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In the normal two-sample problem, an invariant test for the hypothesis of the 
equality of the population covariance matrices, H : Z, =X2 vs A : Z=, # Z2, has a 
power function which depends only on the eigenvalues of Z,Z;‘. An orthogonally 
invariant minimax estimator of these eigenvalues is proposed which has very 
desirable properties. Namely, the estimated eigenvalues are always positive and they 
follow the same ordering as the eigenvalues of S,S;’ calculated from the usual 
sample covariance matrices. Moreover, it has an explicit expression that can be 
easily calculated and yields substantial risk reductions. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let S, and S, be two independent Wishart matrices distributed as 
Wp(Ci, n,), ni>P + 1, i= 1,2. The problem of testing the equality of the 
covariance matrices of two normal populations is left invariant by the 
group of transformations 

acting on the sample space as 
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Moreover, the power function of an invariant test depends on the 
parameter only through the maximal invariant parameters (6,, . . . . S,), 
where 6,> . . . > 6, are the eigenvalues of X,X, ‘. Our concern is the 
estimation of those eigenvalues using a decision-theoretic approach. The 
distribution of the eigenvalues of S, S;’ is very involved and does not lend 
itself to the derivation of improved estimators. Instead Muirhead and 
Verathaworn [9] proposed the following approach, which is the one taken 
here. 

Let H be a non-singular matrix such that HC, H’ = Z and A = Hz, H’. 
Define A = HS, H’ N W,(A, nl) and B= H&H’ w W,(Z, nz). The eigen- 
values of A are the same as those of C, C; I and the eigenvalues of S, SF ’ 
are the same as those of the nonobservable matrix 

distributed as a multivariate FJn,, n,; A) distribution. The approach 
consists of estimating the eigenvalues di by the eigenvalues of an 
orthogonally invariant estimator a(F) = R@(L) R’, where F= RLR’, 
RR’ = Z, L = diag(Z,, . . . . 5) and G(L) = diag(d,, . . . . 4,). It should be noted 
that the eigenvalues of A(F) depends on F only through I,, . . . . lP and hence 
they are proper estimates. 

Let F be a p x p positive definite random matrix with probability density 
function 

r,(nP ) 
r,hP) r,(n2/2) 

(Al-“‘/2 (FI(“l-P-1)/2 (Z+A-‘FI-“12, F>O, (1.1) 

where n = n, + n,. Denote by F- F,(n,, n,; A) the distribution with density 
(1.1). The problem of estimating the eigenvalues of the positive definite 
matrix A has been considered by some authors. Muirhead and 
Verathaworn [9] considered the problem of estimating A by a(F), using 
the invariant loss function 

Ys(A, A)=tr(A-‘A)-log (A-‘81 -p. (I.21 

This loss function was first proposed for the estimation of the eigenvalues 
of the scale matrix of a Wishart distribution. However, for the estimation 
of the scale matrix A of a multivariate F-distribution (1.1) the derivation of 
improved estimators is not as easy. 

Muirhead and Verathaworn [9] obtained an approximate expression for 
the variational form of the Bayes estimate based on an approximation to 
the unbiased estimate of the risk in conjunction with the Euler-Lagrange 
system of differential equations [3, 41. It has not been established that the 
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estimators proposed have a frequentist risk uniformly smaller than the best 
multiple of F which is just the unbiased estimate 

Ati= 
nz-p- 1 

F. 
4 

(1.3) 

In their Table 1 a simulation study also showed that 2, suffers the same 
defects as in the one sample problem where the best multiple of the 
covariance matrix is used to estimate the population covariance matrix. 
Explicitly, the latent roots tend to be much more dispersed than those of 
A. The smallest eigenvalues are biased too low while the largest eigenvalues 
are biased in the opposite direction. These biases become critical especially 
for small values of n, and n2. More recently, Konno [6] considered 
orthogonally invariant estimators of the form 

&=a,(F+ut(u)Z), (1.4) 

where ui = (nz - p - 1 )/nl and t(u) is an absolutely continuous and 
nonnegative function of u = l/tr(F-l). He showed directly, without the 
unbiased risk estimate, that for p > 2 if the function t(u) is nonincreasing 
and is bounded as O<t(u)<2(p-l)(n-p-l)/n,(n,-2) then AK has 
uniformly smaller risk than a,. No simulation study was done to assess 
the risk reduction, but since all eigenvalues of F are modified in the same 
direction, no substantial risk reduction should be expected. 

