (d�2)[2k& j+1] 4k
( j=0, 1, ..., k&1)

and

:k, k=
(2k+1)!

k ! d(d�2)[k] 4k
} \dm4k+2

d+2k
&2m2km2k+2+(d+2k) m2

2k+ ,
where m2 j=E[(X&+)$ 7&1(X&+)] j (1� j�2k+1).

Proof. Although Theorem 2.4 has been stated in a general form, assume
(recall affine invariance) as before that the distribution of X is spherical
with unit covariance matrix, so that m2 j=E |X |2 j. From Proposition 2.3
and the general theory of V-statistics (see, e.g., Gregory [8]), it follows
that nbd

k w�
D � l�1 *lN 2

l , where (Nl) l�1 are independent standard normal
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random variables, and [*l : l�1] are the nonzero eigenvalues correspond-
ing to the operator g[Ag(x)=� hk*(x, y) g( y) PX (dy) acting on the
Hilbert space L2(PX) of measurable functions on Rd that are square-
integrable with respect to PX. To determine *l , we have to solve the
equation

| hk*(x, y) } gl ( y) PX (dy)=*l } gl (x) PX-a.s., (2.20)

where [gl : l�1] is the set of associated orthonormal eigenfunctions, i.e.,
E(gl (X) gm(X ))=1 if l=m and is zero, otherwise. Generally, there is little
hope to solve an integral equation like (2.20) even in the univariate case
and for a ``simple'' kernel. In the present case, however, there is an explicit
solution in terms of spherical harmonics (see Baringhaus and Henze [2]
for the case k=1).
To this end, use the decompositionX=R }U, where R=|X | is independent

of U=X�|X |. Let G be the uniform distribution over Sd&1, the surface of
the unit d-sphere, and write F for the distribution of R. Denoting the left-
hand side of (2.20) by Il , Fubini's theorem gives

Il=|| hk*(x, sw) g l (sw) dG(w) dF(s).

Putting x=rz, where r>0 and z #Sd&1, and inserting the expression for
hk*, it follows that

Il=|| [r2k+1s2k+1(z$w)2k+1&ak(r2k+s2k) rsz$w

+bkrsz$w] gl (sw) dG(w) dF(s), (2.21)

where

ak=
(2k+1)! m2k

k! (d�2)[k] 4k
, bk=

(d+2k)(2k+1)! m2
2k

k ! d(d�2)[k] 4k
.

To solve the equation Il=*l } gl (rz) with Il in (2.21), consider the case
d�3 first. Let C #

q(t) be the Gegenbauer polynomial of degree q and order
#=(d&2)�2 (see Erde� lyi et al. [6, p. 174]). Inserting the expression

t2l+1=
(2l+1)!
22l+1 } :

l

m=0

2l+1+#&2m
m ! #[2l+2&m] C #

2l+1&2m(t) (2.22)
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(see Magnus et al. [18, p. 227]) for t=z$w and t2k+1=(z$w)2k+1 into
(2.21), some algebra gives

Il=
(2k+1)!
22k+1 r2k+1 :

k&1

m=0

2k+1+#&2m
m ! #[2k+2&m]

__| s2k+1 | C #
2k+1&2m(z$w)& gl (sw) dG(w) dF(s)

+
(2k+1)!

k ! (d&2)(d�2)[k] 4k || _
dr2k+1s2k+1

d+2k
&m2k(r2k+s2k) rs

+
(d+2k) m2

2k

d
rs& C #

1(z$w) gl(sw) dG(w) dF(s).

