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a b s t r a c t

A general approach for developing distribution-free tests for general linear models
based on simplicial depth is presented. In most relevant cases, the test statistic is a
degenerated U-statistic so that the spectral decomposition of the conditional expectation
of the kernel function is needed to derive the asymptotic distribution. A general formula
for this conditional expectation is derived. Then it is shown how this general formula
can be specified for polynomial regression. Based on the specified form, the spectral
decomposition and thus the asymptotic distribution is derived for polynomial regression
of arbitrary degree. The power of the new test is compared via simulation with other tests.
An application on cubic regression demonstrates the applicability of the new tests and in
particular their outlier robustness.
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1. Introduction

Simplicial depth for multivariate location was introduced by Liu [7,8]. It is based on the half-space depth of Tukey [16].
Both depth notions lead to a generalization of the median for multivariate data which is equivariant with respect to affine
transformations. Moreover the concept of depth is useful to generalize ranks.
The simplicial depth has the advantage that it is a U-statistic so that in principle the asymptotic distribution is known.

However, it is not easy to derive the asymptotic distribution. Arcones et al. [1] derived the asymptotic normality of the
maximum simplicial depth estimator of Liu [7,8] via the convergence of the whole U-process. The convergence of the
U-process was also shown by Dumbgen [5]. However the asymptotic normal distribution has a covariance matrix which
depends on the underlying distribution. Hence this result cannot be used to derive distribution-free tests. Liu [9] and Liu
and Singh [10] proposed distribution-free multivariate rank tests which generalize the Wilcoxon’s rank sum test for two
samples. While the asymptotic normality is derived for several depth notions for distributions on R1, it is shown only for
the Mahalanobis depth for distributions on Rk, k > 1. Hence it is unclear how to generalize the approach of Liu and Singh
to other situations.
Several other depth concepts were introduced since the work of Tukey [16]. See for example the book of Mosler [13] and

the references therein.Multivariate depth conceptswere transferred to regression by Rousseeuw andHubert [15], to logistic
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regression by Christmann and Rousseeuw [3] and to theMichaelis–Mentenmodel by Van Aelst et al. [17]. The depth concept
for regression is based on the notion of nonfit introduced by Rousseeuw and Hubert [15]. Thereby, a regression parameter θ
is called a nonfit, if there is another parameter θ ′ which provides for all observations zn smaller squared residuals r(zn, θ ′)2.
The depth of a regression parameter θ is then given by the minimum number of observations which must be removed so
that θ becomes a nonfit.
More general concepts of depth were introduced and discussed by Zuo and Serfling [22,23] and Mizera [11]. Mizera

[11] in particular generalized the regression depth of Rousseeuw and Hubert [15] by basing the nonfit on general quality
functions instead of squared residuals. Using these quality functions, he introduced the ‘‘global depth’’, the ‘‘tangent depth’’
and the ‘‘local depth’’ and gave a sufficient condition for their equality. This approachmakes it possible to define the depth of
a parameter value with respect to given observations in various statistical models via general quality functions. Appropriate
quality functions are in particular likelihood functions as studied byMizera andMüller [12] for the location-scalemodel and
by Müller [14] for generalized linear models.
As for multivariate location, there exist only few results concerning tests based on regression depth and its

generalizations. Bai and He [2] derived the asymptotic distribution of the maximum depth estimator for regression so that
tests could be based on this. However, this asymptotic distribution is given implicitly so that it is not convenient for inference.
Van Aelst et al. [17] derived an exact test based on the regression depth of Rousseeuw and Hubert [15] but did it only for
linear regression. Müller [14] derived tests by using the simplicial regression depth which generalizes Liu’s [7,8] simplicial
depth to regression.
In general, the simplicial depth dS for a q dimensional parameter θ which is based on a given depth notion d is defined

by

dS(θ, z) =
(
N
q+ 1

)−1 ∑
1≤n1<n2<···<nq+1≤N

I{d(θ, (zn1 , . . . , znq+1)) > 0},

where z = (z1, . . . , zN) is the sample and I denotes the indicator function. This is a U-statistic with symmetrical kernel
function ψθ ∈ L2(

⊗q+1
n=1 P

Z1
θ ), defined as

ψθ (zn1 , . . . , znq+1) := I{d(θ, (zn1 , . . . , znq+1)) > 0}.

That is, ψθ equals one if and only if the depth d(θ, (zn1 , . . . , znq+1)) of θ in zn1 , . . . , znq+1 is greater than zero.
Müller [14] proposed basing the test statistic directly on the general simplicial depth dS . For testing a hypothesis of the

form H0 : θ ∈ Θ0, where Θ0 is an arbitrary subset of the parameter space, the test statistic is defined as T (z1, . . . , zN) :=
supθ∈Θ0 Tθ (z1, . . . , zN). Thereby Tθ (z1, . . . , zN) is defined as

Tθ (z1, . . . , zN) :=

√
N(dS(θ, (z1, . . . , zN))− µθ )

(q+ 1)σθ
,

if dS(θ, z) is not a degenerated U-statistic, i.e. ψ1θ (z1) := E(ψθ (Z1, . . . , Zq+1)|Z1 = z1) depends on z1, and

Tθ (z1, . . . , zN) := N(dS(θ, (z1, . . . , zN))− µθ ), (1)

if dS(θ, z) is a degenerated U-statistic. In several cases the asymptotic distribution of Tθ (Z1, . . . , ZN) does not depend on θ ,
so that the null hypothesis H0 is rejected if T (z1, . . . , zN) is less than the α-quantile of this asymptotic distribution. Thereby
the quantities µθ and σθ are defined as µθ = E(ψθ (Z1, . . . , Zq+1)) and σ 2θ = Var(ψ

1
θ (Z1)).