In this paper, the estimation of A is done with respect to the invariant 
loss function 

L&(A,&=tr[(A+F)-‘(d+F)]-logj(A+F)-’(s+F)I-p. (1.5) 

Section 2 deals with the unbiased risk estimate of a nearly arbitrary 
estimator A(F) and gives the best multiple estimator. This unbiased risk 
estimator is specialized to orthogonally invariant estimators. In Section 3 
the exact form of the orthogonally invariant Bayes rule as the solution to 
the Euler-Lagrange system of differential equations is obtained. An 
improved estimator which modifies all eigenvalues of the best multiple 
estimator in the same direction similar to those of Haff for the eigenvalues 
of the mean of a Wishart distribution is given in Section 4. Since the best 
multiple estimator is not minimax it cannot be concluded that the 
improved estimators are minimax. In Section 5, the minimax estimator 
which is the best equivariant estimator with respect to the group GG of 
lower triangular matrices with positive diagonal elements is constructed. 
This estimator is then modified “a la Eaton” [ 1 ] to obtain improved mini- 
max estimators that are orthogonally invariant. Finally, some simulations 
reported in Section 6 show that the orthogonally invariant minimax 
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estimator offers substantial risk improvements for various degrees of 
freedom and matrices d. 

2. UNBIASED ESTIMATE OF THE RISK 

Following Half [4] we would like to obtain an unbiased estimate of the 
risk of a nearly arbitrary estimator a(F). This can be done using the 
F-identity of Muirhead and Verathaworn [9]. 

Let D be the p xp matrix of partial derivative operators whose (i, j) 
element is d,= i(l + 6,) a/afij, where 6, is the Kronecker delta and 
F= (f,). For a matrix function Q E Q(F) : p x p define the matrix DQ = 
(Cf= 1 dikQ/cj). 

THE F-IDENTITY. Let V= (v,(F)) : p x p satisfy the conditions stated in 
Verathaworn [ 14). Then 

E(tr(d +F)-’ V> =E f tr(DV) + 
n,-p-l 

(2.1) n 

The risk of an estimator a(F) is 

R(d,s)=E{tr[(d+F)-'(a+~]-logl(d+F)-'(a+r;)l-p) 

=E{tr[(d+F)-‘a]-log@+FI+tr[(d+F)-’Fj 

--log )(A +F)-‘I -p}. 

If the constant terms are omitted, equivalently the risk 

R*(d, ii) = E(tr[(d + F)-’ 61 -log (2 + FI } (2.2) 

can be considered. An unbiased estimate of R* is readily obtained from the 
F-identity, 

ff*(d, d^) = f tr(Da) + 
?I,-p-l 

tr(F-‘6) - log ld^ + PI. (2.3) n 

The best multiple estimator uF with constant risk is now easily obtained. 
The unbiased estimator of R*(d, uF) is 

ff*(d,aF)=2a tr(DF)/n+(n, -p- l)up/n-plog(u+ 1)-log IFI 

=up(p+l)/n+(n,-p-l)up/n-plog(u+l)-logIF 

=upn,/n-plog(u+ 1)-log IFI 
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which is minimized at a = n2 Jn, . Therefore, one possibility is to seek 
improvements on the risk of the best multiple estimator 

From now on, we restrict our attention to orthogonally invariant 
estimators with the same eigenvectors as a, but modified (and observable) 
eigenvalues. 

Let F= RLR’, where R is orthogonal and L = diag(Z), 1= (I,, . . . . l,)‘, 
113 ... > lP. Orthogonally invariant estimators are of the form 

8,= R@(L)R’, 

where Q(L) = diag(4), and 4 = (#r, . . . . $p)‘. 

