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Abstract

Structural equation models (SEMs) are often formulated using a prespecified

parametric structural equation. In many applications, however, the formulation

of the structural equation is unknown, and its misspecification may lead to un-

reliable statistical inference. This paper develops a general SEM in which latent

variables are linearly regressed on themselves, thereby avoiding the need to spec-

ify outcome/explanatory latent variables. A penalized likelihood method with

a proper penalty function is proposed to simultaneously select latent variables

and estimate the coefficient matrix in formulating the structural equation. Un-

der some regularity conditions, we show the consistency and the oracle property

of the proposed estimators. We also develop an expectation/conditional max-

imization (ECM) algorithm involving a minorization–maximization algorithm

that facilitates the second M-step. Simulation studies are performed and a real

data set is analyzed to illustrate the proposed methods.
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1. Introduction

Structural Equation Models (SEMs) are widely used, e.g., in biomedical,

educational, behavioral, psychological, and social sciences. Many methods have

been developed to fit SEMs; see, e.g., [10, 21]. In particular, Song and Lee [19]

proposed a Bayesian approach for SEMs with ignorable missing continuous and5

polytomous data, and Lee and Zhu [15] developed an expectation–maximization

(EM; see, e.g., [3]) algorithm together with the Metropolis–Hastings algorithm

for maximum likelihood estimation (MLE) of a general nonlinear SEM. More

recently, Lee and Tang [14] proposed a Bayesian approach to analyze nonlinear

SEMs with variables either categorically ordered or from an exponential distri-10

bution family, and Song et al. [22] analyzed longitudinal data in SEMs using a

Bayesian approach.

Statistical theory typically assumes a specified formulation of the structural

equation or latent variable model. In practice, however, researchers often have

no clue as to how the latent variables are related. They then find it is difficult15

to preassign a specific formulation of the model. In effect, latent variable mod-

els are very often exploratory, while the outcome/explanatory latent variables

and their relationship need to be identified, model misspecification may lead to

unreliable statistical inference.

Therefore, there is a need to develop a general SEM in which the latent vari-20

able model is exploratory; see, e.g., [20], p. 200. To this end, some authors tried

to select a specific form of latent variable model in an SEM framework by means

of model comparison via some criterion such as the Akaike Information Criterion

(AIC), the Bayesian Information Criterion (BIC) or the Deviance Information

Criterion (DIC); see, e.g., [13, 18]. Although these methods are popular, the25

associated computational costs can be very high when many competing SEMs

are being compared. In addition, little work has been done on exploring the

asymptotic properties of these SEMs.

This paper tackles these issues by considering a general SEM, defined in

Eq. (3). The key feature of this model is that latent variables are linearly re-30
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gressed on themselves with a coefficient matrix and do not specify what are

the outcome/explanatory latent variables. Because some of the latent variables

are outcome variables while the others are explanatory variables, and consider-

ing that some of outcome and explanatory latent variables may be unrelated,

the coefficient matrix in the considered structural equation includes many zero35

components, i.e., it is sparse. Therefore, determining the formulation of the

latent variable model is equivalent to identifying the zero components in the

coefficient matrix. Motivated by variable selection techniques, we propose here

a penalized likelihood method to simultaneously implement latent variable se-

lection and parameter estimation, and then to identify the structure of latent40

variable model.

Variable selection is vital to complex statistical modeling and has been an

important topic in regression analysis. In recent years, many new and efficient

variable selection methods have been proposed by various authors; see, e.g.,

[1, 4, 16, 23, 25, 26, 27]. In particular, Tibshirani [23] introduced the least45

absolute shrinkage and selection operator (Lasso) method by minimizing the

ordinary least squares with the L1 penalty. Subsequently, Fan and Li [4] pro-

posed the smoothly clipped absolute deviation (SCAD) penalty and proved the

oracle property of the regression coefficient estimator. More recently, Bondell et

al. [1] proposed simultaneous selection of the fixed and random factors in a lin-50

ear mixed-effects model using a modified Cholesky decomposition and adaptive

Lasso, and they obtained the final estimates by a constrained EM algorithm.

In this paper, we propose a penalized likelihood approach with some proper

penalty function for variable selection in SEM, and we establish the consistency

and the oracle property of the proposed estimators under some mild regular-55

ity conditions. From a computational point of view, we develop an expecta-

tion/conditional maximization algorithm (ECM; see, e.g., [17]) that relies on a

minorization–maximization algorithm (MM; see, e.g., [9]) for the second M-step.

The rest of this article is organized as follows. Section 2 develops the pe-

nalized likelihood approach for variable selection in SEM with a new structural60

equation and studies the oracle properties of the penalized maximum likeli-
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hood estimators. A computational procedure, standard error estimates, and

the choice of the tuning parameters are provided in Section 3. In Section 4,

simulation studies are performed and in Section 5, a real data set is analyzed to

illustrate the proposed methods. Finally, a discussion is presented in Section 6.65

Some technical details are given in Appendices A and B.

2. Latent variable selection in structural equation model

2.1. Model formulation

Consider the following linear measurement model with n subjects:

yi = µ + Λωi + ϵi, i = 1, . . . , n, (1)

where yi = (yi1, . . . , yip)⊤ is the observed random vector of subject i, µ is the

intercept vector, Λ is a p× q factor loading matrix, ωi = (ωi1, . . . , ωiq)⊤ is the70

latent random vector for subject i, ϵi ∼ Np(00,Ψϵ) is independent of ωi, and

Ψϵ = diag(τ2
1 , . . . , τ2

p ) is a p× p diagonal matrix.

In an SEM framework [20], for a confirmatory structural equation (i.e., latent

variable model), it is assumed that ωi = (η⊤i , ξ⊤i )⊤, where for some integer

q1 < q such that q2 = q − q1 > 0, ηi is a q1 × 1 vector of outcome latent

variables, and ξi is a q2 × 1 vector of explanatory latent variables. It is further

assumed that

ηi = Bηi + Γξi + ζi, i = 1, . . . , n, (2)

where B is a q1 × q1 matrix of coefficients that allows some outcome latent

variables to depend on the other outcome latent variables, Γ is a q1× q2 matrix

of coefficients measuring the effect of explanatory latent variables on outcome75

latent variables, and ζi is a q1 × 1 vector of random residuals.

Generally, outcome and explanatory latent variables in Eq. (2) are preas-

signed according to some prior information; see, e.g., [2]. In practice, however,

researchers may not have access to such prior information. A typical example is

the latent curve model [20]. Moreover, misspecification of outcome/explanatory
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latent variables may lead to unreliable statistical inference. Hence, it is impor-

tant to develop a reliable and efficient method to identify outcome/explanatory

latent variables and the structural relations among latent variables in achiev-

ing appropriate estimation. To this end, we consider the following exploratory

structural equation:

ωi = Πωi + δi, i = 1, . . . , n, (3)

where Π = (πℓj) is a q × q matrix of coefficients expressing the structural

relations among the latent variables in ωi, and δi is a q × 1 vector of random

residuals. It is assumed that Iq−Π is nonsingular and that, for all i ∈ {1, . . . , n},
δi ∼ Nq(00,Ψδ) with Ψδ = diag(γ2

1 , . . . , γ2
q ).80

In Eq. (3), the latent variable ωiℓ = Πℓωi +δiℓ is an outcome latent variable

if there is at least a nonzero component in Πℓ, which is the ℓth row vector of

matrix Π; the latent variable ωiℓ is an explanatory latent variable if all the

components in Πℓ are zero and there is at least a nonzero component in the ℓth

column vector of matrix Π; the latent variable ωiℓ has no relation with other85

latent variables if πℓj = πjℓ = 0 for all j ∈ {1, . . . , q}. Thus, once we properly

select nonzero and zero components in Π, we can obtain outcome/explanatory

latent variables. Consequently, the exploratory structural equation (3) becomes

confirmatory structural equation (2) by specifying a specific structure of Π.