Unfortunately, the simplicial depth dS is a degenerated U-statistic in themost interesting case, where the true regression
function is in the center of the data, which means that the median of the residuals is zero. Whereas nondegenerated U-
statistics are asymptotically normal distributed, simple asymptotic results are not possible for degenerated U-statistics.
In the degenerated case, the asymptotic distributions can be derived by using the second component of the Hoeffding
decomposition. We have namely the following result (see e.g. [6], p. 79, 80, 90, [21], p. 650). If the reduced normalized
kernel function

ψ2θ (z1, z2) := E(ψθ (Z1, . . . , Zq+1)− µθ |Z1 = z1, Z2 = z2) (2)

is L2-integrable, it has a spectral decomposition of the form

ψ2θ (z1, z2) =
∞∑
l=1

λlϕl(z1)ϕl(z2), (3)

where the functions ϕl are L2-integrable, normalized, and orthogonal. Then the asymptotic distribution of the simplicial
depth is given by

N(dS(θ, (Z1, . . . , ZN))− µθ )
L
−→

(
q+ 1
2

) ∞∑
l=1

λl(U2l − 1), (4)
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where Ul ∼ N (0, 1) and U1, U2, . . . are independent. In the general case, it could happen that the eigenvalues λl depend
on the underlying parameter θ . However, Müller [14] could show that this is not the case for polynomial regression in
generalized linear models so that the asymptotic distribution does not depend on the regression parameter.
However, Müller [14] was only able to find the spectral decompositions for linear and quadratic regression in generalized

linear models. These spectral decompositions were found by solving differential equations. In this paper we derive the
spectral decomposition (3) for polynomial regression of arbitrary degree by a completely new approach.
For this approach, we use in Section 2 quality functions for defining the depth d used in the simplicial depth dS . The

simplicial depth is based on the tangent depth for these quality functions. However, this simplicial depth attains rather high
values in subspaces of the parameter space, since it does not provide convex depth contours as all simplicial depth notions
do not. This is in particular a disadvantage in testing if the aim is to reject the null hypothesis. To avoid this disadvantage,
we introduce in Section 2 a harmonized depth and use it as the kernel function of the simplicial depth. This approach leads
also to a method to calculate the maximum simplicial depth under the null hypothesis. While in [14] only null hypotheses
could be rejected for which the null hypothesis is a point or a line within the parameter space, we are now able to treat
hypotheses about arbitrary subspaces and polyhedrals, as Wellmann et al. [18] showed.
In Section 3, we derive a general formula for the conditional expectation (2) for the simplicial depth for generalized linear

models introduced in Section 2 and we show that the asymptotic distribution can be obtained by calculating the spectral
decomposition of a functionK , which only depends on the probability law of the vector product of regressor variables. This
means in particular that the asymptotic distribution of the test statistic (1) does not depend on the unknown regression
parameter. The functionK is applied to the harmonized form of the simplicial regression depth but the proofs hold also for
the unmodified form.
The general formula forK is specified for polynomial regression of arbitrary degree in Section 4. Based on the specified

formula, the spectral decomposition is derived. The spectral decomposition is found by a Fourier series representation of a
related function of L2[−1, 1]which is used to derive the required representation ofK . We think that this approach can be
used to find the spectral decomposition of other simplicial depth functions. In particular, Wellmann andMüller [19] derived
the asymptotic distribution of the simplicial regression depth for different models of multiple regression.
In Section 5 the power of the simplicial depth test is comparedwith other tests via simulation. It turns out that the power

of the simplicial depth test is better than the power of the tangent depth test of Van Aelst et al. [17], but there exist robust
tests for linear regression which have a slightly better power than the simplicial depth test. An advantage of the simplicial
depth test is that general forms of hypotheses can be tested, as shown in [18]. The null hypothesis could be an arbitrary
polyhedron within the parameter space. This is also demonstrated in Section 6 where an application on tests in a cubic
regression model is given. This example also shows that the new tests possess a higher outlier robustness than competing
tests. All proofs are given in Section 7.

2. Simplicial depth for generalized linear models

We assume that the random vectors Z1, . . . , ZN are independent and identically distributed throughout the paper. The
random vectors Zn = (Un, Xn) have values inZ ⊂ R1+q, where Un is a real-valued random variable and the regressor Xn is a
random vector. For a given transformation h : R→ Rwe write Yn = h(Un). The random error En is given by

En = Yn − XTn θ,
where θ ∈ Θ = Rq. Random variables are denoted by capital letters and realizations by small letters. The value
sn(θ) := signθ (zn) := sign(yn − xTnθ) is the sign of the residual of the nth (transformed) observation. The family
P = {P (Z1,...,ZN )θ : θ ∈ Θ} of probability measures withΘ = Rq may be unknown, but for the purpose of deriving tests, we
will assume that the following assumptions hold:

• Pθ (S1(θ) = 1|X1) ≡
1
2
a.s.,

• Pθ (S1(θ) = 0|X1) ≡ 0 a.s., and
• Pθ (X1, . . . , Xq are linearly dependent) = 0.

