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Abstract

This paper studies improvements of multivariate local linear regression. Two intuitively appealing
variance reduction techniques are proposed. They both yield estimators that retain the same asymp-
totic conditional bias as the multivariate local linear estimator and have smaller asymptotic conditional
variances. The estimators are further examined in aspects of bandwidth selection, asymptotic relative
efficiency and implementation. Their asymptotic relative efficiencies with respect to the multivari-
ate local linear estimator are very attractive and increase exponentially as the number of covariates
increases. Data-driven bandwidth selection procedures for the new estimators are straightforward
given those for local linear regression. Since the proposed estimators each has a simple form, imple-
mentation is easy and requires much less or about the same amount of effort. In addition, boundary
corrections are automatic as in the usual multivariate local linear regression.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Nonparametric regression methods are useful for exploratory data analysis and for repre-
senting underlying features that cannot be well described by parametric regression models.
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In the recent two decades, many attentions have been paid to local polynomial modeling for
nonparametric regression which was first suggested by Stone [10] and Cleveland [2]. Fan [3]
and many others investigated the theoretical and numerical properties. Ruppert and Wand
[8] established theoretical results for local polynomial regression with multiple covariates.
Wand and Jones [12], Fan and Gijbels [5] and Simonoff [9] provided excellent reviews. We
consider reducing variance in multivariate local linear regression. This is of fundamental
interests since local linear techniques are very useful and efficient in a wide range of fields
including survival analysis, longitudinal data analysis, time series modeling and so on.

The nonparametric regression model with multiple covariates is as follows

Yi = m(Xi) + �1/2(Xi) εi, (1.1)

where {Xi = (Xi1, . . . , Xid)T }ni=1 are i.i.d. random vectors with density function f and
independent of ε1, . . . , εn, which are i.i.d. random variables with mean zero and variance
one. The local linear estimator of the conditional mean function m(·) at x = (x1, . . . , xd)T

is �̂, the solution for � to the following locally kernel weighted least-squares problem

min
�,�

n∑
i=1

{
Yi − � − �T (Xi − x)

}2 �d
j=1K

(
Xij − xj

bjh

)
, (1.2)

where K(·) is a one-dimensional kernel function, h > 0, and bi > 0, i = 1, . . . , d,
are constants. Here b1, . . . , bd are tuning parameters which allow us to choose different
bandwidths for each direction: in (1.2) the bandwidth for kernel smoothing along the ith
covariate is bih, i = 1, . . . , d. The kernel weight function in (1.2) is taken as a product
kernel and the bandwidth matrix H 1/2 = diag{hb1, . . . , hbd} is diagonal. From standard
weighted least-squares theory, the local linear estimator is given by

m̂(x) = eT (XT
x WxXx)

−1XT
x WxY, (1.3)

where e = (1, 0, . . . , 0)T is a (d + 1)-vector, Y = (Y1, . . . , Yn)
T ,

Wx = diag

{
�d

j=1K

(
X1j − xj

bjh

)
, . . . ,�d

j=1K

(
Xnj − xj

bjh

)}
,

Xx =
⎛⎝ 1 (X1 − x)T

...
...

1 (Xn − x)T

⎞⎠ .

Define

B = diag{b2
1, . . . , b

2
d}, �2(K) =

∫
s2K(s) ds, R(K) =

∫
K2(s) ds,

M2(x) =

⎛⎜⎜⎜⎜⎜⎝
�2

�x1�x1
m(x), . . . ,

�2

�x1�xd

m(x)

...
...

...

�2

�xd�x1
m(x), . . . ,

�2

�xd�xd

m(x)

⎞⎟⎟⎟⎟⎟⎠ .
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If x is an interior point, Ruppert and Wand [8] showed that, under regularity conditions

E
{
m̂(x) − m(x)

∣∣X1, . . . , Xn

} = 1
2 h2�2(K) tr

{
BM2(x)

} + op

(
h2), (1.4)

Var
{
m̂(x)

∣∣X1, . . . , Xn

} = �(x)

nhdf (x)�d
i=1bi

R(K)d
{
1 + op(1)

}
. (1.5)

Here, that x is an interior point means that the set Sx,K = {
(z1, . . . , zd)T : �d

j=1K
(
(zj −

xj )/(bjh)
)

> 0
}
, i.e. support of the local kernel weight function in the local least-squares

problem (1.2), is entirely contained in the support of the design density f. Expressions (1.4)
and (1.5) reveal behaviors of m̂(x). The conditional variance has a slower rate of convergence
as the number of covariates d increases and the conditional bias is of the same order h2 for any
value of d. Performance of m̂(x) can be measured by the asymptotically optimal conditional
mean-squared error, i.e. the asymptotic conditional mean-squared error minimized over all
bandwidths. It has the order n−4/(d+4) and deteriorates for larger values of d. This is known
as the curse of dimensionality problem. It occurs naturally because, with the same sample
size, the design points X1, . . . , Xn are much less dense in higher dimensions so the variance
inflates to a slower rate. Therefore, reducing variance of multivariate local linear regression
becomes very important and it is investigated in the subsequent sections.

We propose two types of estimators of m(x) that improve the multivariate local linear
regression estimator m̂(x) in terms of reducing the asymptotic conditional variance while
keeping the same asymptotic conditional bias. The first variance reducing estimator is
introduced in Section 2.1. It has a very appealing property of achieving variance reduction
while requiring even much less computational effort, by a factor decreasing exponentially
in d, than the original local linear estimator. Our second method, proposed in Section 2.2,
is even more effective in the sense that its pointwise relative efficiency with respect to m̂(x)

is uniform and is the best that the first method can achieve at only certain points. The way
it is constructed can be easily explained by the first method.

Section 2 introduces the variance reducing techniques and investigates the asymptotic
conditional biases and variances. Bandwidth selection, the most crucial problem in non-
parametric smoothing, is discussed in Section 3. Section 4 studies the asymptotic relative
efficiencies and issues such as implementation and boundary corrections. A simulation
study and a real application are presented in Section 5. All proofs are given in Section 6.