The crucial point now is that there is a complete system [.q, k : k=1, 2, ...,
&(q); q�0] of orthonormal continuous functions .q, k #L2(G) such that

C #
q(z$w)=

#
#+q

:
&(q)

k=1

.q, k(z) .q, k(w) (z, w #Sd&1), (2.23)

where &(q) is given in (1.4) (see Erde� lyi et al. [6, p. 243]). This equation
enables us to separate the variables z and w. Inserting (2.23) into the last
expression for Il yields

Il=
(2k+1)!
22k+1 r2k+1 :

k&1

m=0

#
m! #[2k+1&m] :

&(2k+1&2m)

i=1

__| s2k+1 | .2k+1&2m, i (z) .2k+1&2m, i (w)& gl (sw) dG(w) dF(s)
+

(2k+1)!
k! d(d�2)[k] 4k

:
&(1)

i=1
|| _dr

2k+1s2k+1

d+2k
&m2k(r2k+s2k) rs

+
(d+2k) m2

2k

d
rs& .1, i (z) .1, i (w) g l (sw) dG(w) dF(s).

It is now easily verified that for each m # [0, 1, ..., k&1], the functions

gm, i (sw)=
s2k+1.2k+1&2m, i (w)

-m4k+2

(i=1, 2, ..., &(2k+1&2m))

are orthonormal eigenfunctions of (2.20) with associated eigenvalue

*2k+1&2m=
(2k+1)! m4k+2

2m ! (d�2)[2k&m+1] 4k
,
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where the multiplicity of *2k+1&2m is &(2k+1&2m). Moreover,

gk, i (sw)=
(s2k+1&((d+2k)�d ) m2ks) .1, i (w)

(m4k+2&2((d+2k)�d ) m2km2k+2+(d+2k)2 m2k)
1�2

(i=1, ..., &(1)) are orthonormal eigenfunctions of (2.20) with associated
eigenvalue

*1=
(2k+1)!

k ! d(d�2)[k] 4k \
dm4k+2

d+2k
&2m2km2k+2+(d+2k) m2

2k+ .
To be sure that all nonzero eigenvalues of hk* have been obtained, it
remains to prove

:
k

m=0

&(2k+1&2m) *2k+1&2m=Ehk*(X, X ) (2.24)

(see Serfling [24, p. 226]). Using (1.4), straightforward algebra shows that
(2.24) is equivalent to the combinatorial identity

:
k

m=0

(d&2+2k&2m) ! (d+4k&4m)
m ! 2m(1+2k&2m) !>2k&m

&=0 (d+2&)
=

(d&2)!
(2k+1)!

, (2.25)

which may be proved by induction over d. If d=2 or d=4, (2.25) follows
from Exercise 10 of Riordan [23, p. 34]. To show (2.25) for d=3, note
that, for each l=0, 1, ..., k,

:
l

m=0

3+4k&4m
m ! 2m >2k&m

&=0 (3+2&)
=_l ! 2l `

2k&l&1

&=0

(3+2&)&
&1

(use induction over l ). Putting l=k gives (2.25) for the case d=3. Upon
writing j=k&m in (2.25), we see that, for d�2, (2.25) is equivalent to the
condition

Ad, k=
(d&1)!
(2k+1)!

2kk! `
k&1

&=0

(d+2&),

where

Ad, k= :
k

j=0

(d&2+2 j) !
(1+2 j) ! \

k
j + 2 jj !

(d+4 j)(d&1)
>k+ j

&=k (d+2&)
.

Using the fact that (d+4 j)(d&1)=(d+2 j)(d&1+2 j)&(1+2 j) 2 j, straight-
forward algebra yields the recursion formula Ad+2, k=(d+2k)(d+1) Ad, k

(d�2) which, together with the cases d=2 and d=3, completes the proof
of (2.25).
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For the case d=2, (2.20) may be solved by using Chebyshev polyno-
mials Cr(t)=cos(r } arc cos t) instead of Gegenbauer polynomials (see
Baringhaus and Henze [2, p. 1985], for the case k=1). The details are
omitted. K

