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1. Introduction

Simplicial depth for multivariate location was introduced by Liu [7,8]. It is based on the half-space depth of Tukey [16].
Both depth notions lead to a generalization of the median for multivariate data which is equivariant with respect to affine
transformations. Moreover the concept of depth is useful to generalize ranks.

The simplicial depth has the advantage that it is a U-statistic so that in principle the asymptotic distribution is known.
However, it is not easy to derive the asymptotic distribution. Arcones et al. [1] derived the asymptotic normality of the
maximum simplicial depth estimator of Liu [7,8] via the convergence of the whole U-process. The convergence of the
U-process was also shown by Dumbgen [5]. However the asymptotic normal distribution has a covariance matrix which
depends on the underlying distribution. Hence this result cannot be used to derive distribution-free tests. Liu [9] and Liu
and Singh [10] proposed distribution-free multivariate rank tests which generalize the Wilcoxon’s rank sum test for two
samples. While the asymptotic normality is derived for several depth notions for distributions on R', it is shown only for
the Mahalanobis depth for distributions on R¥, k > 1. Hence it is unclear how to generalize the approach of Liu and Singh
to other situations.

Several other depth concepts were introduced since the work of Tukey [ 16]. See for example the book of Mosler [13] and
the references therein. Multivariate depth concepts were transferred to regression by Rousseeuw and Hubert [ 15], to logistic
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regression by Christmann and Rousseeuw [3] and to the Michaelis—-Menten model by Van Aelst et al. [ 17]. The depth concept
for regression is based on the notion of nonfit introduced by Rousseeuw and Hubert [15]. Thereby, a regression parameter 6
is called a nonfit, if there is another parameter #” which provides for all observations z, smaller squared residuals r(z,, 8")?.
The depth of a regression parameter 6 is then given by the minimum number of observations which must be removed so
that & becomes a nonfit.

More general concepts of depth were introduced and discussed by Zuo and Serfling [22,23] and Mizera [11]. Mizera
[11] in particular generalized the regression depth of Rousseeuw and Hubert [15] by basing the nonfit on general quality
functions instead of squared residuals. Using these quality functions, he introduced the “global depth”, the “tangent depth”
and the “local depth” and gave a sufficient condition for their equality. This approach makes it possible to define the depth of
a parameter value with respect to given observations in various statistical models via general quality functions. Appropriate
quality functions are in particular likelihood functions as studied by Mizera and Miiller [ 12] for the location-scale model and
by Miiller [14] for generalized linear models.

As for multivariate location, there exist only few results concerning tests based on regression depth and its
generalizations. Bai and He [2] derived the asymptotic distribution of the maximum depth estimator for regression so that
tests could be based on this. However, this asymptotic distribution is given implicitly so that it is not convenient for inference.
Van Aelst et al. [17] derived an exact test based on the regression depth of Rousseeuw and Hubert [15] but did it only for
linear regression. Miiller [14] derived tests by using the simplicial regression depth which generalizes Liu’s [7,8] simplicial
depth to regression.

In general, the simplicial depth ds for a ¢ dimensional parameter # which is based on a given depth notion d is defined
by

N -1
ds(0.2) = (q+ 1) > HAO, Gy Zag,) > O,

1=ny<ny<--<ng41=N

where z = (z1, ..., zy) is the sample and I denotes the indicator function. This is a U-statistic with symmetrical kernel
function ¥ € Ly(®I] P;"), defined as

1//9(Zn1 P an+1) = H{d(@, (Zm PR anﬂ)) > O}
That is, ¥ equals one if and only if the depth d(9, (z,, . . ., Zng 1)) offinz,,..., Zn,,, Is greater than zero.

Miiller [14] proposed basing the test statistic directly on the general simplicial depth ds. For testing a hypothesis of the
form Hy : 6 € ®y, where O is an arbitrary subset of the parameter space, the test statistic is defined as T(zy, ..., zy) =
SUPgeg, To (21, - - -, zn). Thereby Ty(z1, . . ., zy) is defined as

_ VNWs(0, (z1, ... 28)) — o)
T@(Z],...,ZN) = s
(q+ Doy
if ds (0, z) is not a degenerated U-statistic, i.e. %l (z1) =EWy(Z1, ..., Z441)|Z1 = z1) depends on z;, and
T9(217"~7ZN) ::N(ds(ea(2‘15’"’ZN))_M9)5 (])
if ds(0, z) is a degenerated U-statistic. In several cases the asymptotic distribution of Ty (Z4, . . ., Zy) does not depend on 6,
so that the null hypothesis Hy is rejected if T(zq, . . ., zy) is less than the a-quantile of this asymptotic distribution. Thereby

the quantities py and oy are defined as gy = E(¥y(Z1, ..., Zg+1)) and 062 = Var(wel (Z1)).