(5)

Thus, the random errors only have to satisfy Pθ (En > 0|Xn) ≡ Pθ (En < 0|Xn) ≡ 1
2 . In particular, the errors may be

heteroscedastic. Our results are not affected by the concrete form of the error distribution. The last two conditions of (5) are
usually satisfied for continuous distributions. The first condition of (5) holds in particular with h(Un) = Un for general linear
models with symmetric error. For generalized linear models it can be achieved by using an appropriate transformation h.
See for example [14] for the exponential distribution, where h should be h(Un) = log( Un

log(2) ).
For this model, the following quality functions can be used:

Definition 1 (Quality Functions for Generalized Linear Models). Take ϕ to be a function with continuous derivatives, which
has its maximum and its sole critical point in 0. Then the function

Gzn : Θ → R with Gzn(θ) := ϕ(yn − x
T
nθ)

is said to be a quality function for generalized linear models.
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Although quality functions are needed to define the tangent depth or the global depth of Mizera [11], the resulting depth
functions do not depend on the choice of ϕ, so that we may restrict ourselves to the simplest case ϕ(x) = −x2.
The general form is only needed to cover the likelihood case: Often, one would like to choose the likelihood functions

f Znθ (zn) to be the quality functions. However, they should be used only, if Pθ (En > 0|Xn) =
1
2 is satisfied, because otherwise

the true regression function is not in the center of the data and thus the estimator is biased. A forthcoming paper will deal
with the problems which appear if Pθ (En > 0|Xn) ≡ 1

2 is not satisfied.

Definition 2 (Tangent Depth). According to Mizera [11], we define the tangent depth of θ ∈ Θ with respect to given
observations z1, . . . , zN ∈ Z to be

dT (θ, z) = min
u6=0
#{n : uT∇Gzn(θ) ≥ 0},

where Gz1 , . . . ,GzN are quality functions for generalized linear models, z := (z1, . . . , zN) and∇Gzn(θ) denotes the vector of
partial derivatives of Gzn in θ .

As shown in [11], this depth notion counts the number of observations that needs to be removed such that there is a
‘‘better’’ parameter for all remaining observations. It is easy to see, that the tangent depth does not depend on the choice of
ϕ. Furthermore, for all θ ∈ Θ and for given observations z1, . . . , zN ∈ Zwe have:

dT (θ, z) = min
u6=0
#{n : sn(θ)uT xn ≥ 0}. (6)

As in [15] it can be shown, that the parameter space Θ = Rq is divided up into domains with constant depth by the
hyperplanes

Hn = {θ ∈ Rq : sn(θ) = 0}, n = 1, . . . ,N.

For given observations let Dom(z) be the set of all those domains. We define d̄T (G, z) := dT (θ, z) for G ∈ Dom(z) and θ ∈ G.
We will define the simplicial depth to be a U-statistic. If we would take the tangent depth to be the kernel function

of the U-statistic, then the simplicial regression depth attains rather high values in subspaces of the parameter space,
namely in Border(z) := ∪Nn=1 Hn. This is in particular a disadvantage if the aim is to reject the null hypothesis. To avoid
this disadvantage, we introduce a harmonized depth.

Definition 3 (Harmonized Depth). The harmonized depth of θ ∈ Θ with respect to the observations z1, . . . , zN ∈ Z is
defined to be

ψθ (z) = min
G∈Dom(z),θ∈Ḡ

d̄T (G, z),

where Ḡ is the closure of G.

Definition 4 (Simplicial Depth). The simplicial depth is given by

dS(θ, z) =
(
N
q+ 1

)−1 ∑
1≤n1<n2<···<nq+1≤N

ψθ (zn1 , . . . , znq+1).

This depth, which transfers the simplicial depth of Liu to regression models, is also called a simplicial depth because it
counts the fraction of simplices that are bounded by q+ 1 hyperplanes from H1, . . . ,HN and contains θ as an interior point.
Algorithms for calculating the simplicial depth are based on this view as well and are given in [18]. The proposed tests are
based on the asymptotic distribution of this depth notion.

3. The asymptotic distribution of the simplicial depth

The definition of tangent depth shows, that the depth of a parameter is the half-space depth of 0 with respect to the
gradients of the quality functions. Thereby, the half-space depth of 0 with respect to given vectors r1, . . . , rN ∈ Rq is defined
as

dH(0, r) := min
u6=0
#{n : uT rn ≥ 0},

where r = (r1, . . . , rq+1) (see [16]). The next lemma is needed to derive the conditional expectations of the kernel function,
which depends only on q+ 1 observations, but it can also be used to calculate the simplicial depth of a given parameter.

Lemma 1. Let r1, . . . , rq+1 ∈ Rq be in general position. Then dH(0, r) ∈ {0, 1} and the following statements are equivalent:

(i) dH(0, r) = 0,
(ii) r1 6∈ R≤0r2 + · · · + R≤0rq+1.
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Proofs are given in Section 7. The next Proposition shows, that

ψ1θ (z1) := E(ψθ (Z1, . . . , Zq+1)|Z1 = z1)

does not depend on z1, so that the simplicial depth is a degenerated U-statistic and has asymptotically the distribution of
an infinite linear combination of χ2-distributed random variables (see e.g. [6], p. 79, 80, 90, [21], p. 650). This distribution
depends only on the conditional expectation

ψ2θ (z1, z2) := E(ψθ (Z1, . . . , Zq+1)|Z1 = z1, Z2 = z2)− E(ψθ (Z1, . . . , Zq+1)).

Proposition 1. Suppose that the assumptions in (5) are satisfied. Let θ ∈ Θ and let z1, z2 ∈ Z, such that x1, x2 are linearly
independent and s1(θ), s2(θ) ∈ {−1, 1}. Then

ψ1θ (z1) =
1
2q

and

ψ2θ (z1, z2) =
s1(θ)s2(θ)
2q−1

(
Pθ (xT1Wx

T
2W < 0)−

1
2

)
,

where W := X3 × · · · × Xq+1 is the vector product of X3, . . . , Xq+1.