2. Methodology

2.1. Method I—fixed local linear constraints

Let G = (G1, . . . , Gd)T be a vector of odd integers, and for each i = 1, . . . , d let
{�i,j : j = 1, . . . , Gi} be an equally spaced grid of points with bin width

�ibih = �i,j+1 − �i,j for j = 1, . . . , Gi − 1,

where �i > 0, i = 1, . . . , d, are given tuning parameters. In practice, choosing �i ∈
[0.5, 1.5], i=1, . . ., d, for moderate sample sizes is preferred. Then �={

(�1,u1 , . . ., �d,ud
)T :
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ui = 1, . . . , Gi for each i = 1, . . . , d
}

is a collection of grid points in the range D =
[�1,1, �1,G1 ] × · · · × [�d,1, �d,Gd

] ⊂ Rd . Denote

Dv = [�1,2v1 , �1,2v1+2] × · · · × [�d,2vd
, �d,2vd+2],

where 2vi ∈ {1, 3, . . . , Gi − 2} for i = 1, . . . , d. Then the Dv’s form a partition of D. And
for any fixed point x = (x1, . . . , xd)T ∈ D, there exist two vectors v = (v1, . . . , vd)T and
r = (r1, . . . , rd)T , where ri ∈ [−1, 1] for i = 1, . . . , d, such that x is expressed as

xi = �i,2vi+1 + ri�ibih for each i = 1, . . . , d. (2.1)

So the vector v indicates the subset Dv of D that x belongs to and the vector r marks the
location of x relative to the set of grid points that fall within Dv , i.e.,

�v = � ∩ Dv = � ∩ [�1,2v1 , �1,2v1+2] × · · · × [�d,2vd
, �d,2vd+2]

= {
x∗(k1, . . . , kd)=(�1,2v1+k1 , . . . , �d,2vd+kd

)T :(k1, . . . , kd)T ∈{0, 1, 2}d}.
(2.2)

The local linear estimator m̂(x) involves an inverse operation associated with the local
design matrix in which only a few design points have positive weights, see (1.2) and (1.3).
That contributes much instability to m̂(x). Therefore, our idea of variance reduction in local
linear estimation of m(x) at any x ∈ Dv ⊂ D is the following. Given {m̂(�) : � ∈ �},
i.e. the local linear estimates evaluated over �, we form a linear combination of the values
m̂(�), � ∈ �v ⊂ �, to be a new estimate of m(x) instead of recomputing m̂(x) at x as
in (1.3). In this way the resultant estimate is not allowed to differ too much from the
values m̂(�), � ∈ �v , where �v is a degenerate subset of Dv , and its source of variability
is restricted to their variances and covariances. In other words, our new estimator at any
x ∈ Dv is constrained by m̂(�), � ∈ �v , and in general will have a smaller variance than
m̂(x). Meanwhile, to ensure the asymptotic conditional bias unchanged, the new estimator
has to be subject to certain moment conditions. This can be accomplished by forcing the
coefficients in the linear combination to fulfill the corresponding requirements.

Formally, put � = (�1, . . . , �d)T and let

A0(s) = s(s − 1)

2
, A1(s) = 1 − s2, A2(s) = s(s + 1)

2
. (2.3)

Our first variance reduced estimator is defined as

m̃(x; r, �) =
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
m̂
(
x∗(k1, . . . , kd)

)
=

∑
x∗(k1,...,kd )∈�v

{
�d

i=1Aki
(ri)

}
m̂
(
x∗(k1, . . . , kd)

)
. (2.4)

That is, m̃(x; r, �) is a linear combination of m̂(�), � ∈ �v ⊂ �, the original local linear
estimates at the 3d grid points in �v ⊂ Dv where x ∈ Dv .

Since the functions A0(s), A1(s) and A2(s) satisfy A0(s) + A1(s) + A2(s) = 1 for all
s ∈ [−1, 1], it is clear from (2.3) and (2.4) that m̃(x; r, �) = m̂(x) for all x ∈ � and of
course m̃(x; r, �) and m̂(x) have the exactly same finite and large sample behaviors over
�. So the interesting part is D \ � where m̃(x; r, �) and m̂(x) are not equal. The fact
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that m̃(x; r, �) has a smaller variance than m̂(x) for all x ∈ D \ � can be explained in
two ways. First, compared to m̂(x), m̃(x; r, �) is constructed using more data points as
the collection {m̂(�) : � ∈ �v} is based on observations with their X-values falling in a
larger neighborhood of x. Another reason is that m̃(x; r, �) is constrained by the local linear
estimates m̂(�), � ∈ �v , instead of being built from a separate local linear fitting or in any
modified way, so its source of variation is restricted to the local linear fittings at � ∈ �v .

Concerning the bias of m̃(x; r, �) as an estimator ofm(x), the expected values of m̂(�), � ∈
�v , differ from m(x) by more than the usual h2-order bias of m̂(x). For m̃(x; r, �) to have the
same asymptotic bias as m̂(x), noting that points in �v are all distant from x at the order h,
the coefficients in the linear combination defining m̃(x; r, �) have to sum up to one and can-
cel the extra order-h and order-h2 biases contributed by m̂(�), � ∈ �v . Since A0(s), A1(s)

and A2(s) defined in (2.3) satisfy conditions (6.2), the coefficients �d
i=1Aki

(ri) in the linear
combination defining m̃(x; r, �) fulfill these requirements.

Throughout this paper we assume the following regularity conditions:

(A1) The kernel K is a compactly supported, bounded kernel such that �2(K) ∈ (0, ∞);
(A2) The point x is in the support of f. At x, � is continuous, f is continuously differentiable

and all second-order derivatives of m are continuous. Also, f (x) > 0 and �(x) > 0;
(A3) The bandwidth h satisfies h = h(n) → 0 and nhd → ∞ as n → ∞.

Our main result is as follows.

Theorem 1. Suppose that x is any point in D with the corresponding vectors v and r as
in (2.1). Assume that every element of �v is an interior point. Then, under conditions
(A1)–(A3), as n → ∞,

E
{
m̃(x; r, �) − m(x)

∣∣X1, . . . , Xn

} = 1
2 h2�2(K) tr

{
BM2(x)

} + op

(
h2), (2.5)

Var
{
m̃(x; r, �)

∣∣X1, . . . , Xn

} = �(x)

nhdf (x)�d
i=1bi

�d
i=1

×{R(K)−r2
i (1−r2

i )C(�i )
}+op

{
(nhd)−1}, (2.6)

where

C(s) = 3
2 C(0, s) − 2C( 1

2 , s) + 1
2 C(1, s)

C(s, t) =
∫

K(u − st)K(u + st) du.

Hence, from (1.4), (1.5), (2.5) and (2.6), m̂(x) and m̃(x; r, �) have the same asymptotic
conditional bias and their asymptotic conditional variances differ only by the constant
factors �d

i=1R(K) and �d
i=1

{
R(K) − r2

i (1 − r2
i )C(�i )

}
. Therefore, comparison between

the asymptotic conditional variances lies on the vector � of the binwidths for � and the
vector r indicating the location of x in Dv ⊂ D, but not the vector v. The two quantities
�d

i=1R(K) and �d
i=1

{
R(K) − r2

i (1 − r2
i )C(�i )

}
are equal when r2

i (1 − r2
i )C(�i ) = 0 for

i = 1, . . . , d. Concerning �, C(�1) = · · · = C(�d) = 0 if and only if �1 = · · · = �d = 0,
which corresponds to m̃(x; r, �) = m̂(x) for all x ∈ D and is not meaningful at all. The
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case that some �i are zero is not of any interest either, since in that case � is degenerate
in the sense that it does not span D. So we are only interested in the case where all the bin
widths are positive:

�i > 0, i = 1, . . . , d.