Unfortunately, the simplicial depth ds is a degenerated U-statistic in the most interesting case, where the true regression
function is in the center of the data, which means that the median of the residuals is zero. Whereas nondegenerated U-
statistics are asymptotically normal distributed, simple asymptotic results are not possible for degenerated U-statistics.
In the degenerated case, the asymptotic distributions can be derived by using the second component of the Hoeffding
decomposition. We have namely the following result (see e.g. [6], p. 79, 80, 90, [21], p. 650). If the reduced normalized
kernel function

Vi (21,22) = EWo(Zi, ..., Zg11) — 16|21 = 21,25 = 23) (2)

is L-integrable, it has a spectral decomposition of the form

Vi@, ) =Y pz)e(z2), 3)
=1

where the functions ¢, are L,-integrable, normalized, and orthogonal. Then the asymptotic distribution of the simplicial
depth is given by

-l o]
N(ds(©. (Zi.....Zy)) — te) = ("2 )ZAI(UE -1, 4)
=1
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where U; ~ N (0, 1) and U;, U,, ... are independent. In the general case, it could happen that the eigenvalues A; depend
on the underlying parameter 6. However, Miiller [14] could show that this is not the case for polynomial regression in
generalized linear models so that the asymptotic distribution does not depend on the regression parameter.

However, Miiller [ 14] was only able to find the spectral decompositions for linear and quadratic regression in generalized
linear models. These spectral decompositions were found by solving differential equations. In this paper we derive the
spectral decomposition (3) for polynomial regression of arbitrary degree by a completely new approach.

For this approach, we use in Section 2 quality functions for defining the depth d used in the simplicial depth ds. The
simplicial depth is based on the tangent depth for these quality functions. However, this simplicial depth attains rather high
values in subspaces of the parameter space, since it does not provide convex depth contours as all simplicial depth notions
do not. This is in particular a disadvantage in testing if the aim is to reject the null hypothesis. To avoid this disadvantage,
we introduce in Section 2 a harmonized depth and use it as the kernel function of the simplicial depth. This approach leads
also to a method to calculate the maximum simplicial depth under the null hypothesis. While in [14] only null hypotheses
could be rejected for which the null hypothesis is a point or a line within the parameter space, we are now able to treat
hypotheses about arbitrary subspaces and polyhedrals, as Wellmann et al. [ 18] showed.

In Section 3, we derive a general formula for the conditional expectation (2) for the simplicial depth for generalized linear
models introduced in Section 2 and we show that the asymptotic distribution can be obtained by calculating the spectral
decomposition of a function X, which only depends on the probability law of the vector product of regressor variables. This
means in particular that the asymptotic distribution of the test statistic (1) does not depend on the unknown regression
parameter. The function X is applied to the harmonized form of the simplicial regression depth but the proofs hold also for
the unmodified form.

The general formula for X is specified for polynomial regression of arbitrary degree in Section 4. Based on the specified
formula, the spectral decomposition is derived. The spectral decomposition is found by a Fourier series representation of a
related function of L,[—1, 1] which is used to derive the required representation of XK. We think that this approach can be
used to find the spectral decomposition of other simplicial depth functions. In particular, Wellmann and Miiller [19] derived
the asymptotic distribution of the simplicial regression depth for different models of multiple regression.

In Section 5 the power of the simplicial depth test is compared with other tests via simulation. It turns out that the power
of the simplicial depth test is better than the power of the tangent depth test of Van Aelst et al. [17], but there eXist robust
tests for linear regression which have a slightly better power than the simplicial depth test. An advantage of the simplicial
depth test is that general forms of hypotheses can be tested, as shown in [18]. The null hypothesis could be an arbitrary
polyhedron within the parameter space. This is also demonstrated in Section 6 where an application on tests in a cubic
regression model is given. This example also shows that the new tests possess a higher outlier robustness than competing
tests. All proofs are given in Section 7.

2. Simplicial depth for generalized linear models

We assume that the random vectors Zy, . .., Zy are independent and identically distributed throughout the paper. The
random vectors Z, = (U,, X,) have values in Z € R4, where U, is a real-valued random variable and the regressor X, is a
random vector. For a given transformation h : R — R we write Y, = h(U,). The random error E, is given by

E,=Y,— X6,
where &8 € ©® = RYI Random variables are denoted by capital letters and realizations by small letters. The value
sp(0) = signg(z,) = sign(y, — x§9) is the sign of the residual of the nth (transformed) observation. The family

P = {szl’“"z” )0 e ©®} of probability measures with ® = R? may be unknown, but for the purpose of deriving tests, we
will assume that the following assumptions hold:

1
o Py(51(0) =11Xy) = 7 &5,

o Py(S1(6) =0[X;) =0as., and (5)
e Py(Xi, ..., X, are linearly dependent) = 0.

Thus, the random errors only have to satisfy Py(E, > 0|X,) = Py(E, < 0|X,) = % In particular, the errors may be
heteroscedastic. Our results are not affected by the concrete form of the error distribution. The last two conditions of (5) are
usually satisfied for continuous distributions. The first condition of (5) holds in particular with h(U,) = U,, for general linear
models with symmetric error. For generalized linear models it can be achieved by using an appropriate transformation h.
See for example [ 14] for the exponential distribution, where h should be h(U,) = log( 1olgj22) ).