LEMMA 1 
Then 

[4, 121. LA di(L), i = 1, . . . . p, be d@erentiable on 1, > . . . > 1,. 

D(R@(L)R’) = R@“‘(L)R’ > 

in which 

Q”‘(L) = diag(d(,‘)(l), . . . . 4;‘(L)), 

L j=1 

i#i 

From Lemma 1 the unbiased 

4i(L)-dj(L) 

Ii - lj + acbj(L)/ali* 

estimate of the risk of R@(L) R’ follows, 

THEOREM 1. The unbiased estimator of the risk R*(A, R@R’) is given by 

+ 
n,--p-l P 

n 
iC, #i//i- i$, l”g(4i + li) 

where d = V. 4 = Cf’=, aq5Jdli is the divergence of 4. 
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3. FORMAL BAY@ ESTIMATORS 

Define A = (A,, . . . . A,)’ the eigenvalues of A. Let $A)= Z*(A) be an 
orthogonally invariant prior distribution (i.e., rr(TdT’) = rc(d) for 
any orthogonal matrix r). Denote by f(f ) A) the conditional density of 
I= (1,) . ..) l,)‘, given 1 = (A, , . . . . A,)‘. Finally, the marginal density of I is 
denoted by 

&do = j f(l I A) d7-c*(A). (3.1) 

Following Haff [4] the Bayes risk of the estimator R@R’ is given by 

44~) = j- fi*V, ~44 g,W dl. (3.2) 

Since the loss function is convex, then the formal Bayes rule is unique and 
is obtained by minimizing the functional ~(4, n). The function 4 minimizing 
that functional must satisfy the Euler-Lagrange differential equations 

af*ladi = i (a&*/ad) + (a&?**lad)(a log g,/al,), i= 1, . ..) P. (3.3) 
1 

Now, since i#JiTd=2Jn the first term on the right side of (3.3) vanishes 
and the Euler-Lagrange equations reduce to 

i j$, &.+(nl-f-l’ ~-&,=~alogp./G i=l,...,p. (3.4) 

j#i 

It is readily checked that the solution of this system is given by 

(n,-p-1)+21, t ’ 
-1 

--21ia log 
j= 1 li -  I ]  

g,(lyali 1 -li. (3.5) 

j#i 

This is the exact Bayes estimate of the vector of eigenvalues of d. They 
depend on the prior distribution K*(A) through the marginal density g,(l). 

The variational form of the Bayes estimator (3.5) was derived using an 
unbiased estimator of the risk i?* of an orthogonally invariant estimator. 
Of course, the posterior expected loss can be minimized directly to obtain 
another form of the Bayes estimator with respect to the prior n(d) (not 
necessarily orthogonally invariant). The Bayes rule with respect to the loss 
function 9F is d(F) = (E “‘“‘“‘[(d+F)-‘I}-‘-~. 
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4. ESTIMATORS IMPROVING UPON THE BEST MULTIPLE 

THEOREM 2. Let p > 2. The estimator R@R’, where 

f$,=~ (li+ut(u)), 
(4.1) 

u = l/tr(F-1) 

has ungormly smaller risk than the best multiple estimator if t(u) is a 
nonincreasing function such that 0 < t(u) G 2(p - l)( l/n, + l/n,). 

Proof. Since t’(u) 6 0, the divergence of 4 can be bounded above as 

!l atij/aij=z [p+(il I;‘) u~W+(~~ li2) u2t(u)] 

<: (p + t(u)). 

Therefore an upper bound for the risk difference is 

g*(A, R@R’) - ff*(A, a,,) 

<1 n2 Ln ; P(P-l)+ 
2 n2 
; ; (p+t(u))+ 

n,-p-l n2 

-i, [ (“’ i 

n n, (P + t(u)) 

log F+l lj+zut(u) -np+C log K-l-1 lj 
1 n2 jI, (“’ ) 

n2 t(u) =- -(n,-p+l)- i log 
4 * j=l [ 

l+:t(,)l;‘u] 

q t(u) 
[ 

-(P-l)+t(u) n2 co --. 
nl 2 n 1 

if 0 < t(u) 6 2(p - l)( l/n, + l/n,). 