This condition is assumed throughout this paper. As for r, note that r2
i (1 − r2

i ) = 0 if and
only if ri ∈ {−1, 0, 1}. Under the assumption that �i > 0, i = 1, . . . , d, the two asymptotic
conditional variances are equal if and only if ri ∈ {−1, 0, 1} for all i = 1, . . . , d and that
corresponds to x ∈ �, which coincide with the fact that m̃(x; r, �) = m̂(x) for x ∈ �. On
the other hand, r2

i (1 − r2
i ) > 0 for all ri ∈ [−1, 1] \ {−1, 0, 1} and, for commonly used

kernels, such as the Epanechnikov kernel K(u) = 0.75(1 − u2)I (−1 < u < 1) and the
Normal kernel K(u) = exp(−u2/2)/

√
2�, C(s) > 0 for all s > 0; see [1]. Hence we have,

for all x ∈ D \ �,

Var
{
m̃(x; r, �)

∣∣X1, . . . , Xn

}
< Var

{
m̂(x)

∣∣X1, . . . , Xn

}
asymptotically.

Ratio of the asymptotic conditional variance of m̃(x; r, �) to that of m̂(x) is

�d
i=1

{
R(K)

R(K) − r2
i (1 − r2

i )C(�i )

}
.

Given B and �, this ratio, as well as the pointwise asymptotic relative efficiency of m̃(x; r, �)

with respect to m̂(x), differs as x varies in Dv . And, irrelevant to the vector v, m̃(x; r, �) at-
tains the most relative variance reduction when x has its associated vector r = (r1, . . . , rd)T

taking the values ri = ±√
1/2 for all i = 1, . . . , d. That is, within each Dv , m̃(x; r, �) is

asymptotically most efficient relative to m̂(x) at the 2d points

x = (�1,2v1 , . . . , �d,2vd
)T + h

(
(1 + r1)�1b1, . . . , (1 + rd)�dbd

)T
,

r ∈ {−1/
√

2, 1/
√

2}d . (2.7)

And the maximum is uniform, hence unique, across all such points and over all subsets Dv

of D. Asymptotic relative efficiency of m̃(x; r, �) with respect to m̂(x) is investigated in
further details in Section 4.1.

2.2. Method II—varying local linear constraints

As observed in Section 2.1, our first variance reduced estimator m̃(x; r, �) improves m̂(x)

in a nonuniform manner as x varies in D. And the same best pointwise relative variance
reduction occurs at the 2d points given in (2.7) in each subset Dv of D. Our second variance
reducing estimator is then constructed to achieve this best relative efficiency everywhere.
The approach is that, fixing at any vector r ∈ { − 1/

√
2, 1/

√
2
}d and for each x, evaluate

the usual local linear estimates at 3d points surrounding x and then linearly combine these
estimates to form a new estimator in the same way as in Section 2.1. But now these 3d

neighboring points are determined by x and r and hence differ as x changes.
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Consider that given both B and � being positive vectors. Fix any r = (r1, . . . , rd)T ∈
{−1/

√
2, 1/

√
2}d . Then, for every x where m(x) is to be estimated, let

�x,r = x − h
(
(1 + r1)�1b1, . . . , (1 + rd)�dbd

)T
,

�x,r = {
x∗
k1,...,kd

(x; r) = �x,r + h (k1�1b1, . . . , kd�dbd)T : (k1, . . . , kd)T

∈ {0, 1, 2}d}.
Define a variance-reduced estimator of m(x) as

m̃r (x; �) =
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1 Aki
(ri)

}
m̂
(
x∗
k1,...,kd

(x; r)
)

=
∑

x∗
k1,...,kd

(x;r)∈�x,r

{
�d

i=1Aki
(ri)

}
m̂
(
x∗
k1,...,kd

(x; r)
)
.

Thus m̃r (x; �) is a linear combination of the local linear estimates over �x,r and m̃(x; r, �)

is a linear combination of the local linear estimates at �v . The coefficients in the linear
combinations are parallel. These facts explain clearly that m̃r (x; �) enjoys the same variance
reducing property as m̃(x; r, �). The main difference between m̃r (x; �) and m̃(x; r, �) is that
the set �x,r in the definition of m̃r (x; �) varies as x changes and r ∈ {−1/

√
2, 1/

√
2}d is

fixed, while the grid �v for defining m̃(x; r, �) is fixed for all x ∈ Dv = [�1,2v1 , �1,2v1+2]×
· · · × [�d,2vd

, �d,2vd+2] and r depends on x. See also (2.7). Again, �1, . . . , �d are given
tuning parameters and, for moderate sample sizes, choosing �i ∈ [0.5, 1.5], i = 1, . . . , d,
is preferred. If support of X is bounded, say Supp(X) = [0, 1]d , then to keep �x,r within
Supp(X), in practice we take �i (xi) = min

{
�i , xi/[(1+√

1/2)h], (1−xi)/[(1+√
1/2)h]},

i = 1, . . . , d, for given �1, . . . , �d .
The following theorem follows immediately from Theorem 1.

Theorem 2. Suppose that r is any given vector in {−1/
√

2, 1/
√

2}d and every element of
�x,r is an interior point. Then, under conditions (A1)–(A3), as n → ∞,

E
{
m̃r (x; �) − m(x)

∣∣X1, . . . , Xn

} = 1
2 h2�2(K) tr

{
BM2(x)

} + op

(
h2), (2.8)

Var
{
m̃r (x; �)

∣∣X1, . . . , Xn

} = �(x)

nhdf (x)�d
i=1bi

�d
i=1

{
R(K) − C(�i )/4

}
×{1 + op(1)

}
. (2.9)

Therefore the asymptotic conditional biases of m̃r (x; �) and m̂(x) are again the same. And
the ratio of the asymptotic conditional variances is constant over all values of x satisfying
the conditions in Theorem 2.

There are 2d such estimators indexed by r ∈ {−1/
√

2, 1/
√

2
}d . For a particular value of r,

since the set �x,r is skewed around x, i.e. the 3d points in �x,r are asymmetrically distributed
about x, finite sample bias of m̃r (x; �) may be more than the asymptotic prediction. A way
to avoid potential finite sample biases arising from this skewness is to take an average of all
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the 2d estimates. That is, given B and �, the averaged variance reduced estimator is defined
as

m̄(x; �) = 2−d
∑

r∈{−1/
√

2,1/
√

2}d
m̃r (x; �),

for every x. The following theorem is proved in Section 6.

Theorem 3. Suppose that every element of�x,r is an interior point for every r ∈ {−1/
√

2, 1
/
√

2}d . Then, under conditions (A1)–(A3), as n → ∞,

E
{
m̄(x; �) − m(x)

∣∣X1, . . . , Xn

} = 1
2 h2�2(K) tr

{
BM2(x)

} + op

(
h2), (2.10)

Var
{
m̄(x; �)

∣∣X1, . . . , Xn

} = �(x)

nhdf (x)�d
i=1bi

�d
i=1

{
R(K) − C(�i )

4
− D(�i )

2

}
+op

{
(nhd)−1}, (2.11)

where

D(s) = C(0, s) − 1

4
C(s) − 1 + √

2

4
C

(√
2 − 1

2
, s

)
− 3 + 2

√
2

16
C

(
2 − √

2

2
, s

)

−1

8
C

(√
2

2
, s

)
− 1 − √

2

4
C

(√
2 + 1

2
, s

)
− 3 − 2

√
2

16
C

(√
2 + 2

2
, s

)
.