For this model, the following quality functions can be used:

Definition 1 (Quality Functions for Generalized Linear Models). Take ¢ to be a function with continuous derivatives, which
has its maximum and its sole critical point in 0. Then the function

Gz, 0 © — R with §,, () == oy, — x16)

is said to be a quality function for generalized linear models.
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Although quality functions are needed to define the tangent depth or the global depth of Mizera [11], the resulting depth
functions do not depend on the choice of ¢, so that we may restrict ourselves to the simplest case ¢(x) = —x°.

The general form is only needed to cover the likelihood case: Often, one would like to choose the likelihood functions
92" (z,) to be the quality functions. However, they should be used only, if Py (E, > 0|X,) = % is satisfied, because otherwise
the true regression function is not in the center of the data and thus the estimator is biased. A forthcoming paper will deal

with the problems which appear if Py (E, > 0|X;,) = % is not satisfied.
Definition 2 (Tangent Depth). According to Mizera [11], we define the tangent depth of & € © with respect to given
observations zy, ..., zy € Z to be
dr(8,z) = m;(r)l#{n :u'V4, (0) > 0},
u
where §,,, ..., Gz, are quality functions for generalized linear models, z := (z1, ..., zy) and V§,, (9) denotes the vector of
partial derivatives of §,, in 6.

As shown in [11], this depth notion counts the number of observations that needs to be removed such that there is a
“better” parameter for all remaining observations. It is easy to see, that the tangent depth does not depend on the choice of

¢. Furthermore, for all & € ® and for given observations z, ..., zy € Z we have:
dr(8,2) = m;g#{n s sp(@)u’x, > 0}. (6)
u

As in [15] it can be shown, that the parameter space ® = R7 is divided up into domains with constant depth by the
hyperplanes

Hy={0 €RI:5,(8) =0}, n=1,...,N.

For given observations let Dom(z) be the set of all those domains. We define dr (G, z) := d7(0, z) for G € Dom(z) and 6 € G.

We will define the simplicial depth to be a U-statistic. If we would take the tangent depth to be the kernel function
of the U-statistic, then the simplicial regression depth attains rather high values in subspaces of the parameter space,
namely in Border(z) := ngl H,. This is in particular a disadvantage if the aim is to reject the null hypothesis. To avoid
this disadvantage, we introduce a harmonized depth.

Definition 3 (Harmonized Depth). The harmonized depth of § € © with respect to the observations z;,...,zy € Z is
defined to be
Yo(z) = min _dr(G,2),

GeDom(z),0eG
where G is the closure of G.

Definition 4 (Simplicial Depth). The simplicial depth is given by

N -1
ds(6,2) = (q+1> > Vo @nys - -+ Zngsy)-

1=ny<ny<--<ng41=N

This depth, which transfers the simplicial depth of Liu to regression models, is also called a simplicial depth because it
counts the fraction of simplices that are bounded by q + 1 hyperplanes from Hy, . .., Hy and contains 0 as an interior point.
Algorithms for calculating the simplicial depth are based on this view as well and are given in [18]. The proposed tests are
based on the asymptotic distribution of this depth notion.

3. The asymptotic distribution of the simplicial depth

The definition of tangent depth shows, that the depth of a parameter is the half-space depth of 0 with respect to the
gradients of the quality functions. Thereby, the half-space depth of 0 with respect to given vectorsry, ..., ry € R?is defined
as

dy (0, 7) := min#{n : u'r, > 0},
u#0
wherer = (rq, ..., rq41) (see [16]). The next lemma is needed to derive the conditional expectations of the kernel function,
which depends only on g + 1 observations, but it can also be used to calculate the simplicial depth of a given parameter.

Lemma 1. Let rq, ..., rg41 € RY be in general position. Then dy (0, r) € {0, 1} and the following statements are equivalent:

(i) dy(0,1) =0,
(if) 1 € R<orz + -+ - + Reolgq1.
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Proofs are given in Section 7. The next Proposition shows, that

Vo (@21) = EWe (1, ..., Zg41)|1Z1 = 21)

does not depend on zy, so that the simplicial depth is a degenerated U-statistic and has asymptotically the distribution of
an infinite linear combination of y2-distributed random variables (see e.g. [6], p. 79, 80, 90, [21], p. 650). This distribution
depends only on the conditional expectation

Vi (21,22) = EWo(Zi, ..., 2o = 21,20 = 2) —E(Ye (Zn, . . ., Zg41))-

Proposition 1. Suppose that the assumptions in (5) are satisfied. Let 6 € © and let z1,z, € Z, such that x1, x, are linearly
independent and s1(0), s,(0) € {—1, 1}. Then

’ 1
‘ﬁg (z1) = 27

and
s1(0)s, (0 1
wgz(zl,zz) = M (Pe(x€Wx£W <0)— ) R
201 2
where W = X3 x - -+ x Xy11 is the vector product of X3, ..., Xq41.