Unlike the traditional latent variable models, the model (3) is character-90

ized by the fact that (i) latent variables are linearly regressed on themselves

with a coefficient matrix, and (ii) outcome/explanatory latent variables are not

specified. This model was considered earlier by Kenneth [12] and Daniel [2]

in fitting the dataset from Youth Development Study Analysis in which three

latent factors (namely mastery, depression and optimism) were involved and the95

structure of latent variable model was assumed by specifying a structure for Π,

but these authors did not consider the structure selection of Π. In what follows,

we use a recently developed variable selection technique to perform simultaneous

estimation and detection of outcome/explanatory latent variables.

Let θ ∈ Rk be the parameter vector that contains all the unknown param-100

5



eters in µ,Λ,Π,Ψϵ and Ψδ, where k is the number of unknown parameters

in (3). The proposed model is over parameterized if there are no appropriate

identification conditions on θ. To address the identification issue, we need to

consider some restrictions on θ. It is rather difficult to find a necessary and

sufficient condition for identifiability in a SEM. Hence, in many applications,105

only sufficient conditions for identifiability are provided on a case-by-case basis;

see, e.g., [20]. Here, we follow the common practice in SEMs for identifiability

by fixing some entries in Λ and assuming that the diagonal elements of Π are

known.

2.2. The method of variable selection110

Let Y = (y1, . . . ,yn) be the observed data matrix and Ω = (ω1, . . . ,ωn)

be the matrix of latent factors. It follows from Eqs. (1) and (3) that yi is

Gaussian with mean vector µ and covariance matrix V = ΛΣΛ⊤ + Ψϵ, where

Σ = (Iq−Π)−1Ψδ(Iq−Π⊤)−1. Removing the constant term, the observed-data

log-likelihood function is

L0(θ) ≡
n∑

i=1

L0i(θ) = −n

2
ln |V| − 1

2

n∑

i=1

(yi − µ)⊤V−1(yi − µ).

To simultaneously select latent variables and estimate the unknown param-

eters in Π, we consider the following penalized log-likelihood function

ℓ(θ) = L0(θ)−
q∑

ℓ=1

q∑

j=1,j ̸=ℓ

ϕλn(|πℓj |), (4)

where πℓj is the (ℓ, j)th entry of Π, ϕλn is a penalty function and λn is a tuning

parameter that controls the model complexity and can be selected by some

data-driven method such as cross validation (CV) or generalized cross validation

(GCV). By maximizing ℓ(θ) with a suitable choice of penalty function, one can

ensure that some πℓj are zero and select latent variables automatically. Thus,115

the procedure combines variable selection and parameter estimation into one

step and reduces the computational burden substantially.

Many penalty functions, e.g., the Lκ penalty for some κ ≥ 0, have been used

for penalized likelihood and penalized least squares in various parametric mod-
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els. For example, L0 is the entropy penalty, the L1 penalty results in the Lasso

proposed by Tibshirani [23], and ridge regression (see, e.g., [6]) corresponds to

Lk with some κ ∈ (0, 1). Fan and Li [4] also proposed the SCAD penalty which

results in an estimator with oracle properties. Its first derivative is given by

ϕ′λ(β) = λ

{
1(β ≤ λ) +

(aλ− β)+
(a− 1)λ

1(β > λ)
}

for some a > 2 and β > 0, (5)

and ϕλ(0) = 0, where 1(·) denotes an indicator function and by definition,

x+ = x1(x ≥ 0). The SCAD penalty has two unknown parameters λ and a.

Fan and Li [4] suggested using a = 3.7 from the Bayesian point of view. In the120

following development, we consider the SCAD penalty function. However, our

proposed method can accommodate more general penalty functions.

2.3. Asymptotic properties

Let θo be the true value of the parameter vector θ, and denote its components

by a superscript, for example, πo represents the true value of parameter vector125

π = {πℓj : ℓ = 1, . . . , q, j = 1, . . . , q, ℓ ̸= j}. It is assumed that πo is sparse, i.e.,

the majority of its components are exactly zero.

Without loss of generality, we assume that the first q1 components of πo

are nonzero and that the last q2 components of πo are zero; i.e., we can write

πo = (πo
1
⊤, πo

2
⊤)⊤ = (πo

1
⊤,0⊤)⊤, where 0 denotes a q2-dimensional vector of130

zeros and q1+q2 = q(q−1). The above assumption means that some components

of θo are exactly zero.

Similarly, we suppose that the first s = k− q2 components of θo are nonzero

and that the last q2 components of θo are zero; i.e., we can write θo = (θo
1
⊤

,0⊤)⊤,

which indicates that θo
1 contains components of πo

1.135

Let L0(θ1) and ℓ(θ1) denote the log-likelihood and the penalized log-likelihood

of the first s components of θ = (θ⊤1 , θ⊤2 )⊤, respectively; i.e., L0(θ1) ≡ L0(θ1,00)

and ℓ(θ1) ≡ ℓ(θ1,00). Let J(θ1) = J(θ)|θ2=00 = J(θ1,00) denote the Fisher in-

formation matrix evaluated at θ2 = 00. Considering a more general nonconcave

penalty function, we define

an = max{|ϕ′λn
(|πo

ℓj |)|/
√

n : πo
ℓj ̸= 0 and ℓ ̸= j}
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and

bn = max{|ϕ′′λn
(|πo

ℓj |)|/n : πo
ℓj ̸= 0 and ℓ ̸= j},

where ϕ′λn
(α) and ϕ′′λn

(α) are the first and second derivatives of ϕλn(α) with

respect to α.

Our asymptotic results are based on the following conditions:

(C1) ϕλn(0) = 0, and ϕλn(α) is symmetric and nonnegative. It is nondecreasing

and twice differentiable for all α in (0, +∞) with at most a few exceptions.140

(C2) As n →∞, bn = o(1).

(C3) lim infn→∞ lim infθ→0+ λ−1
n ϕ′λn

(θ)/n > 0.

(C4) The Fisher information matrix J(θ) = E(−∂2L0(θ)/∂θ∂θ⊤) is positive

definite at θ = θo.

(C5) There exist functions Mijℓ(Y) such that
∣∣∂3L0(θ)/∂θi∂θj∂θℓ

∣∣ ≤ Mijℓ(Y)145

for all θ ∈ Θ, where Θ is a subset of Rk containing the true parameter θo

and Eθo{Mijℓ(Y)} < +∞ for all i, j, ℓ.

Conditions (C1) and (C2) are needed for consistent variable selection. Condition

(C3) is used to preserve the sparsity property. Regularity Conditions (C4) and

(C5) are required to develop the asymptotic theory.150

Theorem 1 (Consistency). Under Conditions (C4) and (C5), if the penalty

function ϕλn satisfies Conditions (C1) and (C2), there exists a local maximizer

θ̂ of the penalized log-likelihood function (4) such that ∥θ̂−θo∥ = Op{n−1/2(1+

an)}, where ∥ · ∥ represents the Euclidean norm.

When an = O(1), θ̂ has the usual convergence rate n−1/2. For example,155

for the SCAD penalty function (5) with λn → 0 and β > 0, we have ϕ′λn
(β) =

λn(aλn−β)+/{(a−1)λn} = 0, which indicates that an → 0 if λn → 0 as n →∞.

Therefore, there exists a
√

n-consistent penalized estimator for θ. Another

important property is sparsity, which enables consistent variable selection.
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Theorem 2 (Oracle property). Under Conditions (C1)–(C5), if λn → 0, and160

√
nλn →∞ as n →∞, then with probability tending to 1, the

√
n−consistent

local maximizers θ̂ =
(
θ̂
⊤
1 , θ̂

⊤
2

)⊤
in Theorem 1 must satisfy:

(i) (Sparsity) θ̂2 = 00.