With this proposition, we obtain amain result:We get the asymptotic distribution of the simplicial depth for generalized
linear models which satisfy assumptions (5) by calculating the spectral decomposition of the kernelK , defined by

K(x1, x2) := Pθ (xT1Wx
T
2W < 0)−

1
2
, for x1, x2 ∈ Rq. (7)

Note that x>i W = det(xi, X3, . . . , Xq+1) for i = 1, 2. The spectral decomposition is a representation

K(x1, x2) =
∞∑
j=1

λjϕj(x1)ϕj(x2) in L2
(
PX1 ⊗ PX1

)
,

where (ϕj)∞j=1 is an orthonormal system (ONS) in L2
(
PX1
)
and λ1, λ2, . . . ∈ R. The functions (ϕj)∞j=1 are eigenfunctions and

the values λ1, λ2, . . . are the corresponding eigenvalues of the related integral operator TK , defined by

TK : L2(PX1)→ L2(PX1) with TK f (s) =
∫

K(s, t)f (t)dPX1(t).

Now we show, how the asymptotic distribution can be obtained from the spectral decomposition of K . The system
(ψj)

∞

j=1, defined by ψj(z) := signθ (z)ϕj(v(z)) for z ∈ Z is an ONS in L2(PZ1) and for ψ2θ we have the representation

ψ2θ (z1, z2) =
signθ (z1)signθ (z2)

2q−1
K(v(z1), v(z2))

=

∞∑
j=1

1
2q−1

λjsignθ (z1)ϕj(v(z1))signθ (z2)ϕj(v(z2))

=

∞∑
j=1

1
2q−1

λjψj(z1)ψj(z2).

Hence, it follows by (4), that

N
(
dS(θ, (Z1, . . . , ZN))−

1
2q

)
L
−→

∞∑
l=1

(q+ 1)!
(q− 1)!2q

λl
(
Ul2 − 1

)
, (8)

where U1,U2, . . . are i.i.d. random variables with U1 ∼ N (0, 1). Furthermore, this derivation shows, that the asymptotic
distribution does not depend on the underlying parameter θ , if the distribution of W does not depend on it. However, in
general it depends on the underlying distribution of the regressors Xn. In the next section, this general result is applied to
polynomial regression.
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4. Polynomial regression

In the model for polynomial regression of degree r = q − 1 we can write Zn = (Un, x(Tn)) with a real-valued random
variable Tn, where Yn = h(Un) is the dependent variable and Xn := x(Tn) := (1, Tn, . . . , T rn )

T is the regressor. The unknown
parameter is θ = (θ1, . . . , θq)> ∈ Rq, so that

Yn = θ1 + θ2Tn + · · · + θqT q−1n + En.

Suppose that the assumptions in (5) are satisfied. Because of the independence of T1, . . . , TN , the third assumption in (5) is
equivalent to Pθ (T1 = t) = 0 for all t ∈ R.
In this section, we derive the asymptotic distribution of the simplicial depth by calculating the spectral decomposition of

the kernelK , given in (7).WhileMüller [14] derived it only for r = 1 and r = 2 in anotherway, we have now the asymptotic
distribution for polynomial regression of arbitrary degree. At first, we give a simple representation of the kernelK , which
is obtained from (7) via the formula for Vandermonde determinants (see the Section 7).

Proposition 2. For all t1, t2 ∈ R we have

K(x(t1), x(t2)) = −2r−1
(
1
2
− |F T1(t1)− F T1(t2)|

)r
,

where F T1 is the distribution function of T1.

Müller derived the same formula for the reduced normalized kernel function ψ2θ (see Proposition 2 in [14]). Our proof is
based not onψ2θ , but onK . This makes the proof much shorter. It remains to derive the spectral decomposition ofK , which
we obtain in the next proposition via a Fourier series representation of ( 12 − |z|)

r in L2[−1, 1].

Proposition 3. The spectral decomposition of
( 1
2 − |s− t|

)r
in L2[0, 1]2 is given by(

1
2
− |s− t|

)r
= γ

(r)
0 · 1+

∞∑
l=1

γ
(r)
l · 2 · [cos(kπs) cos(kπ t)+ sin(kπs) sin(kπ t)]

where for r odd

γ
(r)
l =


0, if l is even,

−

∑
k∈{1,...,r}
k odd

r!
2r−k−1(r − k)!

(−l2 π2)−
k+1
2 , if l is odd,

and for r even

γ
(r)
l =



1
(r + 1)2r

, if l = 0,

−

∑
k∈{1,...,r}
k odd

r!
2r−k−1(r − k)!

(−l2π2)−
k+1
2 , if l is even and l > 0,

0, if l is odd.

Let (ψj)j∈J be the ONS in L2[0, 1], given in the proof of Proposition 3, such that (γ
(r)
j )j∈J are the eigenvalues, related to

K(s, t) = ( 12 − |s − t|)
r . Then the system (ϕj)j∈J , defined by ϕj := ψj ◦ F T1 ◦ x−1 is an ONS in L(PX1) and we have the

representation

K(x1, x2) = K(x(x−1(x1)), x(x−1(x2)))

= −2r−1
(
1
2
− |F T1(x−1(x1))− F T1(x−1(x2))|

)r
=

∑
j∈J

(−2r−1γ (r)j )ϕj(x1)ϕj(x2).

Hence, the next theorem holds:

Theorem 1. If P(Yn − x(Tn)>θ ≥ 0|Tn) = 1
2 and Tn has a continuous distribution, then the asymptotic distribution of the

simplicial likelihood depth dS(θ, (Z1, . . . , ZN)) for polynomial regression is given by

N
(
dS(θ, (Z1, . . . , ZN))−

1
2r+1

)
L
−→

∞∑
l=0

λ2l+1(V 2l +W
2
l − 2)
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Fig. 1. Cauchy distributed errors.

for r even and

N
(
dS(θ, (Z1, . . . , ZN))−

1
2r+1

)
L
−→ λ0(U2 − 1)+

∞∑
l=1

λ2l(V 2l +W
2
l − 2)

for r odd, where U, V0,W0, V1,W1, . . . are independent random variables with standard normal distribution and

λ0 = −
r + 2
2r+2

,

λl =
∑

k∈{1,...,r}
k odd

(r + 2)!
2r−k+1(r − k)!