With this proposition, we obtain a main result: We get the asymptotic distribution of the simplicial depth for generalized
linear models which satisfy assumptions (5) by calculating the spectral decomposition of the kernel .X, defined by

1
K (x1, %) = Po(xX\ Wx;W < 0) — L for x;, X, € R%. (7)

Note that xiTW = det(x;, X3, ..., Xg41) fori = 1, 2. The spectral decomposition is a representation

o0
K, %) =Y g (x)egi(x) inly (P @ PY),
j=1

where (<pj);?=°l is an orthonormal system (ONS) in L, (PX1) and A, Ay, ... € R. The functions (wj)j'il are eigenfunctions and
the values A1, A,, ... are the corresponding eigenvalues of the related integral operator Ty, defined by

Ty : Ly(PX1) — Ly(PX1)  with Txf(s) = / K (s, Of (H)dPX1(t).

Now we show, how the asymptotic distribution can be obtained from the spectral decomposition of K. The system
(1/11)1 1» defined by () := signy(z)g;(v(z)) forz € Zisan ONSinL, (P?1) and for 1//(3 we have the representation

Ve z) = SEVEUSENED 4o ) iy

e}

1
Z ST hSiEn (@) (0(2)signy (22),(v(22))

3

Z T LU @).

Hence, it follows by (4), that

o0
(g +1)!
N|ds, (Z1,...,2y)) — *) — ((UP -1 (8)
( ,; (@ Dizi’" ).
where Uy, Us, ... are i.i.d. random variables with U; ~ (0, 1). Furthermore, this derivation shows, that the asymptotic

distribution does not depend on the underlying parameter 0, if the distribution of W does not depend on it. However, in
general it depends on the underlying distribution of the regressors X,. In the next section, this general result is applied to
polynomial regression.
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4. Polynomial regression

In the model for polynomial regression of degree r = g — 1 we can write Z, = (U,, x(T,)) with a real-valued random

variable T,, where Y, = h(U,) is the dependent variable and X, := x(T,) := (1, T, ..., T})" is the regressor. The unknown
parameter is @ = (61, ...,6,)" € RY so that

Yo =01+ 60Ty + -+ 6T +Ep.
Suppose that the assumptions in (5) are satisfied. Because of the independence of Ty, .. ., Ty, the third assumption in (5) is

equivalent to Py(T; = t) = Oforallt € R.

In this section, we derive the asymptotic distribution of the simplicial depth by calculating the spectral decomposition of
the kernel X, given in (7). While Miiller [ 14] derived it only for r = 1and r = 2 in another way, we have now the asymptotic
distribution for polynomial regression of arbitrary degree. At first, we give a simple representation of the kernel X, which
is obtained from (7) via the formula for Vandermonde determinants (see the Section 7).

Proposition 2. Forall t{, t;, € R we have
r—1 (1 T T '
K(x(t1), x(t2)) = =2 5~ [F1(t) —F ()] )

where FT1 is the distribution function of T;.

Miiller derived the same formula for the reduced normalized kernel function ¥ (see Proposition 2 in [14]). Our proof is
based not on 1//3, but on K. This makes the proof much shorter. It remains to derive the spectral decomposition of X, which
we obtain in the next proposition via a Fourier series representation of (% — |z])"inLy[—1, 1].

Proposition 3. The spectral decomposition of (3 — |s — t])" in L,[0, 11% is given by

1 r o0
(2 —|s— t|) =y 1+ 1”2 [cos(krs) cos(krt) + sin(krs) sin(krt)]
=1

where for r odd

0, if lis even,
) r! _kt1 . .
W= 2 e T lisodd,
ke(1,....1} :
k odd
and for r even
1
S — ifl=0,
(r+ 1)2r \
) r! _kt1 PP
n" = _k; TG ) sevenandl= 0
ef(1,...,1 .
kodd
0, if lis odd.

Let (v;)j; be the ONS in L, [0, 1], given in the proof of Proposition 3, such that (yj(r))jej are the eigenvalues, related to

K(s, t) = (% — |s — t])". Then the system (¢))jc;, defined by @; := ¥ o F't o x~! is an ONS in LL(P*1) and we have the
representation

K (X1, %) = Kxx(x1), x(x"(x2)))

ot (% — IF () — F (x—1<x2>>|>

D).
Jjel

Hence, the next theorem holds:

Theorem 1. If P(Y, — x(T,)"0 > 0|T,) = % and T, has a continuous distribution, then the asymptotic distribution of the
simplicial likelihood depth ds (0, (Z1, ..., Zy)) for polynomial regression is given by

1 L&
N (ds(e, Zi e V) = F) =Y (VP + W —2)
=0
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50 Observations with Cauchy-distributed errors

Power

Simplicial
- Tangent
F test
- RRS test
Imrob

Fig. 1. Cauchy distributed errors.

for r even and

1 £ >
N <ds<e, @1, Z0) = F) 5 MU = 1)+ Y (V2 + WP —2)
=1

for r odd, where U, Vo, Wy, V1, Wy, ... are independent random variables with standard normal distribution and
r+2
T or+2

2)!
M=y L(—12712)—“71 forl € N.

g 277N — !