(ii) (Asymptotic normality)

√
n

{
J(θo

1) +
1
n
Z(θo

1)
}[

θ̂1 − θo
1 +

1
n

{
J(θo

1) +
1
n
Z(θo

1)
}−1

d(θo
1)

]
 Ns

[
00,J(θo

1)
]
,

where J(θo
1) = J(θo

1,00) is the Fisher information matrix evaluated at θ2 = 00,

d(θ1) = (d1(θ1), . . . , ds(θ1))⊤, Z(θ1) = diag{Z1(θ1), . . . , Zs(θ1)},

dj(θ1) =





ϕ′λn
(|πℓt|) sgn(πℓt), if θ1j = πℓt ∈ π1,

0, otherwise,

and

Zj(θ1) =
∂

∂θ1j
dj(θ1) =





ϕ′′λn
(|πℓt|), if θ1j = πℓt ∈ π1,

0 , otherwise.

Note that, for the SCAD penalty function, when λn → 0 as n → ∞ and165

Condition (2) holds, we have an → 0, d(θo
1) → 00 and Z(θo

1) → 00. Thus, it

follows from Theorem 2 that the SCAD-based penalized likelihood estimator θ̂

of θ has the oracle property. To wit, the zero components in θ0 are estimated

as 0 with probability approaching 1, and the nonzero components in θ0 are

estimated as well as in the case that zero components are known.170

3. Computational procedure

3.1. Maximization of the penalized log-likelihood function via an ECM algorithm

Let X = {Y,Ω} denote the completed data set. After dropping the normal-

izing constant, we can write the completed-data log-likelihood function as

Lc(θ|X) = −n

2

p∑

j=1

ln(τ2
j )− n

2

q∑

ℓ=1

ln(γ2
ℓ ) + n ln |I−Π|

− 1
2

n∑

i=1

p∑

j=1

(yij − µj −Λjωi)2/τ2
j −

1
2

n∑

i=1

q∑

ℓ=1

(ωiℓ −Πℓωi)2/γ2
ℓ ,

9



where Λj and Πℓ denote the jth and ℓth rows of Λ and Π, respectively. The

E-step of the ECM algorithm is to compute the following Q function:

Q(θ|θ(r)) = E
{
Lc(θ|X)

∣∣Y,θ(r)
}
−

q∑

ℓ=1

q∑

j=1,j ̸=ℓ

ϕλn(|πℓj |), (6)

where the expectation is taken with respect to the conditional distribution of

Ω given Y and θ(r), and θ(r) is the rth iterated value of θ. Since ωi|θ ∼
Nq(00,Σ) and yi|(ωi,θ) ∼ Np(µ + Λωi,Ψϵ), the conditional distribution of

ωi given (yi, θ) is ωi|yi, θ ∼ Nq(αi,D), where αi = DΛ⊤Ψ−1
ϵ (yi − µ) and

D = (Λ⊤Ψ−1
ϵ Λ + Σ−1)−1. Thus, we have

E(ωi|yi, θ) = αi (7)

and

E(ωiω
⊤
i |yi, θ) = var(ωi|yi, θ) + E(ωi|yi, θ)E⊤(ωi|yi, θ) = D + αiα

⊤
i . (8)

The M-step is to maximize Q(θ|θ(r)) by updating θ(r) to obtain θ(r+1). For

θ except the unknown parameters in Π, maximizing Q(θ|θ(r)) is equivalent to

solving the following system of equations:

∂Q(θ|θ(r))
∂θ

= E
{

∂Lc(θ|X)
∂θ

∣∣∣∣Y,θ(r)

}
= 00.

For j = 1, . . . , p and ℓ = 1, . . . , q, it is easy to verify that

∂
∂µj

Lc(θ|X) =
n∑

i=1

(yij − µj −Λjωi)/τ2
j ,

∂
∂τ2

j
Lc(θ|X) = −n/(2τ2

j ) + 1
2

n∑
i=1

(yij − µj −Λjωi)2/τ4
j ,

∂
∂γ2

ℓ
Lc(θ|X) = −n/(2γ2

ℓ ) + 1
2

n∑
i=1

(ωiℓ −Πℓωi)2/γ4
ℓ ,

∂

∂Λj
Lc(θ|X) =

n∑
i=1

ω⊤
i (yij − µj −Λjωi)/τ2

j .

(9)

Closed-form solutions are not available for these equations. Based on the ECM

idea as described, e.g., in [17], the M-step can be conducted by several com-

putationally simpler conditional maximization steps. Conditionally on other

parameters, the solution of each individual equation given in Eq. (9) can be

10



obtained. The solution for the M-step is given as follows, in conjunction with

Eq. (7) and Eq. (8):

µ̂j =
1
n

n∑

i=1

{yij −ΛjE(ωi|yi,θ)}, τ̂2
j =

1
n

n∑

i=1

E{(yij − µj −Λjωi)2|yi, θ},

γ̂2
ℓ =

1
n

n∑

i=1

E{(ωiℓ −Πℓωi)2|yi,θ}, ℓ = 1, . . . , q,

Λ̂
⊤
j =

{
n∑

i=1

E(ωiω
⊤
i |yi,θ)

}−1 {
n∑

i=1

E(ωi|yi,θ)(yij − µj)

}
, j = 1, . . . , p.

Now we consider the estimation of the unknown parameters in Π. Since175

ϕλn(|πℓj |) satisfying Condition (C1) may be not differentiable at πℓj = 0, the

Newton–Raphson algorithm cannot be applied directly in the current situation

unless it is properly adapted to deal with the single non-smooth point at πℓj =

0. Generally, the local linear approximation [28] can be employed to address

this issue. However, it is rather difficult to approximate the objective function180

(6) as a penalized squared loss function with respect to the components of

Π because the local approximation of the log-likelihood involves the matrix

(I−Π)−2. Hence, following the idea of the MM algorithm of Hunter and Li [9],

we approximate the Q(θ|θ(r)) function specified in Eq. (6) with the following

surrogate function185

Qζ(θ|θ(r)) = E
{

Lc(θ|X)|Y, θ(r)
}
−

q∑

ℓ=1

q∑

j=1,j ̸=ℓ

ϕλn,ζ(|πℓj |)

= E
{

Lc(θ|X)|Y, θ(r)
}
−

q∑

ℓ=1

q∑

j=1,j ̸=ℓ

{
ϕλn(|πℓj |)− ζ

∫ |πℓj |

0

ϕ′λn
(t)

ζ + t
dt

}
,

where ζ is a very small perturbation to prevent any component of the esti-

mate from getting stuck at zero. In the neighborhood of the rth approximation

value Π(r) of Π obtained by the MM algorithm, we can further approximate

Qζ(θ|θ(r)) by

Sr,ζ(θ|θ(r)) = E
{
Lc(θ|X)|Y, θ(r)

}

−
q∑

ℓ=1

q∑
j=1,j ̸=ℓ

[
ϕλn,ζ(|π(r)

ℓj |) +
ϕ′λn

(|π(r)
ℓj |+)

2(ζ+|π(r)
ℓj |)

{π2
ℓj − (π(r)

ℓj )2}
]

.
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Therefore, starting from π
(r)
ℓj , the one-step update is given by

π
(r+1)
ℓj = arg max

Π
Sr,ζ(θ|θ(r)),

which is reduced to a maximization problem on a quadratic function so that

the Newton–Raphson algorithm can be applied. Given a tolerance ν, the MM

algorithm is deemed to have converge if

∀ℓ ̸=j∈{1,...,q}

∣∣∣∣∣
∂Qζ(θ|θ(r))

∂πℓj

∣∣∣∣∣ <
ν

2
.

Finally, the πℓj ’s satisfying the following condition are set to zero:
∣∣∣∣∣
∂Qζ(θ|θ(r))

∂πℓj
− ∂Q(θ|θ(r))

∂πℓj

∣∣∣∣∣ =
nζϕ′λn

(|πℓj |+)
ζ + |πℓj |

>
ν

2
.

The ordinary MLEs of Π can be taken as the initial values Π(0) for the MM

algorithm. The perturbation ζ should be kept small so that the difference

between Qζ and Q is negligible. We use the following value suggested by Hunter

and Li [9]:

ζ =
ν

2nλn
min{|π(0)

ℓj |: π
(0)
ℓj ̸= 0, ℓ ̸= j, and ℓ, j = 1, . . . , q}.