The quantity D(�i ) in (2.11) is always nonnegative for �i �0, see [1]. Therefore, from
(2.8)–(2.11), besides being equally biased asymptotically as m̃r (x; �), m̄(x; �) has an even
smaller asymptotic conditional variance.

3. Bandwidth selection

The asymptotically optimal local bandwidth that minimizes the asymptotic conditional
mean-squared error of m̂(x) is

h0(x) =
[

�(x)R(K)d

nf (x)�2(K)2 tr{BM2(x)}2�d
i=1bi

]1/(d+4)

, (3.1)

and those for m̃(x; r, �), m̃r (x; �) and m̄(x; �) are respectively

h1(x) = B1(x, r; �) h0(x), h2(x) = B2(�) h0(x), h3(x) = B3(�) h0(x), (3.2)

where

B1(x, r; �) = �d
i=1

[{
R(K) − r2

i (1 − r2
i )C(�i )

}
/R(K)

]1/(d+4)

,

B2(�) = �d
i=1

[{
R(K) − C(�i )/4

}
/R(K)

]1/(d+4)

,
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B3(�) = �d
i=1

[{
R(K) − C(�i )/4 − D(�i )/2

}
/R(K)

]1/(d+4)

.

Many popular and reliable data-driven bandwidth selection rules for kernel smoothing are
constructed based on the asymptotically optimal bandwidth expressions. Note that C(�i )’s
and D(�i )’s in (3.2), relating the asymptotically optimal local bandwidths, are all constants
determined by � and the kernel K. Then an important implication of (3.2) is that data-
based local bandwidth selection for any of the proposed estimators m̃(x; r, �), m̃r (x; �) and
m̄(x; �) is simply a matter of adjusting any local bandwidth selector for m̂(x) by multiplying
the constant factors accordingly.

Asymptotically optimal global bandwidths for a kernel estimator m̄(x; h) of m(x) based
on bandwidth h are usually derived from global measures of discrepancy such as

IAMSE
(
m̄; h

) =
∫

D

AMSE
{
m̄(x; h)

}
f (x) w(x) dx, (3.3)

where AMSE
{
m̄(x; h)

}
is the asymptotic conditional mean-squared error of m̄(x; h) and

w(x) is a known weight function. Asymptotically optimal global bandwidths for m̃(x; r, �)

and m̂(x) that minimize this IAMSE measure with respect to h usually do not admit the
simple relation the local counterparts have in (3.2). The reason is that the relative variance
reduction achieved by m̃(x; r, �) is nonuniform over every Dv . However, suppose that the
conditional variance function �(x) has a low curvature within each Dv . Then, since the bin
widths �ibih, i = 1, . . . , d, of � are all of order h, a sensible data-driven global bandwidth
for m̃(x; r, �) can be obtained from multiplying one for m̂(x) by the constant factor[ ∫

D

�d
i=1

{
R(K)−r2

i (1−r2
i )C(�i )

}
w(x) dx

/∫
D

R(K)d w(x) dx

]1/(d+4)

, (3.4)

see (1.4), (1.5), (2.5) and (2.6). Hence, the task of automatically choosing a global bandwidth
for the proposed estimator m̃(x; r, �) can be done analogously, or at least with not much
more difficulty, as that for m̂(x).

Denote as h0, h2 and h3 the asymptotically optimal global bandwidths of m̂(·), m̃r (·; �)

and m̄(·; �). They are defined as the bandwidths minimizing the global measure in (3.3) for
the respective estimators, with D being the set of points where the estimators are all defined.
Then, from (2.5), (2.6), (2.8)–(2.11),

h2 = B2(�) h0, h3 = B3(�) h0, (3.5)

where B2(�) and B3(�) are exactly as given in (3.2). The constants B2(�) and B3(�) depend
only on the known kernel function K and the given bin width vector �. Hence, automatic
global bandwidth selection procedures for both m̃r (x; �) and m̄(x; �) can be easily estab-
lished from adjusting those for the usual multivariate local linear estimator m̂(x) by the
appropriate constants. For example, Ruppert [7] and Yang and Tschernig [11] established
automatic bandwidth procedures for multivariate local linear regression. Thus the new es-
timators m̃r (x; �) and m̄(x; �) both enjoy the appealing advantage that they achieve a great
extent of variance reduction and improvement of efficiency without introducing any fur-
ther unknown factors to bandwidth selection, the most important issue in nonparametric
smoothing.
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All the above adjustments are rather easy compared to bandwidth selection problems
created by other modifications of local linear estimation, which usually change both the
asymptotic conditional bias and variance. The reason for this major advantage is that the
pointwise asymptotic conditional bias is unaffected everywhere no matter which of the
variance reduction methods is applied. An even more promising feature of both m̃r (x; �)

and m̄(x; �) is that they each has its pointwise asymptotic variance as the same constant
multiple of that of m̂(x) at all x.

4. Comparisons

This section is devoted to examine in details impacts of the new estimators on several
essential issues in nonparametric smoothing, including relative efficiency, implementation
and boundary effects.

4.1. Relative efficiencies

The pointwise asymptotically optimal conditional mean-squared error of m̂(x), achieved
by h0(x) in (3.1), is

AMSE
{
m̂(x); h0(x)

} = 5

4

{
�(x)R(K)d

nf (x) �d
i=1bi

}4/(d+4)

×
[
�2(K)2 tr{BM2(x)}2

]d/(d+4)

. (4.1)

The asymptotically optimal local bandwidths in (3.2) respectively yield the pointwise
asymptotically optimal mean-squared errors of m̃(x; r, , �), m̃r (x; �) and m̄(x; �) as

AMSE
{
m̃(x; r, �); h1(x)

} = B1(x; r, �)4 AMSE
{
m̂(x); h0(x)

}
,

AMSE
{
m̃r (x; �); h2(x)

} = B2(�)4 AMSE
{
m̂(x); h0(x)

}
,

AMSE
{
m̄(x; �); h3(x)

} = B3(�)4 AMSE
{
m̂(x); h0(x)

}
.