Ao =

The calculation of the test statistic and the critical values for any hypothesis of the form Hy : 6 € ©®q where ©y is
a subspace of the parameter space or a polyhedron is described in [18]. There, a table of the critical values is also given.
Although this test is an asymptotic test, it controls the alpha level also for the finite case. This is shown by the simulation
study of the next section. In this section also the power is compared with other outlier robust tests.

5. Power comparison

In a simulation study, we compared the power of different tests for linear regression. We compared the simplicial depth
test with the tangent depth test according to Van Aelst et al. [17] and Daniels [4], the F test, the regression rank-score test
(RRS test, functionrrs. test () from R package quantreg)and a test which is based on MM regression estimators (function
lmrob() from R package robustbase). The functions rrs.test () and lmrob() are used with the default parameter
values. All tests are performed to the level « = 0.05. The power curves are obtained by simulation with 5000 repetitions.

In the first example, we tested the null hypothesis that the true regression line is horizontal. The regressors are
realizations of independent normal distributed random variables with mean 0 and standard deviation 1. The errors are
independent Cauchy distributed with location parameter 0 and scale parameter 1. We choose Cauchy distributed errors in
order to simulate outliers. Fig. 1 shows the power for different slopes. The simplicial depth test has a better power than the
tangent depth test and a slightly worse power than the RRS test and the Imrob test. The F test nearly keeps the level, but
has poor power for such observations. It can also be seen that the true levels of the simplicial depth test and the tangent
depth test are smaller than 0.05. This is because for both tests, the depth is maximized over all parameters from the null
hypothesis. The null hypothesis is rejected in nearly all cases with the simplicial depth test, if the true slope is larger than 2.

In the second example, we also tested the null hypothesis that the true regression line is horizontal, but we assumed
heteroscedastic errors. The regressors are independent normal distributed with mean 0 and standard deviation 2. The errors
are independent Cauchy distributed with location parameter 0, but the scale parameter depends on the regressor x,,. Given
X5, the scale parameter of the error is equal to 2 4+ exp(x;), so that the variation increases from left to right. Fig. 2 shows,
that also in this example the simplicial depth test has a better power than the tangent depth test and controls the level.
Moreover, the RRS test has poorer power for small slopes and does not keep the level since the minimum is shifted to the
left. The Imrob test had the best power in all comparisons, but did not converge for some data sets and might also have a
problem with the level.
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50 Observations with heteroscedastic errors
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Fig. 2. Heteroscedastic errors.
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Fig. 3. Least squares quadratic and cubic function.
6. Application: Test about quadratic function against cubic function

The concentration of malondialdehyde (MDA) for 78 women twice after childbirth (IMDA and IIMDA) at two time points
was measured, to find a relation between the levels of IMDA and IIMDA. MDA is a metabolite of lipid peroxides detectable in
plasma. It was measured as an indicator of lipid peroxidation and oxidation stress of women postpartum (after childbirth).
The data came from the Clinic of Gynaecology, Faculty Hospital with Policlinic, Bratislava-RuZinov (Slovakia).

We choose IMDA as the dependent variable. The data shown in Fig. 3 suggest an almost linear relationship with 4 outliers
on the right-hand side. Thus an outlier robust test should not reject the quadratic model against the cubic model and it should
not reject the linear model against the quadratic model. But it should reject the null hypothesis that the true regression line
is constant in the model for linear regression.

We tested these hypotheses with the simplicial depth test, the RRS test, the Imrob test and the F test, although normality
of the residuals with respect to the ordinary least squares estimation was rejected (p-value < 0.001). These tests are also
used in the simulation study of Section 5. The results are given in Table 1, where ‘0’ denotes a decision for Hy, ‘1’ denotes a
decision for Hy, and ‘—’ indicates that this hypothesis cannot be tested.

It turned out that only the simplicial depth test provides the expected results. The results of the test linear against
quadratic may be not surprising since the deepest quadratic function looks rather linear (see Fig. 4), whereas the least
squares estimate is attracted by the outliers (see Fig. 3).