We employ the ECM algorithm, in which Q(θ|θ(r)) is computed and the

MM algorithm is used to solve the optimization problem on Π. Then we obtain

the updated penalized likelihood estimates of the parameters. This process is

repeated iteratively until convergence. From the idea of the MM algorithm

(see, e.g., [9]), it is easily seen that the above ECM algorithm can be applied to190

the penalty functions satisfying Condition (C1), such as the hard thresholding,

Lasso, SCAD and Lκ penalty with 0 < κ ≤ 1.

To identify the model, suitable entries in Λ are fixed at known values. To deal

with this situation, in general, we consider the following linear transformations

Λ⊤
j = AjΛ∗⊤

j + aj for j = 1, . . . , p, where aj is a q × 1 constant column vector,

Aj is a full column rank selection matrix of size q × rj , and Λ∗
j is a reduced

unknown parameter vector of Λj of size 1× rj . We then have

∂Lc(θ|X)
∂Λ∗⊤

j

= A⊤
j

n∑

i=1

ωi(yij − µj −Λjωi)
τ2
j

,

12



which yields

Λ̂
∗⊤
j =

{
A⊤

j

n∑

i=1

E(ωiω
⊤
i |yi, θ)Aj

}−1

A⊤
j

n∑

i=1

{
E(ωi|yi, θ)(yij−µj)−E(ωiω

⊤
i |yi, θ)aj

}
.

3.2. Standard error estimates

To construct a confidence region for the nonzero parameter vector θ̂1, we

need to estimate the covariance matrix of θ̂1, which is a rather difficult task

due to the complicated form of the asymptotic covariance matrix of θ̂1 given in

Theorem 2. Following Hunter and Li [9], the sandwich method can be adopted to

estimate the standard errors of the components in θ̂1. Based on the observed-

data log-likelihood function, we can estimate the covariance matrix of θ̂1 by

using the corresponding submatrix of the sandwich covariance estimator, viz.

ĉov(θ̂) = {∇2L0(θ̂)−B}−1ĉov{D(θ̂)}{∇2L0(θ̂)−B}−1,

where

ĉov{D(θ̂)} =
1
n

n∑

i=1

{
∇L0i(θ̂)−Bθ̂

}{
∇L0i(θ̂)−Bθ̂

}⊤

−
{

1
n

n∑

i=1

∇L0i(θ̂)−Bθ̂

}{
1
n

n∑

i=1

∇L0i(θ̂)−Bθ̂

}⊤

=
1
n

n∑

i=1

{
∇L0i(θ̂)

}{
∇L0i(θ̂)

}⊤
−

{
1
n

n∑

i=1

∇L0i(θ̂)
}{

1
n

n∑

i=1

∇L0i(θ̂)
}⊤

,

and B is a diagonal matrix with entry ϕ′λn
(|πℓj |+)/(ζ + |πℓj |) corresponding195

to πℓj (ℓ = 1, . . . , q; j = 1, . . . , q; ℓ ̸= j), and entry 0 corresponding to the

other parameters; in the above, ∇L0i and ∇2L0 are the first- and second-order

derivatives of L0i and L0, respectively. Detailed expressions for these derivatives

are given in Appendix B. For the estimated standard error of components in

θ̂2 = 00, the sandwich formula gives a zero standard error estimate; see, e.g., [4,200

23].

Under the normality assumption, the observed-data likelihood function is a

Gaussian distribution function satisfying Conditions (E)–(G) given in Fan and

Peng [5]. Therefore, proceeding as in the latter, we can show that the sandwich
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covariance estimator is a consistent estimator of the covariance matrix for θ̂1;205

we omit the details. The sandwich covariance estimator can still provide a

consistent estimator of the asymptotic covariance matrix for θ̂1 even when the

normality assumption is incorrect, although in this situation θ̂1 may be biased;

see, e.g., [7, 11], which provide comprehensive reviews of sandwich estimation.

3.3. Choice of tuning parameters210

To ensure that θ̂λn has good properties, the tuning parameter λn has to be

suitably selected. This can be accomplished via minimizing a certain criterion

such as the AIC, BIC or GCV in the presence of latent variables. However, it

has been shown in Wang et al. [24] that even in the simple linear model, the

GCV criterion can lead to a significant overfit. Thus, we use the ICQ criterion

(an AIC/BIC-type criterion) suggested by Garia et al. [8] to select the optimal

tuning parameter λn by minimizing

ICQ(λn) = −2Q1(θ̂λn |θ̂0) + cn(θ̂λn),

where Q1(θ̂λn |θ̂0) = E{Lc(θ̂λn |X)|Y, θ̂0}, θ̂0 is the unpenalized MLE of θ and

cn(θ) is a function of the data and the fitted model. For instance, if cn(θ) equals

twice the total number of parameters, then we obtain an AIC-type criterion;

alternatively, we obtain a BIC-type criterion when cn(θ) = dim(θ) ln n.

4. Simulation studies215

In this section, simulation studies are conducted to investigate the finite-

sample performance of the proposed methods.

4.1.. Experiment 1

In this experiment, data y1, . . . ,yn are generated from a SEM specified by

Eqs. (1) and (2) with six observed variables (i.e., p = 6) and three latent

variables (i.e., q = 3), and with n = 300 and 500. For the measurement model

(1), we take the intercept vector µ to be 2116 and assume the error vector to
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be Gaussian, i.e., ϵi
i.i.d.∼ N6(00, 0.8I6). Furthermore, we consider the following

structure of the loading matrix Λ:

Λ⊤ =




1 λ21 0 0 0 0

0 0 1 λ42 0 0

0 0 0 0 1 λ63


 ,

where λ21 = λ42 = λ63 = 0.8. For the structural equation (2), we set q1 = 2 and

q2 = 1, i.e., ηi = (ηi1, ηi2)⊤ and ξi = ξi, take Γ = (2, 3)⊤ and B = (bjk) with220

b11 = b12 = b22 = 0 and b21 = 1, and assume ζi
i.i.d.∼ N2(00, I2), ξi

i.i.d.∼ N (0, 1)

and ζi is independent of ξi.

To investigate the performance of the above proposed latent variable selec-

tion procedure, we fit the above generated dataset to the SEM defined in Eq. (1)

and Eq. (3). To this end, we first note that the above specified model (2) can

be written in the form (3) by letting ωi = (ηi1, ηi2, ξi)⊤ using

Π =




0 π12 π13

π21 0 π23

π31 π32 0




and δi = (ζ⊤i , ξi)⊤
i.i.d.∼ N3(00, I3). For identifiability, the 1’s and 0’s in Λ and

the diagonal elements in Π are treated as known parameters. Thus, the true

values of the unknown parameters in the fitted SEM are µ = 2116, λ21 = λ42 =225

λ63 = 0.8, π13 = 2.0, π21 = 1.0, π23 = 3.0 and π12 = π31 = π32 = 0.0, Ψϵ =

diag(τ2
1 , . . . , τ2

p ) = 0.8I6 and Ψδ = diag(γ2
1 , . . . , γ2

q ) = I3. We have 24 unknown

parameters in θ = (µ1, . . . , µ6, λ21, λ42, λ63, π12, π13, π21, π23, π31, π32, τ
2
1 , . . . , τ2

6 ,

γ2
1 , γ2

2 , γ2
3)⊤. For the oracle situation, because π12 = π31 = π32 = 0.0 are pre-

specified, the number of unknown parameters is 21.230

Based on the above generated data Y = (y1, . . . ,yn), we use the ECM

algorithm introduced in Section 3.1 to compute the Lasso and SCAD penalized

MLEs of θ, respectively. For both Lasso and SCAD penalties, the tolerance

ν is set to 10−5. For the SCAD penalty, we set a = 3.7 as suggested by Fan

and Li [4], and the tuning parameter is selected via the BIC-type criterion. For235
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comparison, we compute the unpenalized MLE (denoted UnPenlM), and also

consider the oracle estimate of θ as a benchmark, although it is not feasible in

the real data analysis.