The problem with the best multiple estimator is the overdispersion of the 
eigenvalues. Small eigenvalues are biased too low while large eigenvalues 
are biased in the opposite direction. The estimator proposed in (4.1) will 
not correct this problem, since all eigenvalues are moved in the same 
direction. Substantial risk reduction should not be expected and better 
estimators that really correct the problem described should be sought. 



8 BILODEAUANDSRIVASTAVA 

5. MINIMAX ESTIMATORS 

Let F= TT’ be the Bartlett decomposition of F and D = diag(d,, . . . . d,). 
The estimators equivariant with respect to the group G,+ of triangular 
matrices with positive diagonal elements are of the form d^ = TDT’. This 
group being solvable the best equivariant estimator is minimax. 

LEMMA 2. Let G= T’(I+ F)-’ T, where F= TT’ is the Bartlett decom- 
position of F- F,(n,, nz; I). Then the expectation of the diagonal elements 
of G = ( gij) are given by E( g,i) = (n, + p - 22’ + 1 )/n. 

ProoJ The Jacobian from F to T is J(F+ T) = 2p flf= i t$-‘+I). Thus 
it follows that the density of T is 

p(T)=~2~ fi tZ’-i/JZ+ TT’l”‘2, 
i= 1 

where c is the normalizing constant. Now, partition T as 

where t,, is a scalar. 
It can be shown that 

II+ TT’( = (1 + t;,) (I+ T22 T&I )I+ zz’j, 

where 

z= 
(I+ T22T;2)-1’z t 

(1 +(;,)I/2 2” 

Furthermore, since J(t2i 3 z) = (1 + t:i)‘P- ‘)” jZ+ T,, T&1 ‘12, the joint 
density of t,, , T,, , and z is given by 

CzPnf=l ‘ii-’ ,Z+T,,T;,(-‘“-“/~(~+Z’~)-“~~. 

(1 + t2J”-P+w2 

Hence, t,,, Tz2, and z are independent with 

2 tll -Fh, n,-p+ I), 

W= Tz2Ti2- F,-,(n,-4 n,;Z), 

w=z’z-F(p-1, n-p+ 1). 
(5.1) 
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The distributions of t:r and w are canonical F-distributions [2] and the 
distribution of w follows from general results on spherical distributions 
[ 11, Lemma 3.2.31. 

Now, since G =I-- (I+ T’T)-’ it follows that g,, = 1 - (1 + t:,)-’ 
(1 + IV)-’ whose expectation is E( g,, ) = (n 1 + p - 1 )/n. The matrix G can 
also be partitioned as 

g11 61 

( ) g,, G22 ’ 

where 

G22 = T;,{ (I+ Tz2T;#* (I+ zz’)(Z+ T,, T;2)1’2) -’ T22 

= T;,(Z + T22 T;,) - ’ T22 

- G,V+ T2J;2)-“2 (1 ;z,z) -i-- (I+ T22 Ti2)-l” T22. 

Because the distribution of z is spherical then necessarily 
E(zz’/( 1 + z’z)) = al, _ I for a certain constant a. Therefore, 

QG,,)= (1 -a) W’;,U+ T2JT1 T221. 

The constant a is easily determined from E(w/( 1 + w)) = a(p - 1) = 
(p - 1)/n from which a = l/n. The expectation of G22 has the same form as 
the expectation of G but in dimension (p - 1). The result follows by 
induction. 

THEOREM 3. Let F= TT’. The best equivariant estimator 6 = T DT’ of A 
is given by D = diag(d,, . . . . d,,), dl < . .. c dP, where 

di= 
n,--p+2i-1 
n,+p-2i+ 1’ 

i = 1, . . . . p. 