InTable 1itis also demonstrated that the simplicial depth test can be used to test hypotheses which cannot be tested with

the other tests. We used the fast algorithm given in [ 18] for the determination of ds (€, z), so that not all (qﬁl ) combinations
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Table 1

Decisions of different tests

Model Hypothesis Simplicial depth test RRS test Imrob test F test
Cubic 6,=0 0 1 1 1
Quadratic 63 =0 0 1 1 1
Linear 6, =0 1 1 1 1
Quadratic |65] > 10 1 - - -
Linear 6, €10, 3] 1 - - -

<
= .
Y L]
[ ) ]
® — deepest quadratic function (q=4)
. deepest quadratic function (q=3)

0.2

T T T T T T T T
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

IIMDA

Fig. 4. Deepest quadratic functions for ¢ = 3 and q = 4.

need to be calculated. Nevertheless, the method is computer intensive if the dimension of the null hypothesis is large. In
Wellmann et al. it is also shown how the test statistic can be calculated if ®q is an arbitrary polyhedron.

7. Proofs

For more details of the proofs see also [20].

Proof of Lemma 1. Sincery, ..., 1y are linearly independent, they belong to a hyperplane H with 0 ¢ H.
Thereareay < Oandau € R% suchthatH = {v e RY : vTu = y}.
Sincery, ..., ry do not belong to the half-space {v € R? : vTu > 0}, we have dy (0, 1) < 1.
It remains to show the equivalence.
(ii) = (i): Foranyj =1, ..., q + 1let H; be the hyperplane that contains the points (r;)ie(1,....q+1)\(j}-

Step 1: Thereisaj € {1, ..., g + 1} such that 0 and r; are on different sides of H;.

Proof. Since r,, ..., g1 is a basis of RY, there exists y, ..., Yg+1 € Rsuch thatry = yry + -+ 4+ Ygq17g+1. Since
r1 & Reory + -+ + Rorg1 We may assume that y, > 0. We prove that r; and 0 are on different sides of Hy, if r, and
0 are on the same side of H,. Hence, we have:

@nrn=ypnt+--+ Vg+1Tg+1 with y, > 0.
(b) Thereare > O0and Bs, ..., Bg+1 € Rsuch that
rp=r —uoar + Z]q:; ,BJ(rj — 1’1) € R_ory + Hz.

From these equations we obtain two different representations of r,:

q+1

r, = (1 —o- Zﬂj) ri+ Bars + -+ + Borilgr1s
=3
1 —

r2:7r1+£r3+...+
V2 V2

Comparing the coefficients leads to

—Vg+1
V2

rq+‘] .

q+1

] _
O<—=1—a—Zﬂj and i=ﬁk fork=3,...,q+ 1.
V2 j=3 V2
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It follows that
ot tven =v2—0nBi— - — B
q+1
- (1 _ Zﬁj)
=3
q+1
1= B
=3
q+1
T—a=3 B
=3
With (a) we have

n=0+vys+- -+ v+ 33 —r12) - + Y1 (fge1 — 12).

Thus thereisa A € (0, 1) with: Ary € 1, + Zq:; R(rj — 1) = Hy.
Hence, r; and 0 are on different sides of Hy. This finishes the proof of Step 1.
Step 2: Main proof. The vectors r; and 0 are on different sides of this affine hyperplane H;. Let v € H;. All vectors

1, ..., Tqt1 are in the open half-space R..qv + (H; — v). The half-space R? \ (R..qv + (H; — v)) does not contain the vectors
1, ..., Tg1. Thus, dy (0, 1) = 0.
(i) = (ii)
The vectors rq, .. ., 1411 belong to an open half-space H with 0 € 0H
= —1y,...,—Tqy1 € H =RI\H
= Rgorz, feesy Rﬁorq+1 C H

= Regrp + -+ + Reoligg1 C H'.
Because of r; ¢ H' it follows thatr; & R<ory + - - - + R<qlgq1. O

Proof of Proposition 1. Let z1,...,z, € Z, such that xq, ..., x, are linearly independent and s, := s,(#) # 0 for
n=1,...,m wherem < q. Let

X = Xing1s -+ Xgr1),

Z =1, Zmy Zing1s - - -5 Zgt1),s

X :=v(2),

Xop = {(Xing1, ..., Xg41) € X9H1=™ . each subset of g vectors from x1, . . ., Xg+1is lin. indep.},

Xex = {(Xmt1, - -+ » Xg41) € Xgp : ISmi1, .+, Sq+1 € (=1, 1} 1 du (0, (51X1, ..., Sq+1Xg+1)) = 1}.

We have to calculate E(Yy (Z1, . .., Zg+1)1Z1 = 21, . . ., Ziy = Ziy) = E(Yp (Z))).
Since P(X € Xgzp) = 1and P(Yp(Z') € {0, 1}) = 1, we have

E(Wy(Z") = P(¥p(Z') = 1and X € Xgp).

Because of {/5(Z') = 1} N {X € Xgp} C (X € Xex),
it follows that

E(Y(Z') = P(Ye(Z') = 1and X € Xey).

Forry, ..., rg11 € Riletoy,, :{2,...,q+ 1} - {—1, 1}, such that

- Tg+1)
,,,,, rqH)(z)fz +- 4 Rgoa(rz,.“,qur])(q + Drg4a,
if each subset of g vectors from s1xy, 15, . . ., 41 is linearly independent.