Thus, given B and �, the pointwise asymptotic relative efficiencies of the new estimators
with respect to m̂(x) are

Eff
{
m̃(x; r, �), m̂(x)

} = B1(x; r, �)−4, (4.2)

Eff
{
m̃r (x; �), m̂(x)

} = B2(�)−4, Eff
{
m̄(x; �), m̂(x)

} = B3(�)−4, (4.3)

for every x. Similarly, taking the asymptotically optimal global bandwidths in (3.5) yields
that the global asymptotic relative efficiencies of m̃r (x; �) and m̄(x; �) with respect to m̂(x)

are

Eff
{
m̃r (·; �), m̂(·)} = B2(�)−4, Eff

{
m̄(·; �), m̂(·)} = B3(�)−4. (4.4)

Therefore, for each of m̃r (x; �) and m̄(x; �), local and global asymptotic relative efficiencies
compared to m̂(x) are the same and depend only on � and K. Global asymptotic relative
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Table 1
Relative efficiencies Eff

{
m̃r (·; �), m̂(·)

}
(upper half) and Eff

{
m̄(·; �), m̂(·)

}
(lower half) when �1 = · · · = �d =

�0 and when K is the Epanechnikov kernel

�0 d = 1 d = 2 d = 3 d = 4 d = 5

0.6 1.064 1.110 1.143 1.169 1.189
0.8 1.088 1.151 1.198 1.235 1.264
1.0 1.113 1.195 1.257 1.306 1.345
1.2 1.166 1.292 1.391 1.469 1.533
1.6 1.293 1.535 1.735 1.902 2.043
2.0 1.456 1.871 2.238 2.560 2.842

0.6 1.089 1.153 1.201 1.238 1.268
0.8 1.121 1.210 1.278 1.332 1.375
1.0 1.168 1.295 1.394 1.473 1.538
1.2 1.237 1.425 1.576 1.700 1.804
1.6 1.393 1.737 2.033 2.288 2.509
2.0 1.580 2.142 2.663 3.136 3.560
2/(

√
2 − 1) 2.536 4.716 7.345 10.240 13.260

efficiency of m̃(x; r, �) with respect to m̂(x) has a more complex form since the pointwise
relative variance reduction is nonuniform. However, it is well approximated by a simple
expression, not elaborated here, arising from the constant adjustment (3.4) to the global
bandwidth.

Rewrite the pointwise and global asymptotic relative efficiencies B2(�)−4 and B3(�)−4,
in (4.3) and (4.4), as

B2(�)−4 = �d
i=1 S(�i )

−4/(d+4), B3(�)−4 = �d
i=1 T (�i )

−4/(d+4),

where S(u) = {
R(K)−C(u)/4

}
/R(K) and T (u) = {

R(K)−C(u)/4 −D(u)/2
}
/R(K).

Consider the simplest case that �1 = · · · = �d = �0. Then

Eff
{
m̃r (x; �), m̂(x)

} = Eff
{
m̃r (·; �), m̂(·)} = S(�0)

−4d/(d+4),

Eff
{
m̄(x; �), m̂(x)

} = Eff
{
m̄(·; �), m̂(·)} = T (�0)

−4d/(d+4). (4.5)

For commonly used kernels, S(�0)
−1 is greater than one for all �0 > 0, increases in �0, and

has an upper limit 8/5. Also, T (�0)
−1 is greater than one for all �0 > 0, increases in �0, and

has an upper limit 16/5. If K is supported on [−1, 1], the respective upper limits occur when
�0 = 2 and �0 = 2/(

√
2 − 1) in which case variances of the proposed estimators consist of

only variances and no covariance of the local linear estimates in the linear combinations.
Then, from (4.5), an important property of our variance reduction techniques is that the
relative efficiency improvements increase as the dimensionality d of the covariates X =
(X1, . . . , Xd)T grows. Table 1 contains some values of S(�0)

−4d/(d+4) and T (�0)
−4d/(d+4)

when K is the Epanechnikov kernel.
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4.2. Implementation

Since there is no parametric structural assumptions on the unknown regression function
m(·) in nonparametric smoothing, nonparametric regression estimators are usually evaluated
over a range of x-values in practice. Consider computing estimators of m(x) over a fine grid
�0 to provide sensible comprehension of the regression function m(·) over a range of
interest. Then the local linear estimator m̂(x) requires to perform the local least-squares
fitting (1.2) at every x ∈ �0.

To compute our first variance reduced estimator m̃(x; r, �) for all x ∈ �0 one can pro-
ceed as follows. Form D and � as in Section 2.1 such that D covers �0 and � is coarser
than �0, and then compute the estimates m̃(x; r, �), x ∈ �0, using m̂(�), � ∈ �, as de-
scribed in Section 2.1. One appealing feature of m̃(x; r, �) is that it is very easy to imple-
ment since the coefficients in the linear combination are just products of the simple one-
dimensional functions A0, A1 and A2. Therefore, implemented in the above-mentioned way,
m̃(x; r, �) amounts to a considerable saving of computational time compared to m̂(x). This
is a particularly important advantage in the multivariate case. For example, if the number
of grid points at each dimension in � is a fixed proportion of that in �0, then the num-
ber of evaluations of the local linear estimator is reduced exponentially as the dimension
d increases. Hence, the better asymptotic conditional mean-squared error performance of
m̃(x; r, �) compared to m̂(x) is true at virtually little cost but a great saving of computational
effort.

The estimators m̃r (x, �) and m̄(x, �) are more computationally involved. For example, in
order to evaluate m̃r (x, �) at each x, one needs to calculate the 3d local linear estimates m̂(�),
� ∈ �x,r . In a naive way, that requires 3d times the effort compared to what m̂(x) needs.
Fortunately, there are ways to avoid such an increase of computational effort. Suppose that
again m̃r (x, �) is to be evaluated over a grid �0. One approach is to take the bin widths
of the grid �0 to be in proportions to the bin widths �i bi h, i = 1, . . . , d, of �x,r so that
m̂(�), � ∈ �x,r , can be reused for other values of x ∈ �0. Also, the set of coefficients
in the linear combination is the same for all x ∈ �0 so needs to be evaluated once only.
Hence, in this manner, m̃r (x, �) is computed with about the same amount of effort as the
local linear estimator m̂(x). The estimator m̄(x, �) can be constructed in a similar way to
alleviate computational effort.

4.3. Behaviors at boundary regions

One reason that the local linear technique is very popular in practice and in many contexts
is that it does boundary correction automatically. For instance, when x is a boundary point,
the conditional bias and variance of m̂(x) are both kept at the same orders as in the interior.
Theorem 2.2 of Ruppert and Wand [8] formally defines a boundary point in multivariate
local linear regression and provides asymptotic expressions of the conditional bias and
variance. The theorem shows that only the constant factors involving K and x are changed
and the constant factors depend on how far, relative to the bandwidth matrix, x is away from
the boundary.

Clearly from the form of m̃(x; r, �), Theorem 1 can be extended to include the case where
�v is not entirely contained in the interior, so that asymptotic results of the conditional bias
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and variance of m̃(x; r, �) are given for every x ∈ D. This is not elaborated here because
it is straightforward but the notation becomes much more complicated. One can show that
the conditional bias and variance is of the same orders at all x ∈ D as long as �v is in the
support of f, which is of course true in general. Therefore, m̃(x; r, �) also achieves automatic
boundary corrections.

For a boundary point x, comparison between the conditional variances of m̂(x)

and m̃(x; r, �) becomes tedious as the constant coefficients are both very complex.
However, we can argue that Var

{
m̃(x; r, �)

∣∣X1, . . . , Xn

}
is again asymptotically smaller

than Var
{
m̂(x)

∣∣X1, . . . , Xn

}
at boundary regions in the following way. Our esti-

mator m̃(x; r, �) is a linear combination of m̂(�), � ∈ �v . It is well known that
Var

{
m̂(�)

∣∣X1, . . . , Xn

}
is much smaller than Var

{
m̂(x)

∣∣X1, . . . , Xn

}
for those � ∈ �v that

are more away from the boundary than x. The weight in m̃(x; r, �) put on any m̂(�) with �
closer to the boundary than x becomes close to one only when x is right nearby it. Other-
wise, m̃(x; r, �) spreads its weights on m̂(�) for those � ∈ �v more away from the boundary
than x.