3. EXAMPLES

This section illustrates the general result of Theorem 2.4 by giving
explicit formulae for the weights :0, k , ..., :k, k for several parametric families
of elliptically symmetric distributions and the case k=1 and k=2. Under
the conditions of Theorem 2.4, it follows that

n } bd1 w�
D :0, 1/2

(d&1) d(d+4)�6+:1, 1/2
d ,

where

:0, 1=
6 }m6

d(d+2)(d+4)
, :1, 1=

3
d \

m6

d+2
&2m4+d(d+2)+

(see also Theorem 2.2 of Baringhaus and Henze [2]). For the case k=2,
Theorem 2.4 yields

n } bd
2 w�

D :0, 2/2
(d&1) d(d+1)(d+2)(d+8)�120+:1, 2/2

(d&1) d(d+4)�6+:2, 2/2
d ,

where

:0, 2=
120 }m10

d(d+2)(d+4)(d+6)(d+8)
, :1, 2=

60 }m10

d(d+2)(d+4)(d+6)
,

:2, 2=
15

d 2(d+2) \
dm10

d+4
&2m4m6+(d+4) m2

4+ .
For notational simplicity, elliptically symmetric families will be given in
their (reduced) spherically symmetric form with unit covariance matrix.

3.1. The Normal Distribution

In case of normality, we have

m4=d(d+2), m6=d(d+2)(d+4),

m10=d(d+2)(d+4)(d+6)(d+8)
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and thus

:0, 1=:1, 1=6,

:0, 2=120, :1, 2=60(d+8), :2, 2=120(d+5).

Hence Mardia's result [19] nbd
1 w�

D 6/2
d(d+1)(d+2)�6 involving only one

limiting /2-variate does not generalize to the case k�2.

3.2. Symmetric Pearson Type II Distribution

The symmetric multivariate Pearson Type II distribution (see Fang et al.,
[7, Sect. 3.4]), in its reduced form, has the density

f (x)=c(}) } \1& |x|2

d+2}+2+
}

} 1[ |x| 2�d+2}+2],

where }>&1, c(}) is a norming constant, and 1[ } ] denotes the indicator
function. The normal distribution is approached in the limit as }��. For
the Pearson Type II distribution, we have

m4=d(d+2) }
d+2+2}
d+4+2}

,

m6=d(d+2)(d+4) }
(d+2+2})2

(d+4+2})(d+6+2})
,

m10=
d(d+2)(d+4)(d+6)(d+8) } (d+2+2})4

(d+4+2})(d+6+2})(d+8+2})(d+10+2})

and thus

:0, 1=6 }
(d+2+2})2

(d+4+2})(d+6+2})
,

:1, 1=6&
6[d(d+6+2})+16(}+1)]

(d+4+2})(d+6+2})
,

:0, 2=120 }
(d+2+2})4

>5
&=2 (d+2&+2})

,

:1, 2=60(d+8) }
(d+2+2})k

>5
&=2 (d+2&+2})

,

:2, 2=
240 } (d+2}+2)2 }A

(d+4+2}) >5
&=2 (d+2&+2})

,
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where

A=(}+2) d 3+(4}2+16}+28) d 2+(4}3+34}2+66}+112) d

+20}3+64}2+76}+128.

The weights : i, j are increasing functions of } and converge to the ``normal''
values given in 3.1 as }��. Hence, for the Pearson Type II family, the
limiting distributions of nbd

1 and nbd
2 are stochastically increasing with

increasing } and stochastically bounded from above by the corresponding
limits under normality. It may thus be expected that, for each distribution
of the Pearson Type II family, the asymptotic power of a test of the
hypothesis H0 of multivariate normality that rejects H0 for large values of
bd1 or b

d
2 will be below a chosen nominal level. These theoretical findings are

fully corroborated by the empirical results given in Section 5.

3.3. Symmetric Pearson Type VII Distribution
The symmetric multivariate Pearson Type VII distribution, in its reduced

form, has the density

f (x)=c(a) } \1+ |x| 2

2a&d&2+
&a

,

where a>1+d�2 and c(a) is a norming constant (see Fang et al.
[7, Sect. 3.3]). This class consists of distributions with longer tails com-
pared to those of the normal distribution, which is obtained in the limit as
a��. Note that the standing moment condition m4k+2<� holds if a>
2k+1+d�2. For the Pearson Type VII distribution, we have

m4=d(d+2) }
d+2&2a
d+4&2a

,

m6=d(d+2)(d+4) }
(d+2&2a)2

(d+4&2a)(d+6&2a)
,

m10=
d(d+2)(d+4)(d+6)(d+8)(d+2&2a)4

(d+4&2a)(d+6&2a)(d+8&2a)(d+10&2a)
.