Since Xy, ..., Xy are fixed, we can write o3 := 0(,, .., Xqr1) forX = (Xmt1, - .., Xg+1) € Xep.
Now, we prove that

51X1 € RSOU(Tz

P(Y(Z') =1andX € Xe) = P(Vn=m+1,...,q+ 1:signy(Z,) = o3(n), X € Xex).

Therefore let 41, . . ., Zg+1 € Z WithX :== (Xmp1, - - ., Xg+1) € Xex.

Since X € X,y there are S, ..., Sgt1 € {—1, 1} with dy (0, (s1X1, . . -, Sqg41Xg+1)) = 1.
With Lemma 1 it follows that s1xq € R<gS2Xy + - - - + R<gSq+1Xg+1-

Hence, the definition of o3 implies that

sp=o03(n) forn=2,...,m. 9)
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Furthermore, we have

Yo(z) =1

<0 &Nt H, and dr(6,2) =1

&signy(zp) #0 forn=1,...,q+1 and dr(0,z) =1

&signg(z,) #0 forn=1,...,q+1 and dy(0, (51(O)X1, ..., Sq+1(0)Xq+1)) =1

Leng“ signg(z,) #0 forn=1,...,q+ 1 and signy(z1)x1 € R<psigng(z2)xz + - - - + R<Signg (Zg4+1)Xg+1
&Vn=2,...,q+ 1:signy(z,) = ox(n)
Evn=m+1,....q+1:sign,(z) = ox(n).
Hence,
E(We(Z) = P(Wn=m+1,...,q+1:signy(Z,) = o3(n), X € Xex)

= [ PVn=m+1,...,q+ 1:signy(Z,) = ox(M|X = i)dP)z(fc).
XEX
Since (signy (Zm4+1), - - - , signy(Zg+1)) and X are independent, it follows, that

E(We(Z)) = / PVn=m+41,...,q+ 1:5signy(Z,) = U,;(n))dP)?()?)
Xex

q+1 .
= [T retsns(z) = oxmyar* )
Xe)(

n=m+1

1 q+1-m .
-[G) e
XEX
1 qg+1—m B
= (2) P(X € Xey).

For m = 1 we have Xg, C Xy and thus ¥} (z;) = (%)CHP1 P(X € Xer) = 5.
It remains to prove the second equation. Therefore, let m = 2.

Let X3, ..., Xg41 € X, such that (x3, ..., Xq41) € Xgp and let w := X3 X - - - X X441. Then we have
X1, ..y Xg41) € Xox
Déf' dsz, ..., Sq+1 € {—1, 1} 1 dy (0, (51X1, . . ., Sq1Xg+1)) = 1
Le“g“ sz, ..., Sq41 € {—1, 1} 1 51X € RoS2Xp + - - - + RoSq41Xg+1

<3Jo, B> 0,32 € R, & #0: (as1X1 + BS2Xa, X3, ..., Xg41)A =0
&3a, B> 0: det(asiXy + BSaXa, X3, - - ., Xg1) = O
s, B> 0: (as1x1 + Bsox) w =0
<Ja, >0 aslxgw + ﬁszxgw =0
&sign(sixjw) = —sign(s,xyw)
Ssisxiwxyw < 0.
Note, that the equation

1—s
P(sU < 0) =sP(U < 0) +

holds for each R-valued random variable U with P(U = 0) = 0 and s € {—1, 1}. It follows that
Vi (21,2) = EWa(Z) — E()

1 q+1-2 B 1
=<5> P(Xexex)_zfq

ot TiasT 1
=z P(s15:%, Wx, W < 0) — e
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1\ - 1— 515 1
= <5> <s1szP(x1Wx2W <0)+ T) - %
s15:(PXTWxIW < 0) — 3
= = .
Proof of Proposition 2. Note, that the equation
N 1 1
P U<0]==—-(1-=2PU; <0V
(]1;[ j ) > — 5 Uy < 0))
holds for N € N and i.i.d. R-valued random variables Uy, . .., Uy with P(U; = 0) = 0. Since the occurring determinants are

Vandermonde determinants, we have for all t{, t; € R:

1
K (x(tr), X(62)) = Px(t1)" (X3 X -+ x Xgy1)x(£) (X3 x -+ X Xg41) < 0) — 3

1
= P(det(x(t1), x(T3), ..., X(Tgy1)) - det(x(t2), x(T3), ..., x(Tq41)) < 0) — 3

1
=P<H(Tj—r1) IT @-»[lo-o [ @-n <0> -5
j=3 3<i<j=q+1 j=3 3=i<j=q+1
q+1 1
=P (T —t)T—t) <0) — 3
j=3 2

_ ! 11 2P((Ty — t1)(Ty — t 0))4! !
—5—5(— ((T; — t)(T1 — ) < 0)) b

—%(1 —2|F"(t) — Fl' (D! O

Proof of Proposition 3. At first we derive the Fourier series representation of f™ where f is given by

1 11

-1 1]>z— f@)==—z|e|—=,=|.

fel 1 f@ 5 |z| [ > 2]
Since

{«2 cos(lr-), sin(lm-); 1 € N}

is an orthonormal basis of L,[—1, 1] and f" is with f an even function, f" can be represented only by % and the cosine

functions, i.e.
LR e
ff@)=ay - —+ Y & -cos(lnz).
V2 ,;
Since f" is continuous and piecewise differentiable, the series is uniformly convergent so that
- 1 1 [ 1
ay’ = ff(2) - —=dz = 2/ ff(2)dz
0 /;1 V2 0
and forl > 1

1 1
o = [ 1 ' (@) - cos(Irz)dz = 2 /0 fT(z) - cos(lrz)dz.