The constant multiplier in the asymptotic expression of E2
{
m̂(x) − m(x)

∣∣X1, . . . , Xn

}
changes and it generally becomes smaller as x moves from the interior to the boundary
region. Therefore, m̃(x; r, �) no longer has the same asymptotic conditional bias as m̂(x)

at a boundary point x. However, it is generally true that, as x moves more toward the
boundary, the decrease in E2

{
m̂(x) − m(x)

∣∣X1, . . . , Xn

}
is much less than the increase in

Var
{
m̂(x)

∣∣X1, . . . , Xn

}
. Then the difference between E2

{
m̃(x; r, �) − m(x)

∣∣X1, . . . , Xn

}
and E2

{
m̂(x) − m(x)

∣∣X1, . . . , Xn

}
is small compared to the variance reduction yielded by

m̃(x; r, �). This implies that the asymptotic conditional mean-squared error of m̃(x; r, �) is
again smaller than that of m̂(x) when x is a boundary point.

Consider behaviors of m̃r (x; �) and m̄(x; �) in boundary regions. Suppose that �x,r is
entirely contained in the support of the design density f. Then the above arguments can be
used to demonstrate that m̃r (x; �) and m̄(x; �) also have the automatic boundary correction
property, and that they have smaller asymptotic mean-squared errors than m̂(x) in boundary
regions.

Asymptotic behaviors of the conditional bias and variance of the local linear estimator
m̂(x) when x is near the boundary are illustrated and discussed in detail by Fan and Gijbels
[4,5], Ruppert and Wand [8].

5. Simulation study and real application

5.1. Simulation study

Consider model (1.1) with d = 2, �(x) = 1, m(x1, x2) = sin(2�x1) + sin(2�x2).
Let Xi1 and Xi2 be independent with each being uniformly distributed on [0, 1], and εi

has a standard Normal distribution. We drew samples from the above model with sample
size n = 400 and 1000. In computing m̂(x1, x2) and m̄(x1, x2; �), we employed the bi-
weight kernel K(u) = 15

16 (1 − u2)2I (|u|�1), h = 0.15 and 0.2, b1 = b2 = 1, �i =
min{1, xi/[(1 + 1

√
2)h], (1 − xi)/[(1 + 1/

√
2)h]} for i = 1, 2. In Figs. 1–4, the nat-

ural logarithm of ratio of the mean-squared error of m̄(x1, x2; �) to that of m̂(x1, x2) is
plotted against different x1 = 0, 0.05, . . . , 1 and x2 = 0, 0.05, . . . , 1, and also against
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Fig. 1. Log ratios with n = 400 and h = 0.2. The natural logarithm of ratio of the mean-squared error of
m̄(x1, x2; �) to that of m̂(x1, x2) is plotted against x1 = 0, 0.05, . . . , 1 and x2 = 0, 0.05, . . . , 1, and also against
x2 = 0, 0.05, . . . , 1, but with fixed x1 = 0.2, 0.5, 0.8.

x2 = 0, 0.5, . . . , 1, but with fixed x1 = 0.2, 0.5, 0.8. These figures show that, in all cases
considered, m̄(x1, x2; �) has a significantly smaller mean-squared error than m̂(x1, x2) when
(x1, x2) is an interior point. Occasionally, the mean-squared error of m̄(x1, x2; �) is slightly
larger than that of m̂(x1, x2) for some boundary points. Boundary behaviors is not a main
issue in nonparametric multivariate regression since the data contain very little information
about the regression surface there.
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Fig. 2. Log ratios with n = 400 and h = 0.15. The natural logarithm of ratio of the mean-squared error of
m̄(x1, x2; �) to that of m̂(x1, x2) is plotted against x1 = 0, 0.05, . . . , 1 and x2 = 0, 0.05, . . . , 1, and also against
x2 = 0, 0.05, . . . , 1, but with fixed x1 = 0.2, 0.5, 0.8.

5.2. Real application

We applied the local linear estimator m̂(·) and our variance reduced estimate m̄(·; �) to
the Boston housing price data set. This data set consists of the median value of owner-
occupied homes in 506 U.S. census tracts in the Boston area in 1970, together with several



1516 M.-Y. Cheng, L. Peng / Journal of Multivariate Analysis 97 (2006) 1501–1524

x_1

0.0 0.2 0.4 0.6 0.8 1.0 x_20.0
0.2

0.4
0.6

0.8
1.0

lo
g-
ra
tio

-0.6

-0.4

-0.2

0.0

h=0.2, n=1000

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.3

-0.2

-0.1

h=0.2, n=1000, x_1=0.2

x_2

lo
g-
ra
tio

-0.4

-0.3

-0.2

-0.1

lo
g-
ra
tio

0.0 0.2 0.4 0.6 0.8 1.0

-0.7

-0.6

-0.5

-0.4

h=0.2, n=1000, x_1=0.5

x_2

lo
g-
ra
tio

0.0 0.2 0.4 0.6 0.8 1.0

h=0.2, n=1000, x_1=0.8

x_2

(a) (b)

(c) (d)

Fig. 3. Log ratios with n = 1000 and h = 0.2. The natural logarithm of ratio of the mean-squared error of
m̄(x1, x2; �) to that of m̂(x1, x2) is plotted against x1 = 0, 0.05, . . . , 1 and x2 = 0, 0.05, . . . , 1, and also against
x2 = 0, 0.05, . . . , 1, but with fixed x1 = 0.2, 0.5, 0.8.

variables that might explain the variation of housing value, see [6]. Here we fit model
(1.1) to the median values of homes with two covariates, x1 = LSTAT (lower status of
the population) and x2 = PTRATIO (pupil–teacher ratio by town). We computed estima-
tors m̂(x1, x2) and m̄(x1, x2; �) by taking the same set of tuning parameters �i , i = 1, 2,
and the same kernel as in Section 5.1 and h = 1, and b1 = 1.5, b2 = 0.5 were em-
ployed here. These estimators are plotted in Fig. 5. Close to the boundary PTRATIO = 0,



M.-Y. Cheng, L. Peng / Journal of Multivariate Analysis 97 (2006) 1501–1524 1517

x_1

0.0 0.2 0.4 0.6 0.8 1.0 x_20.0
0.2

0.4
0.6

0.8
1.0

lo
g-
ra
tio

-0.6

-0.4

-0.2

0.0

h=0.15, n=1000

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

-0.4

-0.3

-0.2

h=0.15, n=1000, x_1=0.2

x_2

lo
g-
ra
tio

-0.5

-0.6

-0.4

-0.3

-0.2

lo
g-
ra
tio

0.0 0.2 0.4 0.6 0.8 1.0

-0.8

-0.7

-0.6

-0.5

-0.4

h=0.15, n=1000, x_1=0.5

x_2

lo
g-
ra
tio

0.0 0.2 0.4 0.6 0.8 1.0

h=0.15, n=1000, x_1=0.8

x_2

(a) (b)