(−l2π2)−
k+1
2 for l ∈ N.

The calculation of the test statistic and the critical values for any hypothesis of the form H0 : θ ∈ Θ0 where Θ0 is
a subspace of the parameter space or a polyhedron is described in [18]. There, a table of the critical values is also given.
Although this test is an asymptotic test, it controls the alpha level also for the finite case. This is shown by the simulation
study of the next section. In this section also the power is compared with other outlier robust tests.

5. Power comparison

In a simulation study, we compared the power of different tests for linear regression. We compared the simplicial depth
test with the tangent depth test according to Van Aelst et al. [17] and Daniels [4], the F test, the regression rank-score test
(RRS test, functionrrs.test() fromRpackagequantreg) and a testwhich is based onMMregression estimators (function
lmrob() from R package robustbase). The functions rrs.test() and lmrob() are used with the default parameter
values. All tests are performed to the level α = 0.05. The power curves are obtained by simulation with 5000 repetitions.
In the first example, we tested the null hypothesis that the true regression line is horizontal. The regressors are

realizations of independent normal distributed random variables with mean 0 and standard deviation 1. The errors are
independent Cauchy distributed with location parameter 0 and scale parameter 1. We choose Cauchy distributed errors in
order to simulate outliers. Fig. 1 shows the power for different slopes. The simplicial depth test has a better power than the
tangent depth test and a slightly worse power than the RRS test and the lmrob test. The F test nearly keeps the level, but
has poor power for such observations. It can also be seen that the true levels of the simplicial depth test and the tangent
depth test are smaller than 0.05. This is because for both tests, the depth is maximized over all parameters from the null
hypothesis. The null hypothesis is rejected in nearly all cases with the simplicial depth test, if the true slope is larger than 2.
In the second example, we also tested the null hypothesis that the true regression line is horizontal, but we assumed

heteroscedastic errors. The regressors are independent normal distributedwithmean 0 and standard deviation 2. The errors
are independent Cauchy distributed with location parameter 0, but the scale parameter depends on the regressor xn. Given
xn, the scale parameter of the error is equal to 2 + exp(xn), so that the variation increases from left to right. Fig. 2 shows,
that also in this example the simplicial depth test has a better power than the tangent depth test and controls the level.
Moreover, the RRS test has poorer power for small slopes and does not keep the level since the minimum is shifted to the
left. The lmrob test had the best power in all comparisons, but did not converge for some data sets and might also have a
problem with the level.
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Fig. 2. Heteroscedastic errors.

Fig. 3. Least squares quadratic and cubic function.

6. Application: Test about quadratic function against cubic function

The concentration of malondialdehyde (MDA) for 78 women twice after childbirth (IMDA and IIMDA) at two time points
wasmeasured, to find a relation between the levels of IMDA and IIMDA. MDA is ametabolite of lipid peroxides detectable in
plasma. It was measured as an indicator of lipid peroxidation and oxidation stress of women postpartum (after childbirth).
The data came from the Clinic of Gynaecology, Faculty Hospital with Policlinic, Bratislava-Ružinov (Slovakia).
We choose IMDA as the dependent variable. The data shown in Fig. 3 suggest an almost linear relationshipwith 4 outliers

on the right-hand side. Thus an outlier robust test should not reject the quadraticmodel against the cubicmodel and it should
not reject the linear model against the quadratic model. But it should reject the null hypothesis that the true regression line
is constant in the model for linear regression.
We tested these hypotheses with the simplicial depth test, the RRS test, the lmrob test and the F test, although normality

of the residuals with respect to the ordinary least squares estimation was rejected (p-value < 0.001). These tests are also
used in the simulation study of Section 5. The results are given in Table 1, where ‘0’ denotes a decision for H0, ‘1’ denotes a
decision for H1, and ‘−’ indicates that this hypothesis cannot be tested.
It turned out that only the simplicial depth test provides the expected results. The results of the test linear against

quadratic may be not surprising since the deepest quadratic function looks rather linear (see Fig. 4), whereas the least
squares estimate is attracted by the outliers (see Fig. 3).
In Table 1 it is also demonstrated that the simplicial depth test can be used to test hypotheseswhich cannot be testedwith

the other tests.We used the fast algorithm given in [18] for the determination of dS(θ, z), so that not all
(
N
q+1

)
combinations
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Table 1
Decisions of different tests

Model Hypothesis Simplicial depth test RRS test lmrob test F test

Cubic θ4 = 0 0 1 1 1
Quadratic θ3 = 0 0 1 1 1
Linear θ2 = 0 1 1 1 1
Quadratic |θ3| > 10 1 – – –
Linear θ2 6∈ [0, 3] 1 – – –

Fig. 4. Deepest quadratic functions for q = 3 and q = 4.

need to be calculated. Nevertheless, the method is computer intensive if the dimension of the null hypothesis is large. In
Wellmann et al. it is also shown how the test statistic can be calculated ifΘ0 is an arbitrary polyhedron.

7. Proofs

For more details of the proofs see also [20].

Proof of Lemma 1. Since r1, . . . , rq are linearly independent, they belong to a hyperplane H with 0 6∈ H .
There are a γ < 0 and a u ∈ Rq, such that H = {v ∈ Rq : vTu = γ }.
Since r1, . . . , rq do not belong to the half-space {v ∈ Rq : vTu ≥ 0}, we have dH(0, r) ≤ 1.
It remains to show the equivalence.
(ii)⇒ (i): For any j = 1, . . . , q+ 1 let Hj be the hyperplane that contains the points (ri)i∈{1,...,q+1}\{j}.
Step 1: There is a j ∈ {1, . . . , q+ 1} such that 0 and rj are on different sides of Hj.