To compare the performance of the Lasso and SCAD variable selection meth-

ods in the linear SEM with different sample sizes, we first compute the MRRSE,

which denotes the median of the ratios of root square errors. The estimates of

Π are denoted by Π̂(t) for t = 0, 1, 2, 3 corresponding to the unpenalized, Lasso

penalized, SCAD penalized MLEs and the oracle estimates, respectively. Based

on the root square error

RSE(Π̂(t)) =
√∑

l ̸=j

(π̂(t)lj − πℓj)2,

we compute the ratio RSE(Π̂(t))/RSE(Π̂(0)) for each simulated data set with

t = 1, 2, 3. The median of the ratios over the 100 simulated data sets is called240

MRRSE. Their values are reported in the third column of Table 1. The fourth

column of Table 1 labeled “Correct” presents the average number restricted only

to the true zero coefficients, and the fifth column labeled “Incorrect” reports the

average number of coefficients erroneously set to be 0. Small “Incorrect” values

and “Correct” values that are closest to the number of true zero coefficients are245

preferred.

We also consider two other measures to evaluate the performance of the two

variable selection procedures. Let A be the set containing the subscripts of

true nonzero entries in Π and Âm be the set containing the subscripts of the

estimated nonzero entries of Π in the mth simulation. The proportion of cases

in which the true model is selected is then defined by

TM =
1
M

M∑

m=1

I(Âm = A)

and the proportion that not all the nonzero entries is selected is given by

FM =
1
M

M∑

m=1

I(Âm ∩ A ̸= A).

It is easy to see that larger TM values and smaller FM values are preferred.

Results based on 100 replicates are reported in Table 1.
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From Table 1, the MRRSE values for the Lasso and SCAD penalized MLEs

are close to 1, indicating that the performance of the proposed SCAD and Lasso250

estimates is satisfactory, relative to the unpenalized MLEs. In addition, in terms

of “Incorrect” and “Correct” values, the SCAD-based latent variable selection

procedure outperforms the Lasso-based latent variable selection procedure re-

gardless of the sample size n. The SCAD has larger TM values and smaller FM

values than the Lasso, implying that the SCAD method performs uniformly255

better than the Lasso in terms of the TM and FM criteria. Finally, for the un-

penalized MLE method, the corresponding “Correct,” “Incorrect,” TM and FM

values are almost zero, indicating that the unpenalized MLE procedure cannot

detect the true outcome/explanatory latent variables.

The frequencies of the identified nonzero components in 100 replicates for260

the different methods are reported in Table 2. From Table 2, we can observe

that the Lasso and SCAD methods select the important variables with high

frequency and unimportant variables with low frequency, which implies that

both can identify well the structure of Eq. (2) via Eq. (3); furthermore, the

SCAD method behaves uniformly better than the Lasso. However, the unpe-265

nalized MLE method cannot identify the true structure of the model because

the unpenalized MLEs are almost nonzero.

For the unpenalized, Lasso penalized and SCAD penalized MLEs of θ based

on M = 100 replicates, we compute the empirical bias (Bias), root mean square

(RMS) and empirical standard deviation (SD) between the estimated value and270

the true value, viz.

Bias(θ̂i) =

∣∣∣∣∣
1
M

M∑

m=1

θ̂i(m)− θi

∣∣∣∣∣ ,

RMS(θ̂i) =

[
1
M

M∑

m=1

{θ̂i(m)− θi}2
]1/2

,

SD(θ̂i) =


 1

M − 1

M∑

m=1

{
θ̂i(m)− θ̂i(1) + · · ·+ θ̂i(M)

M

}2



1/2

,

and θ̂i(m) is the estimate of θi in the mth replicate. Figure 1 shows the results
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for n = 300 and 500. From Figure 1, we can observe that (i) the Lasso and

SCAD penalized MLEs are quite close to their corresponding true parameter

values; (ii) the performance of the latent variable selection procedure affects the275

accuracy of parameter estimation, i.e., the accuracy of the Lasso and SCAD

penalized MLEs is slightly better than that of the unpenalized MLE for true

zero components of Π in terms of the RMS and SD values, regardless of sample

sizes.

4.2.. Experiment 2280

In this experiment, we generate the data y1, . . . ,y500 from a SEM defined

in Eqs. (1) and (2) with twenty manifest variables (i.e., p = 20) and ten latent

variables (i.e., q = 10). For the measurement model (1), we set µ = 21120,

assume ϵi
i.i.d.∼ N20(00, 0.8I20), and consider the loading matrix Λ:

Λ⊤ =




1 λ2,1 0 0 0 0 · · · 0 0

0 0 1 λ4,2 0 0 · · · 0 0

0 0 0 0 1 λ6,3 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 1 λ20,10




,

where λ2k,k = 0.8 for k = 1, . . . , 10. For the structural equation (2), we set

q1 = 1 and q2 = 9, take ηi = 0.8ωi2 + ωi3 + ζi and ξi = (ωi2, . . . , ωi,10)⊤,

which indicates that B = b11 = 0, Γ = (0.8, 1, 0, 0, 0, 0, 0, 0, 0), and assume

ζi
i.i.d.∼ N (0, 1), ξi

i.i.d.∼ N9(00, I9) and ζi is independent of ξi.

We fit the above generated dataset via the SEM defined in Eq. (1) and Eq.

(3). In this case, the above specified structural equation (2) can be expressed as

the form of structural equation (3) by letting ωi = (ηi, ωi2, . . . , ωi,10)⊤, taking
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δi = (ζi, ξ
⊤
i )⊤ i.i.d.∼ N10(00, I10) and specifying the following structure of Π:

Π =




0 π1,2 · · · π1,9 π1,10

π2,1 0 · · · π2,9 π2,10

...
...

. . .
...

...

π9,1 π9,2 · · · 0 π9,10

π10,1 π10,2 · · · π10,9 0




,

where πj,k = 0 for j ̸= k except for π1,2 = 0.8 and π1,3 = 1.0. For identifiability,285

the 1’s and 0’s in Λ and the diagonal elements in Π are treated as known

parameters. Thus, in the fitted SEM, the true values of unknown parameters

in θ = {µ, λ2,1, . . . , λ20,10, π1,2, . . . , π10,9, τ
2
1 , . . . , τ2

p , γ2
1 , . . . , γ2

q} are µ = 21120,

λ2k,k = 0.8 for k = 1, . . . , 10, πj,k = 0 for j ̸= k except for π1,2 = 0.8 and

π1,3 = 1.0, Ψϵ = diag(τ2
1 , . . . , τ2

p ) = 0.8I20 and Ψδ = diag(γ2
1 , . . . , γ2

q ) = I10.290

Hence, there are 150 unknown parameters in the fitted SEM. For the oracle

situation, the number of unknown parameters is 62.

As in Experiment 1, we compute the oracle estimate, the unpenalized, Lasso

penalized, and SCAD penalized MLEs of θ, respectively. Results for 100 repli-

cates are reported in Table 3 and Table 4. From Table 3, we observe that the295

MRRSE values for the Lasso and SCAD penalized MLEs are less than 1, indi-

cating that the SCAD and Lasso MLEs outperform the unpenalized MLE. The

“Correct” value for the SCAD method is more close to the true zero number

(i.e., 88), and the “Incorrect” value for the SCAD method is smaller than that

for the Lasso. In addition, the SCAD method has a larger TM value and a300

smaller FM value than the Lasso. Yet the unpenalized MLE cannot identify the

structure of the model. From Table 4, we can find that the SCAD method selects

the important elements with higher frequency and unimportant elements with

lower frequency than the Lasso, and the unpenalized MLEs are almost nonzero,

which implies that the Lasso and SCAD methods perform well in terms of latent305

variable selection whereas the unpenalized MLE method behaves poor. We also

plot heatmaps of frequencies that each component in the coefficient matrix Π

is estimated as zero out of 100 replicates in Figure 2. Examination of Figure 2
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shows that the SCAD method can well recover the sparsity structure of the

coefficient matrix Π.310

5. A real example

In the project of WORLD VALUES SURVEY 1981–1984 AND 1990–1993

(World Value Study Group, ICPSR Version), the Inter-university Consortium

for Political and Social Research (ICPSR) data were collected in 45 societies

around the world on broad topics such as work, religious belief, the meaning315

and purpose of life, family life, contemporary social issues, etc. Lee and Zhu

[15] analyzed a small portion of the data set gathered only from the United

Kingdom. To illustrate the above proposed methods, we reanalyze the UK data

subset, which can be obtained from the authors upon the approval of the ICPSR

funding agencies.320

Six variables (i.e., Variables 180, 96, 62, 176, 116 and 117 in the UK data

subset) that are related with respondents’ job, religious belief, and homelife are

taken as manifest variables, denoted by y = (y1, . . . , y6)⊤, where

y1: Overall, how satisfied or dissatisfied are you with your home life? (V180)

y2: All things considered, how satisfied are you with your life as a whole these325

days? (V96)

y3: Thinking about your reasons for doing voluntary work, how important

are religious beliefs in your own case? (V62)

y4: How important is God in your life? (V176)

y5: Overall, how satisfied or dissatisfied are you with your job? (V116)330

y6: How free are you to make decisions in your job? (V117)