(c) (d)

Fig. 4. Log ratios with n = 1000 and h = 0.15. The natural logarithm of ratio of the mean-squared error of
m̄(x1, x2; �) to that of m̂(x1, x2) is plotted against x1 = 0, 0.05, . . . , 1 and x2 = 0, 0.05, . . . , 1, and also against
x2 = 0, 0.05, . . . , 1, but with fixed x1 = 0.2, 0.5, 0.8.

mainly PTRATIO less than 1.8, the two estimators behave quite differently since the re-
gression surface changes drastically in that boundary region. The spikes in m̄(x1, x2; �)

will disappear if smaller values of �i , i = 1, 2, are used. For PTRATIO > 3 or LSTAT >

10, our estimator m̄(x1, x2; �) effectively smoothes out the spurious bumps produced by
m̂(x1, x2).
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Fig. 5. Analysis of Boston housing price data set. Panels (a) and (b) are respectively the local linear estimate m̂(·)
and the variance reduction estimate m̄(·; �). Panels (c)–(f) plot m̂(x1, x2) (solid line) and m̄(x1, x2; �) (dotted
line) against x2 when x1 = 7, 9, 11, 13, respectively.

6. Proofs

Proof of Theorem 1. Put � = ((k1 − 1 − r1)�1b1, . . . , (kd − 1 − rd)�dbd)T . Then
x∗(k1, . . . , kd) − x = h�. Further

m(x∗(k1, . . . , kd)) − m(x) = h�T M1(x) + 1
2 h2�T M2(x)� + o(h2), (6.1)
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where

M1(x) =
(

�
�x1

m(x), . . . ,
�

�xd

m(x)

)T

.

Since, for any s ∈ [−1, 1],∑
j∈{0,1,2}

Aj(s) = 1,
∑

j∈{0,1,2}
Aj(s)(j − 1 − s)l = 0, l = 1, 2, (6.2)

we have
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
= 1,

E
{
m̃(x; r, �) − m(x)

∣∣X1, . . . , Xn

}
=

∑
(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
E
{
m̂
(
x∗(k1, . . . , kd)

)
−m

(
x∗(k1, . . . , kd)

)∣∣X1, . . . , Xn

}
+

∑
(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}{
m
(
x∗(k1, . . . , kd)

) − m(x)
}

=
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

} [1

2
�2(K)h2 tr

{
BM2(x)

} + op

(
h2)]

+
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}{
h�T M1(x) + 1

2
h2�T M2(x)� + o

(
h2)}

= 1

2
�2(K) h2 tr

{
BM2(x)

} + h E1 + 1

2
h2 E2 + op

(
h2),

where

E1 =
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
�T M1(x),

E2 =
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
�T M2(x)�.

Then (2.5) follows if E1 = E2 = 0 which can be validated by showing that

E1 =
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

} d∑
j=1

(kj − 1 − rj )�j bj

�
�xj

m(x)

=
∑

(k1,...,kd−1)
T ∈{0,1,2}d−1

{
�d−1

i=1 Aki
(ri)

}⎧⎨⎩ ∑
kd∈{0,1,2}

Akd
(rd)

×
d∑

j=1

(kj − 1 − rj )�j bj

�
�xj

m(x)

⎫⎬⎭
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=
∑

(k1,...,kd−1)
T ∈{0,1,2}d−1

{
�d−1

i=1 Aki
(ri)

}⎧⎨⎩
d−1∑
j=1

(kj − 1 − rj )�j bj

�
�xj

m(x)

⎫⎬⎭ ,

E2 =
∑

(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}

×
⎧⎨⎩

d∑
j=1

d∑
l=1

(kj − 1 − rj )�j bj (kl − 1 − rl)�lbl

�2

�xj�xl

m(x)

⎫⎬⎭
=

∑
(k1,...,kd−1)

T ∈{0,1,2}d−1

{
�d−1

i=1 Aki
(ri)

}⎧⎨⎩ ∑
kd∈{0,1,2}

Akd
(rd)

×(kd − 1 − rd)2�2
db2

d

�2

�x2
d

m(x) +
∑

kd∈{0,1,2}
Akd

(rd)

×
d−1∑
j=1

d−1∑
l=1

(kj − 1 − rj )�j bj (kl − 1 − rl)�lbl

�2

�xj�xl

m(x)

+ 2
∑

kd∈{0,1,2}
Akd

(rd)

d−1∑
l=1

(kd − 1 − rd)�dbd(kl − 1 − rl)�lbl

�2

�xd�xl

m(x)

⎫⎬⎭
=

∑
(k1,...,kd−1)

T ∈{0,1,2}d−1

{
�d−1

i=1 Aki
(ri)

}

×
⎧⎨⎩

d−1∑
j=1

d−1∑
l=1

(kj − 1 − rj )�j bj (kl − 1 − rl)�lbl

�2

�xj�xl

m(x)

⎫⎬⎭ ,

and by induction.
To deal with the conditional variance, let C∗(a, b) = ∫

K(s + a)K(s + b) ds, � =
diag

{
�(X1), . . . , �(Xn)

}
, z = (�1,2�1+k1 , . . . , �d,2�d+kd

)T and y = (�1,2�1+l1 , . . . ,

�d,2�d+ld )
T , where ki, li ∈ {0, 1, 2} for i = 1, . . . , d. The covariance of m̂(z) and m̂(y)

conditional on X1, . . . , Xn is

E
[{

m̂(z) − E
(
m̂(z)

∣∣X1, . . . , Xn

)}{
m̂(y) − E

(
m̂(y)

∣∣X1, . . . , Xn

)}∣∣∣X1, . . . , Xn

]
= eT

(
XT

z WzXz

)−1
XT

z Wz�WyXy

(
XT

y WyXy

)−1
e.

Note that

XT
z Wz�WyXy =

n∑
i=1

�d
j=1

{
K

(
Xij − zj

bjh

)
K

(
Xij − yj

bjh

)}
×�(Xi)

(
1 (Xi − y)T

(Xi − z) (Xi − z)(Xi − y)T

)
=

(
I II

III IV

)
,
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where

{�(x)f (x)}−1I

= n �d
j=1

{∫
K

(
s − �j,2�j +kj

bjh

)
K

(
s − �j,2�j +lj

bjh

)
ds

} {
1 + op(1)

}
= n �d

j=1

{∫
K

(
s − xj

bjh
+ xj − �j,2�j +kj

bjh

)
K

(
s − xj

bjh
+ xj − �j,2�j +lj

bjh

)
ds

}
×{

1 + op(1)
}

= n �d
j=1

{
bjh

∫
K
(
u + (1 − kj + rj )�j

)
K
(
u + (1 − lj + rj )�j

)
du

} {
1 + op(1)

}
= nhd �d

j=1

{
bjC

∗((1 − kj + rj )�j , (1 − lj + rj )�j

)}{1 + op(1)},

every element in II and III is Op(nhd+1) and every element in IV is Op(nhd+2). Also,
similar to Ruppert and Wand [8], we can show that

(XT
z WzXz)

−1 = 1

nhd�d
j=1bj

×
( {

f (x)
}−1 + op(1) −M1(x)T

{
f (x)

}−2 + op(1)

−M1(x)
{
f (x)

}−2 + op(1)
{
�2(K)f (x)H

}−1 + op(H−1)

)
,

(XT
y WyXy)

−1 = 1

nhd�d
j=1bj

×
( {

f (x)
}−1 + op(1) −M1(x)T

{
f (x)

}−2 + op(1)

−M1(x)
{
f (x)

}−2 + op(1)
{
�2(K)f (x)H

}−1 + op(H−1)

)
.