This implies forr = 1

o’ =0,
and forl > 1
- 0, if [ is even,
o = 2/ ( _ z) cos(izydz =1 4
b \2 —, iflisodd.

Pr2’
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For r = 2, we obtain

1 2
O L6 U S )
o - 2 V2 12
0

and forl > 1
4
171 2 A g
o = 2/ (* —z> -cos(nz)dz = | pgz NI EVED
0 \2 0, iflisodd.
Forr > 2, we have
- 2 /l ( 1 Z)T i 2 07 ifris Odd,
ao =5 5 == . .
2 ——, ifriseven,
V2 Jo V2 LT

and for [ > 1, partial integration provides the following recursion formula for oc,(r)

1 1 r
al(') = 2/ (5 —z> - cos(lrz)dz
0
1 1 no2r /1 =t
2—sin(lrz) (= —z + —/ - —z -sin(lrz)dz
I 2 o ImJo \2

2r (1 /1 -t
— - =z -sin(lrz)dz

I 0 2

2r 1 1 r-1|! 2rr—1) (' /1
———cos(ltrz) | = —z - —

Ir Im 2 o I In o

-1 -1
— _gl (=1} _1 r — 1 ' _ a r—1 la’(r—z)
I I 2 2 Im Im 2

2

— r IHr—1 rr—1 _y
= g OV 1] = e
rr—1 _
- (lznz) 7 if 1+ 1 is odd,
272 [2r_3 —(r— Do’ 2):| , ifl+riseven.
Since al(l) = 0iflis even and al(z) = 0iflis odd, we obtain a’(r)
() r! ) kil
o == —(—I'm 7.
’ ke{l,Z.r) 2r7k72(r - k)’( )
kodd

This can be seen by induction over r: for r = 1 and [ odd, it holds according to (10)

r! k1 1! 4
— e — —12]'[2 2 = — —[27[2 L a“)’
k“Z) 2k=2(r — k)!( ) 220:¢ ) Rp2
kodd

and for r = 2 and [ even, it holds according to (11)

r! k+1 2! 4
_Pr))— 5 — _Rr?-1 = — a(Z).
MZ} 2—k=2(r — k)!( ) PRI ) Rg2 !
k odd

The induction step is done from r to r + 2, that is:
r+2 1
o ’(r+2) — |:

()
Rg2 | 2r—1 (r+ Doy ]

r+2 1 r! 9 o kil
= 127'[2 or—1 + (T + 1) Z ) 2r—k—2(r — k)!(_l 7 ) :

r—2
- — z) - cos(lrz)dz

(11)

=0ifr +1lisodd.Ifr + lis even and [ > 1, then we have
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(r+2)! 2_2\-1 (r+2)! 2 o\ _kt241

= IF'r — - 2
2r+2—3(r +2— 1)!( ) kE{LZ.r) 2r+27(k+2)72(r +2—(k+ 2))!(
k odd
(r+2)! 9 9. ki1
- Z T mra e LU
ke{l,..r+2} (r+ )!
Kodd

Hence, we always have «” = v/2y,"” and o(” = 2y, for [ > 1, where y,” are the quantities of Proposition 3.
To finish the proof, we transfer the Fourier series representation of f"(z) on [—1, 1] to that of g" (s, t) = f"(s — t) on
[0, 1]%. This provides

(o)

l o0
ffs==eay - —+Y o cos(lm(s — 1))
° V2 =

1 o0
(r) (r) ; :
=y  —+ E a; - [cos(lrs) - cos(lmt) + sin(lws) - sin(lmt)]
0 \/i =1 :

which is the representation given by Proposition 3 using the relation between ozl(r) and y,(r) . The quantities y,(r) are used in
Proposition 3 since only

§= {1, V2 cos(ln-), V2 sin(ln); | € N]

are normalized functions of I, [0, 1]. However, 4§ is not an orthonormal system of IL,[0, 1]. But, since the quantities y,(r) are
zero as soon as r + [ is odd, only the systems

{ﬁcos(ln-), ﬁsin(ln-); l e Nandlis odd} for r odd,

{1, ﬁcos(lm), «/isin(lyr); l e Nandlis even} for r even,

are relevant and these are orthonormal systems of L,[0, 1]. O
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