We note that (y1, y2) are related to life, (y3, y4) are related to religious belief,

and (y5, y6) are related to job satisfaction. Variable 62 (i.e., y3) was measured
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by a 5-point scale, while all others were measured by a 10-point scale. To illus-

trate the above proposed methodologies, we regard these variables as continuous335

variables. After deleting cases with missing data, the sample size is 196.

To model the data without prior knowledge of the relationship among the

latent factors, we consider the SEM defined in Eq. (1) and Eq. (3) with the

following specifications:

Λ⊤ =




1 λ21 0 0 0 0

0 0 1 λ42 0 0

0 0 0 0 1 λ63


 , Π =




0 π12 π13

π21 0 π23

π31 π32 0


 ,

where the 1’s and 0’s in Λ and the diagonal entries in Π are treated as fixed

known parameters. Thus, we have a total of 24 parameters. For comparison, we

compute simultaneously the unpenalized, Lasso penalized and SCAD penalized

MLEs. The tuning parameter λn in the penalty function is chosen by minimizing340

the ICQ introduced in Section 3.3. In the present case, λn is 0.135. The results

are reported in Table 5. Latent factors w1, w2 and w3 can be roughly interpreted

as “life,” “religious belief” and “job satisfaction” factors.

From Table 5, we can see that the structures of Π chosen by the proposed

two variable selection approaches are the same, but different from that obtained345

from the unpenalized method. The SCAD and Lasso methods identify π12 and

π13 as nonzero components. Thus, the “life” factor is detected as an outcome

latent variable, while the “religious belief” and “job satisfaction” factors are

identified as explanatory latent variables. Moreover, the latter two factors have

a positive effect on the “life” factor. By comparing these results with those350

given in Lee and Zhu [15], one can see that the proposed method is successful

in implementing latent variable selection and parameter estimation.

6. Discussion

We have introduced the penalized maximum likelihood approach to identify

the structure of latent variable model in the framework of structural equation355

models. The proposed procedure is shown to be consistent and to have the
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oracle property given suitable choices of penalty function and tuning parameter.

We have regarded the basic latent variables as missing data and applied the

ECM algorithm to obtain the penalized maximum likelihood estimates. The

second M-step is implemented via the MM algorithm. Moreover, we use the360

ICQ criterion to choose the tuning parameter and develop the standard error

formulas of our estimators. Our simulations and illustration show that the

proposed method is effective.

This feature of the proposed method provides two distinct advantages. First,

the method does not require any prior knowledge of the nature of the modeled365

relation but rather relies on a variable selection procedure to identify the out-

come and explanatory latent variables and to approximate their relationship.

The second advantage is that the proposed procedure provides simultaneously

the model and parameter estimates, thereby reducing greatly computational

costs.370

Although we have only considered selecting outcome/explanatory latent vari-

ables, the proposed method can be used in a similar way to simultaneously select

outcome/explanatory latent variables and the structure of factor loading matrix.
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Appendix A: Proofs of theorems380

Proof of Theorem 1. For any given ε > 0, we would like to show that

there exists a large positive constant Mε such that

Pr

{
sup

∥u∥≥Mε

ℓ(θo + αnu) < ℓ(θo)

}
≥ 1− ε, (A.1)

where αn = n−1/2(1+an). The probability inequality in (A.1) implies that with

probability at least 1− ε there exists a local maximum in the ball {θo + αnu :

∥u∥ ≤ Mε}. Hence, there exists a local maximizer such that ∥θ̂−θo∥ = Op(αn).

Let θ = θo + αnu and π1 = πo
1 + αnuI , where uI is a subvector of u with

corresponding πo
1. By the definition of ℓ(θ), we have385

∆n(u) = ℓ(θo + αnu)− ℓ(θo)

= {L0(θo + αnu)− L0(θo)} −
q∑

ℓ=1

q∑

j=1,j ̸=ℓ

{ϕλn(|πℓj |)− ϕλn(|πo
ℓj |)}

≤ {L0(θo + αnu)− L0(θo)} −
q1∑

ℓ=1

{ϕλn(|πo
1(ℓ) + αnuI(ℓ)|)− ϕλn(|πo

1(ℓ)|)},

where πo
1(ℓ) and uI(ℓ) are the ℓth component in πo

1 and uI , respectively. By the

Taylor’s expansion, we have

∆n(u) ≤ αnL′0(θ
o)⊤u + 1

2α2
nu⊤L′′0(θo)u{1 + op(1)}

−
q1∑

ℓ=1

[
αnϕ′λn

(|πo
1(ℓ)|)uI(ℓ) + α2

n

2 ϕ′′λn
(|πo

1(ℓ)|)u2
I(ℓ){1 + op(1)}

]
,

(A.2)

where L′0(θ
o), L′′0(θo), ϕ′λn

(|πo
1(ℓ)|) and ϕ′′λn

(|πo
1(ℓ)|) denote the first- and second-

order partial derivatives of L0(θ) and ϕλn(|π1(ℓ)|) evaluated at θo and πo, re-

spectively. For each component, L′0(θ
o) satisfies

E
(

∂L0(θ)
∂µ

)∣∣∣∣
θ=θo

= E
{ n∑

i=1

V−1(yi − µ)
}∣∣∣∣

θ=θo
= 00,

E
(

∂L0(θ)
∂θi

) ∣∣∣∣
θ=θo

= E
[
n

2
tr

{
V−1 ∂V

∂θi
(V−1Sn − I)

}] ∣∣∣∣
θ=θo

= 0,

where tr denotes the trace for matrix,

Sn =
1
n

n∑

i=1

(yi − µ)(yi − µ)⊤,
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and θi is a component of θ except the components of µ. Hence, we have L′0(θ
o) =

Op(
√

n) and n−1L′′0(θo) = −J(θo)+op(1), where J(θo) is the Fisher information

evaluated at θ = θo. Similarly with (A.2), we have

L0(θo + αnu)− L0(θo) = αnL′0(θ
o)⊤u + 1

2α2
nu⊤L′′0(θo)u{1 + op(1)}

=
√

nαnOp(1)u− 1
2nα2

nu⊤J(θo)u{1 + op(1)}.
(A.3)

Thus, the first term in (A.3) is of order Op(n1/2αn) = Op(nα2
n). By choosing

a sufficiently large positive constant Mε, the second term dominates the first390

term uniformly in ∥u∥ = Mε. Since bn = op(1), we have
∣∣∣∣∣

q1∑

ℓ=1

[
αnϕ′λn

(|πo
1(ℓ)|)uI(ℓ) +

α2
n

2
ϕ′′λn

(|πo
1(ℓ)|)u2

I(ℓ){1 + op(1)}
]∣∣∣∣∣

≤ αn

q1∑

ℓ=1

∣∣ϕ′λn
(|πo

1(ℓ)|)uI(ℓ)

∣∣ +
α2

n

2

q1∑

ℓ=1

∣∣ϕ′′λn
(|πo

1(ℓ)|)u2
I(ℓ){1 + op(1)}

∣∣

≤ αn max
∣∣ϕ′λn

(|πo
1(ℓ)|)

∣∣√q1∥uI∥+
α2

n

2
max

∣∣ϕ′′λn
(|πo

1(ℓ)|)
∣∣∥uI∥2{1 + op(1)}

≤ √
q1αn

√
nan∥u∥+

α2
n

2
nbn∥u∥2{1 + op(1)}

=
√

q1(1 + an)an∥u∥+
1
2
(1 + an)2∥u∥2{1 + op(1)}.