Proof. Since r2, . . . , rq+1 is a basis of Rq, there exists γ2, . . . , γq+1 ∈ R such that r1 = γ2r2 + · · · + γq+1rq+1. Since
r1 6∈ R≤0r2 + · · · + R≤0rq+1 we may assume that γ2 > 0. We prove that r1 and 0 are on different sides of H1, if r2 and
0 are on the same side of H2. Hence, we have:

(a) r1 = γ2r2 + · · · + γq+1rq+1 with γ2 > 0.
(b) There are α > 0 and β3, . . . , βq+1 ∈ R such that
r2 = r1 − αr1 +

∑q+1
j=3 βj(rj − r1) ∈ R<0r1 + H2.

From these equations we obtain two different representations of r2:

r2 =

(
1− α −

q+1∑
j=3

βj

)
r1 + β3r3 + · · · + βq+1rq+1,

r2 =
1
γ2
r1 +
−γ3

γ2
r3 + · · · +

−γq+1

γ2
rq+1.

Comparing the coefficients leads to

0 <
1
γ2
= 1− α −

q+1∑
j=3

βj and
−γk

γ2
= βk for k = 3, . . . , q+ 1.
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It follows that

γ2 + · · · + γq+1 = γ2 − γ2βj − · · · − γ2βq+1

= γ2

(
1−

q+1∑
j=3

βj

)

=

1−
q+1∑
j=3
βj

1− α −
q+1∑
j=3
βj

> 1.

With (a) we have

r1 = (γ2 + γ3 + · · · + γq+1)r2 + γ3(r3 − r2) · · · + γq+1(rq+1 − r2).

Thus there is a λ ∈ (0, 1)with: λr1 ∈ r2 +
∑q+1
j=3 R(rj − r2) = H1.

Hence, r1 and 0 are on different sides of H1. This finishes the proof of Step 1.
Step 2: Main proof. The vectors rj and 0 are on different sides of this affine hyperplane Hj. Let v ∈ Hj. All vectors

r1, . . . , rq+1 are in the open half-space R>0v+ (Hj− v). The half-space Rq \ (R>0v+ (Hj− v)) does not contain the vectors
r1, . . . , rq+1. Thus, dH(0, r) = 0.
(i)⇒ (ii)
The vectors r1, . . . , rq+1 belong to an open half-space H with 0 ∈ ∂H

⇒ −r2, . . . ,−rq+1 ∈ H ′ := Rq \ H
⇒ R≤0r2, . . . ,R≤0rq+1 ⊂ H ′

⇒ R≤0r2 + · · · + R≤0rq+1 ⊂ H ′.

Because of r1 6∈ H ′ it follows that r1 6∈ R≤0r2 + · · · + R≤0rq+1. �

Proof of Proposition 1. Let z1, . . . , zm ∈ Z, such that x1, . . . , xm are linearly independent and sn := sn(θ) 6= 0 for
n = 1, . . . ,m, wherem ≤ q. Let

X̃ := (Xm+1, . . . , Xq+1),
Z ′ := (z1, . . . , zm, Zm+1, . . . , Zq+1),
X := v(Z),

Xgp := {(xm+1, . . . , xq+1) ∈ Xq+1−m
: each subset of q vectors from x1, . . . , xq+1is lin. indep.},

Xex := {(xm+1, . . . , xq+1) ∈ Xgp : ∃sm+1, . . . , sq+1 ∈ {−1, 1} : dH(0, (s1x1, . . . , sq+1xq+1)) = 1}.

We have to calculate E(ψθ (Z1, . . . , Zq+1)|Z1 = z1, . . . , Zm = zm) = E(ψθ (Z ′)).
Since P(X̃ ∈ Xgp) = 1 and P(ψθ (Z ′) ∈ {0, 1}) = 1, we have

E(ψθ (Z ′)) = P(ψθ (Z ′) = 1 and X̃ ∈ Xgp).

Because of {ψθ (Z ′) = 1} ∩ {X̃ ∈ Xgp} ⊂ {X̃ ∈ Xex},
it follows that

E(ψθ (Z ′)) = P(ψθ (Z ′) = 1 and X̃ ∈ Xex).

For r2, . . . , rq+1 ∈ Rq let σ(r2,...,rq+1) : {2, . . . , q+ 1} → {−1, 1}, such that

s1x1 ∈ R≤0σ(r2,...,rq+1)(2)r2 + · · · + R≤0σ(r2,...,rq+1)(q+ 1)rq+1,

if each subset of q vectors from s1x1, r2, . . . , rq+1 is linearly independent.
Since x2, . . . , xm are fixed, we can write σx̃ := σ(x2,...,xq+1) for x̃ = (xm+1, . . . , xq+1) ∈ Xgp.
Now, we prove that

P(ψθ (Z ′) = 1 and X̃ ∈ Xex) = P(∀n = m+ 1, . . . , q+ 1 : signθ (Zn) = σX̃ (n), X̃ ∈ Xex}.