Obviously, these moments agree with the corresponding moments of the
Pearson Type II distribution (see 3.2) by letting a=&}. Hence the for-
mulae for the weights :i, j given in Section 3.2 carry over to the present case
by putting }=&a. In view of the discussion at the end of Section 3.2, note
that, for the long-tailed Pearson Type VII family, the limiting distributions
of nbd

1 and nbd
2 are stochastically decreasing as a increases. Further-

more, the corresponding limiting distributions under normality constitute
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stochastic lower bounds. Consequently, although not being consistent
against those distributions from the symmetric Pearson Type VII distribu-
tion that satisfy the moment condition a>2k+1+d�2, the tests for multi-
variate normality based on bd

1 or bd
2 exhibit an asymptotic power that is

above the nominal level, for such alternatives. These findings are in
complete accordance with the finite-sample simulation results presented in
Section 5.

3.4. Symmetric Kotz Type Distribution

As a final example, consider the density

f (x)=c(\) } |x|2(\&1) exp \&2\+d&2
2d

|x| 2+ ,
where \>1&d�2 and c(\) is a norming constant. This class of distribu-
tions is a subclass of the symmetric Kotz type distributions (see Fang et al.
[7, Sect. 3.2]) and includes the normal distribution for \=1.
Straightforward calculations yield

m4=
d 2(d+2\)
d+2\&2

, m6=
d 3(d+2\)(d+2\+2)

(d+2\&2)2
,

m10=
d 5(d+2\+6)(d+2\+4)(d+2\+2)(d+2\)

(d+2\&2)4

and thus

:0, 1=
6d 2(2\+d )(2\+d+2)

(d+2)(d+4)(2\+d&2)2
,

:1, 1=6 }
d 2(d+2\)+8(\&1)2

(d+2)(d+2\&2)2
,

:0, 2=
120 } d 4 >3

j=0 (2\+d+2 j)

(2\+d&2)4 >4
j=1 (d+2 j)

,

:1, 2=
60 } d 4 >3

j=0 (2\+d+2 j)

(2\+d&2)4 >3
j=1 (d+2 j)

,

:2, 2=
120 } d 2(d+2\)[d 2(d+2\+2)(d+2\+3)+8(d+2\)(\&1)2]

(d+2)(d+4)(d+2\&2)4
.
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Since the weights :i, j are decreasing functions of \, the limiting distribu-
tions of nbd

1 and nbd
2 are stochastically decreasing as \ increases. As a con-

sequence, the asymptotic power of tests for normality based on bd1 or bd
2

against the symmetric Kotz distribution with parameters \ is a decreasing
function of \, and it attains the nominal level for the value \=1. As before,
these findings are in complete accordance with the results of a Monte Carlo
study (see Section 5).

4. THE LIMITING DISTRIBUTION OF bd
k IN THE

NONDEGENERATE CASE

We now treat the case that the kernel hk in (2.7) is nondegenerate, that
is,

Var h1, k(X )>0, (4.1)

where h1, k is given in (2.8). As before, assume EX=0 and EXX$=Id
without loss of generality. Since

h1, k(x1 , ..., xd)= :
d

t1 , ..., t2k+1=1

E \ `
2k+1

j=1

X (tj)+ xt1
} } } } } xt2k+1

,

the weak assumption that the support of the underlying distribution has
positive d-dimensional Lebesgue measure implies the equivalence of (4.1)
and the condition ;d

k>0 (see Okamoto [21]). Let Tn, k=( n2)
&1 �1�i< j�n

hk(Xi , Xj), and recall Vn, k from (2.6). Since E |X |4k+2<�, it follows that

Vn, k&Tn, k=oP(n&1�2). (4.2)

In view of the asymptotic normality of U-statistics in the nondegenerate
case (see, e.g., Serfling [24]), this implies a nondegenerate limiting normal
distribution for n1�2(Vn, k&;d

k).