The minimax risk is 

R*(1 TDT’)=pn2/n- i {log(d,+l)+EClog(F,,-i+,,.,-,+i)l>. 
i=l 

Proof. For A = Z, 

R*(Z,d^)=E tr[(Z+F)-’ TDT’]- i log(di+ 1)-log (F( 
i= 1 

=E tr(GD)- i log(d,+l)-log(F( , 
i=l 

where G = T’(Z+ F)-’ T. A differentiation with respect to di gives 
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E(g,) - (di + 1) - ’ = 0. It follows that the optimal choice is di = 
E-‘(g,)- 1. This reduces to (5.2) using the preceding lemma. For the 
minimax risk, it can be shown by induction using (5.1) that tz. follows a 
canonical F(n, - i + 1, n, -p + i) distribution, i = 1, . . . . p. This completes 
the proof. 

The estimator in Theorem 3 has the unappealing feature that it depends 
on the coordinate system. Eaton [ 1 ] provided a way of obtaining minimax 
estimators that are orthogonally invariant in the context of estimating 
the mean of a Wishart distribution. His approach is as follows. 
Let S- WJ,(Z, n) and S = TT’ be the Bartlett decomposition. Let 
f,,.,(S)= TDT’ be the best equivariant estimator with respect to GT+. The 
matrix D = diag(d) depends on the strict convex loss function considered. 
For any HE Gl(p) define 

(H*&)(S) = H-‘&,,(HSH’) H-“. 

The estimator proposed by Eaton is 

&(S) = ECW*&d(S) I Sl (5.4) 

and he suggested using a random matrix H that has the uniform distribu- 
tion on the orthogonal group O(p) and is independent of S. The estimator 
(5.4) is then orthogonally invariant and minimax. It has the form Z,(S) = 
R@(L) R’, where S= RLR’, and Q(L) =diag(4(L)). Takemura [13] gave 
a series expansion for p = 3 and provided the factorization 4 = LW(L)d, 
where W(L) is doubly stochastic. The explicit calculations of W(L) for 
p > 2 remains an intractable problem. Perron [lo] gave an approximation 
to the matrix W(L), say m(L) described below, and showed that 
the estimator zp(S) = R diag(&R’, where J= Lmd, is minimax and, 
moreover, i and I follow the same order relation with the elements of 3 
being positive. It will be shown that the matrix I? serves an identical role 
for the estimation problem of the latent roots of Z,Z:;‘. This should not 
be surprising, since the exact expression for W(L) is based on the condi- 
tional expectation given S in (5.4). At this point the Wishart distribution 
plays no role. 

The matrix w is defined in terms of 

Li = diag(l,, . . . . Ii- 1, 0, li+ 1, . . . . I,), i = 1, . . . . p, 

and 

P’ if k=O 

trk(L) = c if k = 1, . . . . p, 
1Cilc -cik<p j=l 

0 otherwise. 
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The matrix @ is given componentwise by 

!Gik=trLJi(L) trk-i(L,)-tr,‘(L) trk(Li). (5.5) 

LEMMA 3. [lo]. (i) m is doubly stochastic. 

(ii) ri(a/a,i)Ctrk(Li)/trk(L)1= -(frk(Li)/trk(L))(l - trk(Li)/trk(L)) <O. 

(iii) xi, j (&G,(L) - ZjGjk(L))/(Zi- I,) = (p-k). 
(iv) Let tj = @‘d, if d, < . . . cd,, then d, -C tjl < ... <II/, < d,. 

(v) If II > . . . > I, then d;, > . . . > qp. 

THEOREM 4. The orthogonally invariant estimator d^ = R diag($) R’, 
where $= L pd, d as in (5.2), is minimax. Moreover, i and 1 have the same 
order relation and the components of i are all positive. 

Proof: Let J/ = #‘d. Then, from Theorems 1 and 3, 

&*(A, R diag($)R’) - R*(Z, T DT’) 

+i f lji?‘$Jali- i [lOg($i+ I)--log(d,+ l)] 
t-l i=l 

=i (n,-p+l) 2 d,+i k$I (p-k)d,-En, (5.6) 
k=l 

-; $, 1:; $$f (+f) (d/c+,-‘&) (5.7) 

--;, [lo@l ~ik(dk+l) - ~ ) %klo!?(d,+l)] (5-8) 
k=l 

=A+B+C, 

where A, B, C are given respectively by (5.6), (5.7), (5.8). From the 
expression of dk in (5.2) it follows that A = 0. The Lemma 3(ii) implies that 
B < 0 and finally the concavity of the logarithmic function gives C < 0. This 
completes the proof. 