This is also dominated by the second term of (A.3). Hence, by choosing a

sufficiently large positive constant Mε, (A.1) holds. This completes the proof.

Proof of Theorem 2. (i) It suffices to show that with probability tending

to 1 as n → ∞, for any θ1 satisfying θ1 − θo
1 = Op(n−1/2) and for some small

εn = Cn−1/2 and j = s + 1, . . . , k,





∂ℓ(θ)
∂θj

< 0 for 0 < θj < εn,

∂ℓ(θ)
∂θj

> 0 for − εn < θj < 0.
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That is, 



∂ℓ(θ)
∂πℓj

< 0 for 0 < πℓj < εn,

∂ℓ(θ)
∂πℓj

> 0 for − εn < πℓj < 0,

(A.4)

where πℓj ∈ π2. A Taylor’s expansion about ∂L0(θ)/∂πℓj yields395

∂ℓ(θ)
∂πℓj

=
∂L0(θ)
∂πℓj

− ϕ′λn
(|πℓj |)sgn(πℓj)

=
∂L0(θo)

∂πℓj
+

k∑

m=1

∂2L0(θo)
∂πℓj∂θm

(θm − θo
m)

+
1
2

k∑

m=1

k∑

t=1

∂3L0(θ∗)
∂πℓj∂θm∂θt

(θm − θo
m)(θt − θo

t )− ϕ′λn
(|πℓj |)sgn(πℓj),

where ∥θ∗ − θo∥ ≤ ∥θ − θo∥ = Op(n−1/2). From the proof of Theorem 1, it is

easy to see that

∂L0(θo)
∂πℓj

= Op(
√

n) and
∂2L0(θo)
n∂πℓj∂θm

= E
{

∂2L0(θo)
∂πℓj∂θm

}
+ op(1).

Then, we have

∂ℓ(θ)/∂πℓj = nλn

{
−n−1λ−1

n ϕ′λn
(|πℓj |)sgn(πℓj) + Op(n−1/2/λn)

}
.

By Condition (C3) and the fact that
√

nλn → ∞, the sign of the derivative

is completely determined by that of πℓj . Hence (A.4) follows. Part (i) is thus

proved.

(ii) From Theorem 1, there exists a local maximizer θ̂1 of ℓ(θ1) such that

∥θ̂1 − θo
1∥ = Op(n−1/2), and θ̂1 satisfies the likelihood equations

∂ℓ(θ)
∂θ1

∣∣∣∣
θ=(θ̂

⊤
1 ,00)

=
∂L0(θ)

∂θ1

∣∣∣∣
θ=(θ̂

⊤
1 ,00)

− d(θ̂1) = 00,

where d(θ1) = (d1(θ1), . . . , ds(θ1))⊤ and

dj(θ1) =





ϕ′λn
(|πℓt|)sgn(πℓt) , if θ1j = πℓt ∈ π1,

0 , otherwise.
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Using Taylor’s expansion, we have

∂L0(θ)
∂θ1

∣∣∣∣
θ=(θ̂

⊤
1 ,00)

− d(θ̂1) =
∂L0(θo

1)
∂θ1

+
{

∂2L0(θo
1)

∂θ1∂θ⊤1
+ op(1)

}
(θ̂1 − θo

1)

− d(θo
1)− {Z(θo

1) + op(1)}(θ̂1 − θo
1)

= 00 ,

where Z(θ1) = diag
{
Z1(θ1), . . . , Zs(θ1)

}
and

Zj(θ1) =
∂dj(θ1)

∂θ1j
=





ϕ′′λn
(|πℓt|) , if θ1j = πℓt ∈ π1,

0 , otherwise.

Hence, we get

√
n{J(θo

1) + n−1Z(θo
1)}

[
θ̂1 − θo

1 + n−1{J(θo
1) + n−1Z(θo

1)}−1d(θo
1)

]

= n−1/2∂L0(θo
1)/∂θ1 + op(n−1/2).

Since E{∂L0(θ1)/∂θ1} = 00 as in the proof of Theorem 1, it follows from the

Multivariate Central Theorem that

1√
n

∂L0(θo
1)

∂θ1
 Ns[(00,J(θo

1)].

Therefore,

√
n

{
J(θo

1) +
1
n
Z(θo

1)
}[

θ̂1 − θo
1 +

1
n

{
J(θo

1) +
1
n
Z(θo

1)
}−1

d(θo
1)

]
 Ns[00,J(θo

1)].

This completes the proof of Part (ii). �400

Appendix B: Partial derivatives

The second partial derivatives of the observed-data log-likelihood L0(θ) with

respect to parameters can be obtained by using some basic matrix derivatives.

The explicit expressions of the second partial derivatives are listed as follows:

∂2L0(θ)
∂µ∂µ⊤

= −nV−1,

∂2L0(θ)
∂µ∂θi

= −V−1 ∂V
∂θi

V−1
n∑

r=1

(yr − µ),

∂2L0(θ)
∂θi∂θj

=
n

2
tr

{
V−1 ∂V

∂θj
V−1 ∂V

∂θi
(I− 2V−1Sn) + V−1 ∂2V

∂θi∂θj
(V−1Sn − I)

}
,
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where

Sn =
1
n

n∑

r=1

(yr − µ)(yr − µ)⊤,

θi and θj are the components of θ except the components of µ, and for different

θi and θj , ∂V/∂θi and ∂2V/∂θi∂θj have different expressions as follows:

∂V
∂τ2

i

= Eii,
∂V
∂γ2

ℓ

= Λ
∂Σ
∂γ2

ℓ

Λ⊤,
∂Σ
∂γ2

ℓ

= (I−Π)−1Eℓℓ(I−Π⊤)−1,

∂V
∂Λiℓ

= (ΛΣE⊤
iℓ)

⊤ + ΛΣE⊤
iℓ,

∂V
∂πℓk

= Λ
∂Σ
∂πℓk

Λ⊤,

∂Σ
∂πℓk

= {(I−Π)−1EℓkΣ}⊤ + (I−Π)−1EℓkΣ,

∂2V
∂τ2

i ∂τ2
j

=
∂2V

∂γ2
ℓ ∂γ2

k

=
∂2V

∂τ2
i ∂γ2

ℓ

=
∂2V

∂τ2
i ∂Λjℓ

=
∂2V

∂τ2
i ∂πℓk

= 0,

∂2V
∂Λiℓ∂Λjk

= (EiℓΣE⊤
jk)⊤ + EiℓΣE⊤

jk,
∂2V

∂Λiℓ∂γ2
k

= (Λ
∂Σ
∂γ2

k

E⊤
iℓ)

⊤ + Λ
∂Σ
∂γ2

k

E⊤
iℓ,

∂2V
∂Λiℓ∂πkm

= (Λ
∂Σ

∂πkm
E⊤

iℓ)
⊤ + Λ

∂Σ
∂πkm

E⊤
iℓ,

∂2V
∂γ2

ℓ ∂πkm
= Λ

∂2Σ
∂γ2

ℓ ∂πkm
Λ⊤,

∂2V
∂πℓt∂πkm

= Λ
∂2Σ

∂πℓt∂πkm
Λ⊤,

∂2Σ
∂γ2

ℓ ∂πkm
= {(I−Π)−1Eℓℓ(I−Π⊤)−1E⊤

km(I−Π⊤)−1}⊤

+(I−Π)−1Eℓℓ(I−Π⊤)−1E⊤
km(I−Π⊤)−1,

∂2Σ
∂πℓt∂πkm

=
{

(I−Π)−1Ekm(I−Π)−1EℓtΣ + (I−Π)−1Eℓt
∂Σ

∂πkm

}⊤

+(I−Π)−1Ekm(I−Π)−1EℓtΣ + (I−Π)−1Eℓt
∂Σ

∂πkm
.

for i, j = 1, . . . , p, ℓ, k, m, t = 1, . . . , q, in which Eij denotes the matrix with 1

in the (i, j)th cell and zeros elsewhere.405
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Table 1. Simulation results of linear SEM for unpenalized (UnpenlM), Lasso475

and SCAD and oracle approaches with n = 300 and 500 in experiment 1

n Method MRRSE Correct Incorrect TM FM

300 UnpenlM 1.000 0 0 0 0

Lasso 1.032 2.69 0.14 0.76 0.13

SCAD 0.979 2.83 0.16 0.87 0.11

Oracle 0.924 3 0 – –

500 UnpenlM 1.000 0.01 0 0 0

Lasso 1.043 2.72 0.07 0.76 0.07

SCAD 1.008 2.87 0.02 0.94 0.02

Oracle 0.926 3 0 – –

Note: TM = 1
M

∑M
m=1 I(Âm = A), FM = 1

M

∑M
m=1 I(Âm ∩ A ̸= A).