So

E
[{

m̂(z) − E
(
m̂(z)

∣∣X1, . . . , Xn

)}{
m̂(y) − E

(
m̂(y)

∣∣X1, . . . , Xn

)}∣∣∣X1, . . . , Xn

]
= �(x)

nhdf (x)�d
j=1bj

�d
j=1

{
C∗((1−kj+rj )�j , (1−lj+rj )�j

)}{
1+op(1)

}
. (6.3)

Further

Var
{
m̃(x; r, �)|X1, . . . , Xn

}
= �(x)

nhdf (x)�d
j=1bj

∑
(k1,...,kd )T ∈{0,1,2}d

∑
(l1,...,ld )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}{
�d

i=1Ali (ri)
}

×
{
�d

j=1C
∗((1 − kj + rj )�j , (1 − lj + rj )�j

)} {1 + op(1)}

= �(x)

nhdf (x)�d
j=1bj

∑
(k1,...,kd−1)

T ∈{0,1,2}d−1

∑
(l1,...,ld−1)

T ∈{0,1,2}d−1

{
�d−1

i=1 Aki
(ri)

}
×
{
�d−1

i=1 Ali (ri)
}{

�d−1
j=1C

∗((1−kj+rj )�j , (1−lj+rj )�j )
}

V1
{
1+op(1)

}
,
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where

V1 =
∑

kd∈{0,1,2}
Akd

(rd)
∑

ld∈{0,1,2}
Ald (rd) C∗((1 − kd + rd)�d , (1 − ld + rd)�d

)
= r2

d (rd − 1)2

22
C(0, �d) + (1 − r2

d )
rd(rd − 1)

2
C

(
1

2
, �d

)
+ rd(rd + 1)

2

rd(rd − 1)

2
C(1, �d)

+ rd(rd − 1)

2
(1 − r2

d )C

(
1

2
, �d

)
+ (1 − r2

d )2C(0, �d)

+ rd(rd + 1)

2
(1 − r2

d )C

(
1

2
, �d

)
+ rd(rd − 1)

2

rd(rd + 1)

2
C(1, �d) + (1 − r2

d )
rd(rd + 1)

2

×C

(
1

2
, �d

)
+ r2

d (rd + 1)2

22
C(0, �d)

= 3r4
d − 3r2

d + 2

2
C(0, �d) + 2r2

d (1 − r2
d )C

(
1

2
, �d

)
+ r2

d (r2
d − 1)

2
C(1, �d)

= R(K) − r2
d (1 − r2

d )C(�d).

Thus, by induction, we have

Var
{
m̃(x; r, �)

∣∣X1, . . . , Xn

} = �(x)

nhdf (x)�d
j=1bj

�d
j=1

{
R(K) − r2

j (1 − r2
j )C(�j )

}
×{1 + op(1)

}
. �

Proof of Theorem 3. Note that x and x∗
k1,...,kd

(x; r) in the definition of m̃r (x; �) follows

the relation x∗
k1,...,kd

(x; r) = x + (
(k1 − 1 − r1)�1b1h, . . . , (kd − 1 − rd)�dbdh

)T =
x + h�. In the definition of m̃(x; r, �), x and x∗(k1, . . . , kd) following a parallel relation
x∗(k1, . . . , kd) = x + h�. Therefore the conditional bias result (2.10) follows from (2.5)
and we only need to show (2.11). Write

m̄(x; �) = 2−d
∑

(r1,...,rd )T ∈{−1/
√

2,1/
√

2}d

∑
(k1,...,kd )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
×m̂

(
(x1 + (k1 − 1 − r1)�1b1h, . . . , xd + (kd − 1 − rd)�dbdh)T

)
.

Hence, using (6.3) we have

Var
{
m̄(x; �)|X1, . . . , Xn

}
= �(x)

22dnhdf (x)�d
i=1bi

∑
(r1,...,rd )T ∈{−1/

√
2,1/

√
2}d

×
∑

(s1,...,sd )T ∈{−1/
√

2,1/
√

2}d

∑
(k1,...,kd )T ∈{0,1,2}d

∑
(l1,...,ld )T ∈{0,1,2}d

{
�d

i=1Aki
(ri)

}
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×
{
�d

i=1Ali (si)
}{

�d
i=1C

∗((1 − ki + ri)�i , (1 − li + si)�i

)}{
1 + op(1)

}
= �(x)

22dnhdf (x)�d
i=1bi

∑
(r1,...,rd−1)

T ∈{−1/
√

2,1/
√

2}d−1

∑
(s1,...,sd−1)

T ∈{−1/
√

2,1/
√

2}d−1

×
∑

(k1,...,kd−1)
T ∈{0,1,2}d−1

∑
(l1,...,ld−1)

T ∈{0,1,2}d−1

{
�d−1

i=1 Aki
(ri)

}{
�d−1

i=1 Ali (si)
}

×
{
�d−1

i=1 C∗((1 − ki + ri)�i , (1 − li + si)�i

)}
V2

{
1 + op(1)

}
,

where

V2 =
∑

kd∈{0,1,2}

∑
ld∈{0,1,2}

Akd
(−1/

√
2)Ald (−1/

√
2)

×C∗((1 − kd − 1/
√

2)�d , (1 − ld − 1/
√

2)�d

)
+

∑
kd∈{0,1,2}

∑
ld∈{0,1,2}

Akd
(−1/

√
2)Ald (1/

√
2)

×C∗((1 − kd − 1/
√

2)�d , (1 − ld + 1/
√

2
)
�d

)
+

∑
kd∈{0,1,2}

∑
ld∈{0,1,2}

Akd
(1/

√
2)Ald (−1/

√
2)

×C∗((1 − kd + 1/
√

2)�d , (1 − ld − 1/
√

2)�d

)
+

∑
kd∈{0,1,2}

∑
ld∈{0,1,2}

Akd
(1/

√
2)Ald (1/

√
2)

×C∗((1 − kd + 1/
√

2)�d , (1 − ld + 1/
√

2)�
)

= 4
{
R(K) − C(�d)/4 − D(�d)/2

}
.

By induction, we can show (2.11). �
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