6. SIMULATION REWLTS 

Table I gives the estimated risk of four estimators with respect to the loss 
function A$. Each simulated risk is an average of 500 realisations of the 
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TABLE I 

Risks Comparisons 

n,=n, 10 25 50 100 

Minimax 
risk 

4l 
(best multiple) 

d =diag(l, 1, 1, 1) 

d^K 

a 

A = diag(25, 1, 1, 1) 

2, 

a 

A = diag(lO, 10, 1, 1) 

d^K 

a 

A = diag(8,4,2, 1) 
6, 

a 

0.5803 
(0.0150) 

0.6414 
(0.0158) 

0.5597 
(0.0148) 

[12.7%] 

0.4169 
(0.0136) 

[35.0%] 

0.5368 
(0.0130) 

[16.3%] 

0.4334 
(0.0120 

C32.4 %] 

0.5547 
(0.0139) 

[13.5%] 

0.4499 
(0.0129 

C29.9 %] 

0.5551 
(0.0131) 
[13.4%] 

0.4275 
(0.0119 

c33.3 %] 

0.2059 
(0.0050) 

0.2240 
(0.0055) 

0.1969 
(0.0045) 

[12.1%] 

0.1724 
(0.0042) 
C23.0 %] 

0.1974 
(0.0044) 

[11.9%] 

0.1823 
(0.0042) 

[18.6%] 

0.2027 
(0.0046) 
c9.5 %] 

0.1854 

(O.c@44) 
[17.2%] 

0.2097 
(0.0047) 
[6.4%] 

0.1867 
(0.0046) 

[16.7%] 

0.0979 
(0.0021) 

0.1063 
(0.0022) 

0.0987 
(0.0021) 
[7.1%] 

0.0922 
(0.0020) 

[ 13.3 %] 

0.0976 
(0.0020) 
[8.2 %] 

0.0940 
(0.0020) 

[11.6%] 

0.1039 
(0.0022) 
C2.3 %] 

0.0996 
(0.0021) 
[6.3 %] 

0.0991 
(0.0022) 
[6.8%] 

0.0942 
(0.0021) 

[11.4%] 

0.0497 
(0.0010) 

0.0504 
(0.0011) 

0.0505 
(0.0010) 

C-0.2%] 

0.0489 
(0.0011) 
[3.1%] 

0.0500 
(0.0010) 
CO.8 %] 

0.0490 
(0.0010) 
C2.8 %] 

0.0533 
(0.0011) 

[ -5.7%] 

0.0523 
(0.0011) 

C-3.6%] 

0.0501 
(0.0010) 
CO.6 %] 

0.0489 
(0.0010) 
[3.0%] 

random matrix F, The entry in parenthesis are the estimated standard 
deviations of those averaged losses and the PRIAL (or percentage reduc- 
tion in average loss) relative to the risk of the best multiple estimator are 
in brackets. Comparisons are made for four different choices of the popula- 
tion matrix A between the estimator in (4.1) aK (orthogonally invariant 
and better than the best multiple) and the orthogonally invariant and mini- 
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max estimator of Theorem 4. Our proposed estimator d’ provides substan- 
tial risk reduction over the best multiple estimator (as much as 35%) and 
is markedly better than d, which modifies all eigenvalues in the same 
direction. 

Finally, we remark that the estimators of Konno (1.4) and (4.1) have the 
same functional form (but are not identical) and are specialized respec- 
tively to the loss functions (1.2) and (1.5). Our improved orthogonally 
invariant minimax estimator d^ in Theorem 4, specialized for the loss (1.5), 
could also be slightly modified (by another choice of d) to serve under the 
loss (1.2). The estimator thus obtained can be shown by simulations to 
yield similar risk reductions over the best multiple estimator (1.3) for the 
loss (1.2). However, we are unable to establish the minimaxity via unbiased 
risk estimate methods. 
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