Table 2. Frequencies of the identified nonzero components for unpenalized,
Lasso and SCAD approaches with n = 300 and 500 in experiment 1480

n Method π12 π∗13 π∗21 π∗23 π31 π32

300 UnpenlM 1.00 1.00 1.00 1.00 1.00 1.00

Lasso 0.19 0.88 0.99 0.99 0.07 0.05

SCAD 0.09 0.91 0.93 1.00 0.04 0.04

500 UnpenlM 0.99 1.00 1.00 1.00 1.00 1.00

Lasso 0.22 0.95 0.99 0.99 0.03 0.03

SCAD 0.04 0.98 1.00 1.00 0.04 0.05

Note: ∗ The true values of π13, π21 and π23 are set to be nonzero.
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Figure 1. Plots of Bias, RMS and SD values for unpenalized (‘·’), Lasso penalized

(‘x’) and SCAD penalized (‘o’) MLEs with n = 300 (black symbols) and 500 (red

symbols) in experiment 1. The index of 24 parameters is π12, π13, π21, π23, π31, π32,

λ21, λ42, λ63, µ1, . . ., µ6, τ2
1 , . . ., τ2

6 , γ2
1 , γ2

2 and γ2
3 .
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Figure 2. Heatmaps of zeros identified in the coefficient matrix out of 100

replications in experiment 2 (White color is 100/100 zeros identified, black is 0/100)

Table 3. Simulation results of linear SEM for for unpenalized (UnpenlM),

Lasso and SCAD and oracle approaches with n = 500 in experiment 2

Method MRRSE Correct Incorrect TM FM

UnpenlM 1.000 0.01 0 0 0

Lasso 0.152 80.57 0.62 0.27 0.32

SCAD 0.096 86.19 0.15 0.70 0.14

Oracle 0.066 88 0 – –

485

Note: TM = 1
M

∑M
m=1 I(Âm = A), FM = 1

M

∑M
m=1 I(Âm ∩ A ̸= A).
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Table 4. Frequencies of the identified nonzero components for unpenalized,

Lasso and SCAD approaches with n = 500 in experiment 2

Method π·,1 π·,2 π·,3 π·,4 π·,5 π·,6 π·,7 π·,8 π·,9 π·,10

Lasso π1,· – 0.68∗ 0.70∗ 0.19 0.19 0.15 0.15 0.19 0.14 0.15

π2,· 0.12 – 0.04 0.08 0.08 0.06 0.08 0.06 0.07 0.11

π3,· 0.11 0.03 – 0.10 0.09 0.06 0.10 0.05 0.07 0.08

π4,· 0.05 0.05 0.11 – 0.10 0.07 0.08 0.11 0.07 0.12

π5,· 0.03 0.06 0.06 0.06 – 0.09 0.06 0.09 0.07 0.09

π6,· 0.04 0.10 0.06 0.08 0.07 – 0.10 0.05 0.05 0.12

π7,· 0.04 0.07 0.08 0.07 0.07 0.10 – 0.06 0.06 0.08

π8,· 0.03 0.10 0.07 0.07 0.09 0.10 0.07 – 0.08 0.12

π9,· 0.05 0.11 0.05 0.09 0.11 0.08 0.12 0.08 – 0.10

π10,· 0.08 0.04 0.05 0.08 0.13 0.10 0.04 0.06 0.11 –

SCAD π1,· – 0.86∗ 0.99∗ 0.05 0.02 0.06 0.00 0.04 0.02 0.02

π2,· 0.02 – 0.01 0.05 0.02 0.01 0.02 0.01 0.03 0.02

π3,· 0.00 0.00 – 0.02 0.04 0.01 0.01 0.00 0.00 0.00

π4,· 0.02 0.02 0.02 – 0.02 0.01 0.02 0.00 0.02 0.04

π5,· 0.00 0.01 0.03 0.04 – 0.01 0.02 0.02 0.02 0.02

π6,· 0.01 0.02 0.04 0.02 0.01 – 0.02 0.04 0.05 0.02

π7,· 0.02 0.02 0.02 0.02 0.04 0.03 – 0.02 0.02 0.02

π8,· 0.00 0.01 0.02 0.03 0.01 0.01 0.02 – 0.02 0.04

π9,· 0.02 0.05 0.02 0.01 0.02 0.02 0.03 0.04 – 0.02

π10,· 0.01 0.03 0.03 0.02 0.02 0.02 0.01 0.02 0.00 –

UnpenlM π1,· – 1.00∗ 1.00∗ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

π2,· 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

π3,· 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00 1.00

π4,· 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00 1.00

π5,· 0.99 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00

π6,· 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00

π7,· 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00

π8,· 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00

π9,· 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 – 1.00

π10,· 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 –

Note: ∗ The true values of π12 and π13 are set to be nonzero.490
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Table 5. The unpenalized (UnpenlM), Lasso and SCAD penalized MLEs

(ESTs) and their standard errors (SEs) in the ICPSR data

UnpenlM Lasso SCAD

Para. EST SE EST SE EST SE

π12 0.1581 0.0532 0.2785 0.0904 0.2797 0.0904

π13 0.2964 0.2103 0.4331 0.1158 0.4360 0.1180

π21 0.1700 0.0801 0 0 0 0

π23 −0.0894 0.1227 0 0 0 0

π31 0.3236 0.3236 0 0 0 0

π32 −0.0908 0.0674 0 0 0 0

λ21 0.8707 0.1515 0.8779 0.1534 0.8768 0.1515

λ42 1.9890 0.4797 2.0312 0.4490 2.0343 0.4477

λ63 0.7393 0.1763 0.7308 0.1725 0.7310 0.1722

µ1 8.4591 0.1180 8.4592 0.1180 8.4592 0.1180

µ2 7.8571 0.1212 7.8571 0.1212 7.8571 0.1212

µ3 2.3724 0.1120 2.3724 0.1120 2.3724 0.1120

µ4 5.5560 0.2254 5.5561 0.2254 5.5561 0.2254

µ5 7.5663 0.1592 7.5663 0.1592 7.5663 0.1592

µ6 7.3877 0.1740 7.3878 0.1740 7.3878 0.1740

τ2
1 0.6719 0.3680 0.6874 0.3676 0.6860 0.3642

τ2
2 1.3181 0.2402 1.3055 0.2404 1.3079 0.2385

τ2
3 0.6038 0.4513 0.6413 0.4107 0.6442 0.4084

τ2
4 2.6137 1.6679 2.4633 1.5412 2.4516 1.5357

τ2
5 1.5688 0.8095 1.5228 0.7895 1.5293 0.7915

τ2
6 4.0728 0.6280 4.0914 0.6256 4.0925 0.6243

γ2
1 1.3697 0.4570 1.2714 0.4436 1.2660 0.4407

γ2
2 1.7143 0.4810 1.8174 0.4445 1.8147 0.4423

γ2
3 2.6295 1.2459 3.4455 0.9408 3.4409 0.9475
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