Therefore let zm+1, . . . , zq+1 ∈ Zwith x̃ := (xm+1, . . . , xq+1) ∈ Xex.
Since x̃ ∈ Xex there are sm+1, . . . , sq+1 ∈ {−1, 1}with dH(0, (s1x1, . . . , sq+1xq+1)) = 1.
With Lemma 1 it follows that s1x1 ∈ R≤0s2x2 + · · · + R≤0sq+1xq+1.
Hence, the definition of σx̃ implies that

sn = σx̃(n) for n = 2, . . . ,m. (9)
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Furthermore, we have

ψθ (z) = 1

⇔θ 6∈ ∩
q+1
n=1 Hn and dT (θ, z) = 1

⇔signθ (zn) 6= 0 for n = 1, . . . , q+ 1 and dT (θ, z) = 1
⇔signθ (zn) 6= 0 for n = 1, . . . , q+ 1 and dH(0, (s1(θ)x1, . . . , sq+1(θ)xq+1)) = 1
Lemma 1
⇔ signθ (zn) 6= 0 for n = 1, . . . , q+ 1 and signθ (z1)x1 ∈ R≤0signθ (z2)x2 + · · · + R≤0signθ (zq+1)xq+1
⇔∀n = 2, . . . , q+ 1 : signθ (zn) = σx̃(n)
(9)
⇔ ∀n = m+ 1, . . . , q+ 1 : signθ (zn) = σx̃(n).

Hence,

E(ψθ (Z ′)) = P(∀n = m+ 1, . . . , q+ 1 : signθ (Zn) = σX̃ (n), X̃ ∈ Xex)

=

∫
Xex
P(∀n = m+ 1, . . . , q+ 1 : signθ (Zn) = σx̃(n)|X̃ = x̃)dP

X̃ (x̃).

Since (signθ (Zm+1), . . . , signθ (Zq+1)) and X̃ are independent, it follows, that

E(ψθ (Z ′)) =
∫
Xex
P(∀n = m+ 1, . . . , q+ 1 : signθ (Zn) = σx̃(n))dP

X̃ (x̃)

=

∫
Xex

q+1∏
n=m+1

P(signθ (Zn) = σx̃(n))dP
X̃ (x̃)

=

∫
Xex

(
1
2

)q+1−m
dP X̃ (x̃)

=

(
1
2

)q+1−m
P(X̃ ∈ Xex).

Form = 1 we have Xgp ⊂ Xex and thus ψ1θ (z1) =
( 1
2

)q+1−1
P(X̃ ∈ Xex) = 1

2q .
It remains to prove the second equation. Therefore, letm = 2.
Let x3, . . . , xq+1 ∈ X, such that (x3, . . . , xq+1) ∈ Xgp and letw := x3 × · · · × xq+1. Then we have

(x1, . . . , xq+1) ∈ Xex
Def.
⇔ ∃s3, . . . , sq+1 ∈ {−1, 1} : dH(0, (s1x1, . . . , sq+1xq+1)) = 1
Lemma 1
⇔ ∃s3, . . . , sq+1 ∈ {−1, 1} : s1x1 ∈ R<0s2x2 + · · · + R<0sq+1xq+1
⇔∃α, β > 0, ∃λ ∈ Rq, λ 6= 0 : (αs1x1 + βs2x2, x3, . . . , xq+1)λ = 0
⇔∃α, β > 0 : det(αs1x1 + βs2x2, x3, . . . , xq+1) = 0

⇔∃α, β > 0 : (αs1x1 + βs2x2)Tw = 0
⇔∃α, β > 0 : αs1xT1w + βs2x

T
2w = 0

⇔sign(s1xT1w) = −sign(s2x
T
2w)

⇔s1s2xT1wx
T
2w < 0.

Note, that the equation

P(sU < 0) = sP(U < 0)+
1− s
2

holds for each R-valued random variable U with P(U = 0) = 0 and s ∈ {−1, 1}. It follows that

ψ2θ (z1, z2) = E(ψθ (Z
′))− E(ψθ )

=

(
1
2

)q+1−2
P(X̃ ∈ Xex)−

1
2q

=

(
1
2

)q−1
P(s1s2xT1Wx

T
2W < 0)−

1
2q
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=

(
1
2

)q−1 (
s1s2P(xT1Wx

T
2W < 0)+

1− s1s2
2

)
−
1
2q

=
s1s2(P(xT1Wx

T
2W < 0)− 1

2 )

2q−1
.

Proof of Proposition 2. Note, that the equation

P

(
N∏
j=1

Uj < 0

)
=
1
2
−
1
2
(1− 2P(U1 < 0))N

holds for N ∈ N and i.i.d. R-valued random variables U1, . . . ,UN with P(U1 = 0) = 0. Since the occurring determinants are
Vandermonde determinants, we have for all t1, t2 ∈ R:

K(x(t1), x(t2)) = P(x(t1)T (X3 × · · · × Xq+1)x(t2)T (X3 × · · · × Xq+1) < 0)−
1
2

= P(det(x(t1), x(T3), . . . , x(Tq+1)) · det(x(t2), x(T3), . . . , x(Tq+1)) < 0)−
1
2

= P

(∏
j≥3

(Tj − t1)
∏

3≤i<j≤q+1

(Tj − Ti) ·
∏
j≥3

(Tj − t2)
∏

3≤i<j≤q+1

(Tj − Ti) < 0

)
−
1
2

= P

(
q+1∏
j=3

(Tj − t1)(Tj − t2) < 0

)
−
1
2

=
1
2
−
1
2
(1− 2P((T1 − t1)(T1 − t2) < 0))q−1 −

1
2

= −
1
2
(1− 2|F T1(t1)− F T1(t2)|)q−1. �

Proof of Proposition 3. At first we derive the Fourier series representation of f r where f is given by

f : [−1, 1] 3 z −→ f (z) =
1
2
− |z| ∈

[
−
1
2
,
1
2

]
.

Since {
1
√
2
, cos(lπ ·), sin(lπ ·); l ∈ N

}
is an orthonormal basis of L2[−1, 1] and f r is with f an even function, f r can be represented only by 1

√
2
and the cosine

functions, i.e.

f r(z) = α(r)0 ·
1
√
2
+

∞∑
l=1

α
(r)
l · cos(lπz).