Proposition 4.1. If EX=0, EXX$=Id , E |X |4k+2<�, and Var
h1, k(X)>0, then

bdk=Vn, k&
2k+1

- n
tr(AnBk)&(4k+2) a$kX� +oP(n&1�2),

where

Bk=E[X1(X$1X2)
2k X$2], ak=E[(X$1X2)

2k X2], (4.3)

and An is given in (2.4).
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Proof. Use (2.3) and Lemma 2.1 and proceed by analogy with the
reasoning given in the proof of Proposition 2.3 (see also Lemma 3.1 of
Baringhaus and Henze [2]). K

To state the limiting behavior of bd
k , let uk be the (1+d 2+d )-dimen-

sional vector

uk=(2, &!kb11 , &!kb12 , ..., &!kb1d , &!kb21 , ..., &!kbdd , &2!ka$k)$,
(4.4)

where !k=2k+1, and Bk=(bij)1�i, j�d and ak are defined in (4.3).
Furthermore, let

Zi, k=(h1, k(X i)&;d
k , X

(1)2
i &1, X (1)

i X (2)
i , ..., X (1)

i X (d )
i ,

X (2)
i X (1)

i , ..., X (d )2
i &1, X$i)$, i�1, (4.5)

and write Zk=Z1, k .

Theorem 4.2. Let X have a d-variate distribution PX with expectation +
and nonsingular covariance matrix 7 such that E[(X&+)$ 7&1(X&+)]2k+1

<�. If ;d
k>0 and the support of PX has positive Lebesgue measure, then

- n (bd
k(X1 , ..., Xn)&;d

k) w�
D

N(0, _2),

where

_2=u$kE(ZkZ$k) uk , (4.6)

and uk , Zk in (4.6) are computed from the standardized vector 7&1�2(X&+).

Proof. In view of affine invariance, assume the conditions of Proposi-
tion 4.1. Note that T� n, k&;d

k=2n&1 �n
j=1 (h1, k(X j)&;d

k), where T� n, k=
�n

j=1 E(Tn, k |Xj)&(n&1) ;d
k is the Hajek projection of Tn, k . Since

E(Tn, k&T� n, k)2=O(n&2), (4.2) and Proposition 4.1 imply - n (bd
k&;d

k)=
u$kn&1�2 �n

j=1 Z j, k+oP(1). The result then follows from the multivariate
CLT and the continuous mapping theorem. K

As an example, consider a mixture NMIXd ( p, +1 , +2 , 7) of normal
distributions with equal covariance matrices, i.e., the distribution of
X=SY1+(1&S) Y2 , where S, Y1 , Y2 are independent, P(S=1)=p=
1&P(S=0), 0<p<1, p{1�2, YjtNd (+ j , 7), j=1, 2, +1{+2 . Putting

$=[(+1&+2)$ 7&1(+1&+2)]1�2
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and performing the transformation x[H7&1�2(x&+2), where the ortho-
gonal matrix H maps 7&1�2(+1&+2) into ($, 0, ..., 0)$, we may assume
(recall affine invariance) that X has the same distribution as (T, W2 ,
W3 , ..., Wd)$. Here,

T=
S(W1+$)+(1&S) W1*& p$

(1+ p(1& p) $2)1�2
, (4.7)

andW1 , W2 , ..., Wd , W1* are independent standard normal random variables,
also independent of S. Note that EX=0 and EXX$=Id .
In what follows, only the case k=1 will be treated. Computation of the

limiting variance _2 requires knowledge of the moments t j=ET j of the
random variable T in (4.7). These are given by

t3=
`(1&2p) $3

(1+`$2)3�2
, t4=3+

(1&6`) $4

(1+`$2)2
,

t5=
`(1&2p)[10+(1&2`) $2] $3

(1+`$2)5�2
(4.8)

and

t6=15+
`[15(1&6`) $4+(1&5`(1+2`)) $6]