Since f r is continuous and piecewise differentiable, the series is uniformly convergent so that

α
(r)
0 =

∫ 1

−1
f r(z) ·

1
√
2
dz =

√
2
∫ 1

0
f r(z)dz

and for l ≥ 1

α
(r)
l =

∫ 1

−1
f r(z) · cos(lπz)dz = 2

∫ 1

0
f r(z) · cos(lπz)dz.

This implies for r = 1

α
(1)
0 = 0,

and for l ≥ 1

α
(1)
l = 2

∫ 1

0

(
1
2
− z

)
· cos(lπz)dz =


0, if l is even,
4
l2π2

, if l is odd.
(10)
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For r = 2, we obtain

α
(2)
0 = 2

∫ 1

0

(
1
2
− z

)2
·
1
√
2
dz =

√
2
12
,

and for l ≥ 1

α
(2)
l = 2

∫ 1

0

(
1
2
− z

)2
· cos(lπz)dz =


4
l2π2

, if l is even,

0, if l is odd.
(11)

For r > 2, we have

α
(r)
0 =

2
√
2

∫ 1

0

(
1
2
− z

)r
dz =

2
√
2


0, if r is odd,

1
(r + 1)2r

, if r is even,

and for l ≥ 1, partial integration provides the following recursion formula for α(r)l

α
(r)
l = 2

∫ 1

0

(
1
2
− z

)r
· cos(lπz)dz

= 2
1
lπ
sin(lπz)

(
1
2
− z

)r ∣∣∣∣1
0
+
2r
lπ

∫ 1

0

(
1
2
− z

)r−1
· sin(lπz)dz

=
2r
lπ

∫ 1

0

(
1
2
− z

)r−1
· sin(lπz)dz

= −
2r
lπ
1
lπ
cos(lπz)

(
1
2
− z

)r−1∣∣∣∣∣
1

0

−
2r
lπ
(r − 1)
lπ

∫ 1

0

(
1
2
− z

)r−2
· cos(lπz)dz

= −
2r
lπ
1
lπ

[
(−1)l

(
−
1
2

)r−1
−

(
1
2

)r−1]
−
2r
lπ
(r − 1)
lπ

1
2
α
(r−2)
l

= −
r

l2π22r−2
[
(−1)l+r−1 − 1

]
−
r(r − 1)
l2π2

α
(r−2)
l

=


−
r(r − 1)
l2π2

α
(r−2)
l , if l+ r is odd,

r
l2π2

[
1
2r−3
− (r − 1)α(r−2)l

]
, if l+ r is even.

Since α(1)l = 0 if l is even and α
(2)
l = 0 if l is odd, we obtain α

(r)
l = 0 if r + l is odd. If r + l is even and l ≥ 1, then we have

α
(r)
l = −

∑
k∈{1,...,r}
k odd

r!
2r−k−2(r − k)!

(−l2π2)−
k+1
2 .

This can be seen by induction over r: for r = 1 and l odd, it holds according to (10)

−

∑
k∈{1,...,r}
k odd

r!
2r−k−2(r − k)!

(−l2π2)−
k+1
2 = −

1!
2−20!

(−l2π2)−1 =
4
l2π2
= α

(1)
l ,

and for r = 2 and l even, it holds according to (11)

−

∑
k∈{1,...,r}
k odd

r!
2r−k−2(r − k)!

(−l2π2)−
k+1
2 = −

2!
2−11!

(−l2π2)−1 =
4
l2π2
= α

(2)
l .

The induction step is done from r to r + 2, that is:

α
(r+2)
l =

r + 2
l2π2

[
1
2r−1
− (r + 1)α(r)l

]

=
r + 2
l2π2

 1
2r−1
+ (r + 1)

∑
k∈{1,...,r}
kodd

r!
2r−k−2(r − k)!

(−l2π2)−
k+1
2


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=
(r + 2)!

2r+2−3(r + 2− 1)!
(l2π2)−1 −

∑
k∈{1,...,r}
k odd

(r + 2)!
2r+2−(k+2)−2(r + 2− (k+ 2))!

(−l2π2)−
k+2+1
2

= −

∑
k∈{1,...,r+2}
k odd

(r + 2)!
2r+2−k−2(r + 2− k)!

(−l2π2)−
k+1
2 .

Hence, we always have α(r)0 =
√
2γ (r)0 and α(r)l = 2γ

(r)
l for l ≥ 1, where γ (r)l are the quantities of Proposition 3.

To finish the proof, we transfer the Fourier series representation of f r(z) on [−1, 1] to that of g r(s, t) = f r(s − t) on
[0, 1]2. This provides(

1
2
− |s− t|

)r
= f r(s− t) = α(r)0 ·

1
√
2
+

∞∑
l=1

α
(r)
l · cos(lπ(s− t))

= α
(r)
0 ·

1
√
2
+

∞∑
l=1

α
(r)
l · [cos(lπs) · cos(lπ t)+ sin(lπs) · sin(lπ t)]

which is the representation given by Proposition 3 using the relation between α(r)l and γ
(r)
l . The quantities γ

(r)
l are used in

Proposition 3 since only

S =
{
1,
√
2 cos(lπ ·),

√
2 sin(lπ ·); l ∈ N

}
are normalized functions of L2[0, 1]. However, S is not an orthonormal system of L2[0, 1]. But, since the quantities γ

(r)
l are

zero as soon as r + l is odd, only the systems{√
2 cos(lπ ·),

√
2 sin(lπ ·); l ∈ N and l is odd

}
for r odd,{

1,
√
2 cos(lπ ·),

√
2 sin(lπ ·); l ∈ N and l is even

}
for r even,

are relevant and these are orthonormal systems of L2[0, 1]. �
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