(1+`$2)3
,

where `= p(1& p) (see also Henze [9]). Some easy calculations show that
the matrix B1=(b ij) defined in (4.3) is given by b11=t23 and bij=0,
otherwise. Moreover, a1 of (4.3) takes the form (t3 , 0, ..., 0)$ which shows
that u1 of (4.4) is the vector u1=(2, &3t23 , 0, ..., 0, &6t3 , 0, ..., 0)$ ending up
with d&1 zeroes. Since ;d

1=t23 and h1, 1(X )=t3T 3, the vector Z1=Z1, 1 of
(4.5) is given by

Z1=(L, M1 , ..., Md , X$)$,

where L=h1, 1(X )&;d
1 ,

M1=(T 2&1, TW2 , TW3 , ..., TWd)$,

M2=(W2T, W 2
2&1, W2W3 , ..., W2Wd)$,

b

Md=(WdT, WdW2 , ..., WdWd&1 , W 2
d&1)$.
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By some algebra, we get E(LX )=(t3t4 , 0, ..., 0)$, E(LM1)=(t3 t5&t23 ,
0, ..., 0)$, E(LMj)=0$ ( j=2, ..., d), E(M1M$1)=diag(t4&1, 1, ..., 1), E(M1M$j)
=2j1 ( j=2, ..., d ), E(XM$1)=t3211 and E(L2)=t23 t6&t43 . Here, 2lm is
shorthand for a d_d matrix having only one nonzero element (=1) in its
(l, m) th place. The evaluation of _2 in (4.6) is now straightforward, and we
have the following result.

Corollary 4.3. If the underlying distribution is the normal mixture
NMIXd (p, +1 , +2 , 7), 0<p<1, p{1�2, then

- n (bd
1&t23) w�

D
N(0, _2),

where

_2=t23 } (35t
2
3+36&12t3 t5&24t4+9t23t4+4t6),

and t3 , t4 , t5 , t6 are given in (4.8).

Since t3=0 if p=1�2, the normal mixture with equal mixing prob-
abilities provides an example of a non-elliptically symmetric distribution
with zero skewness in the sense of Mardia. A careful analysis of the proof
of Proposition 2.3 (to this end, observe that t5=0 if p=1�2) shows that,
for this symmetric normal mixture, we have n } bd

1=n&1 �n
i, j=1 h	 1(Xi , Xj)

+oP(1), where h	 1(x, y)=(x$y)3&3(|x| 2+|y| 2) x$y+3(d+2) x$y is a
degenerate kernel. Hence the limiting distribution of nbd

1 is a weighted
sum of independent /2-variates. It seems to be difficult, however, to obtain
the weights (eigenvalues) in this case where the method of proof of
Theorem 2.4 is not applicable.

5. CONCLUSIONS

Our interest in the generalized skewness statistic bd
k arose from the

problem of testing for multivariate normality. Since the class Nd of non-
degenerate d-variate normal distributions is closed with respect to affine
transformations, there is at least a ``soft argument'' for confining oneself to
affine invariant statistics for this testing problem. While affine invariant
and universally consistent tests for multivariate normality are available
(Baringhaus and Henze [1], Cso� rgo� [4], Henze and Zirkler [12], Henze
and Wagner [14]), there is still a widespread belief that ``directed'' tests
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like, e.g., those based on measures of skewness or kurtosis, should have
specific diagnostic properties. That is, directed tests are presumed to be
able to assess that a distribution is non-normal and at the same time to
indicate the kind of departure from normality. For example, Mardia [19,
p. 523] claims that bd

1 can be used ``to test ;d
1=0 (i.e., the hypothesis of

non-multivariate skewness) for large samples.''
Such a ``directed diagnosis,'' however, is not valid because the critical

value of bd1 is determined under the distributional assumption of multivariate
normality. Consequently, rejection of H0 due to a ``too large'' observed
value of bd

1 casts doubt on H0 , but nothing more can be inferred, at least
with regard to statistical significance. This point is of paramount impor-
tance in order to avoid typical ``diagnostic pitfalls'' in goodness-of-fit
testing, and it has been commented on by many authors (see, e.g., Bera and
John [3], Horswell and Looney [15, 16], Rayner, Best and Mathews
[22], Henze and Klar [13], Henze [10, 11]).
The following results of a Monte Carlo study illustrate the diagnostic

limitations of tests for multivariate normality based on generalized skew-
ness. For the case d=5, n=50 and the nominal level of significance
:=0.05, random samples of size n were generated from each of the families
of spherically symmetric distributions considered in Section 3. The test
statistics are bd

1 and bd
2 , and rejection of the hypothesis H0 of 5-variate

normality is for large values of bd
1 and bd

2 , respectively. Critical values for
bd1 and bd

2 were obtained by simulation; they are based on 50.000 Monte
Carlo replications under H0 .
Each entry in Tables I through III is the number of rejections of H0 out

of 10.000 Monte Carlo replications. Table I gives the results for several
distributions of the symmetric Pearson Type II family (see Subsection 3.2).
Since about 500 significant cases are expected under H0 , the values exhibit
very poor power of (generalized) skewness tests for this class of elliptically
symmetric distributions. This behavior, of course, was anticipated from the
fact that the limiting distributions of bd

1 and bd
2 are stochastically bounded

from above by the corresponding limits under normality (see the discussion
at the end of Subsection 3.2).

TABLE I

Number of Rejections (out of 10.000 Monte
Carlo Replications) of H0 for Symmetric

Pearson II type Distributions

}: 1 4 6 10 20 100
bd
1 : 1 3 12 43 149 408

bd
2 : 0 3 8 41 108 304
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TABLE II

Number of Rejections (out of 10.000 Monte Carlo
Replications) of H0 for the Symmetric Pearson Type VII

Distribution

a: 3 5 10 15 100
bd
1 : 10.000 8.675 3.014 1.636 502

bd
2 : 10.000 9.087 3.683 2.111 667

Likewise, Table II shows estimated power against several members of the
symmetric Pearson Type VII family.
These results which, as compared with the values of Table I, might at

first sight seem striking (note that both families are symmetric!), are in
complete agreement with the discussion at the end of Subsection 3.3. The
very high power for a=3 and a=5 is due to the fact that m6 and m10 are
infinite (for a=3, m4 is also infinite).
Finally, Table III shows the simulation results for the symmetric Kotz

type distribution. Again, these fully corroborate the theoretical findings, as
discussed at the end of Section 3.4. Note that bd2 exhibits higher power than
Mardia's measure bd

2 against Pearson Type VII and symmetric Kotz type
distributions, but is inferior to bd1 against alternatives from the Pearson
Type II family.
To sum up, the generalized skewness test based on bd

k does not reliably
identify how a distribution departs from normality. Although consistent
against a population distribution having positive generalized skewness (this
follows from Theorem 4.2), its power against elliptically symmetric alter-
natives depends on three moments of the Euclidean norm of the standard-
ized distribution (Theorem 2.4).
There will be false acceptance of H0 for a short-tailed non-normal ellipti-

cally symmetric distribution. On the other hand, a long-tailed elliptically
symmetric distribution will lead to the (correct) rejection of H0 . The wrong
diagnosis in the latter case, however, would be rejection of H0 due to
positive skewness.

TABLE III

Number of Rejections (out of 10.000 Monte
Carlo Replications) of H0 for the Symmetric

Kotz Type Distribution

\: &0.25 0 1 2 3
bd
1 : 5.491 3.564 496 35 5

bd
2 : 5.844 3.914 512 76 23
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