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We introduce the concept of local moments for a distribution in R”, p>1, at a
point ze R?. Local moments are defined as normalized limits of the ordinary
moments of a truncated version of the distribution, ignoring the probability mass
falling outside a window centered at z. The limit is obtained as the size of the
window converges to 0. Corresponding local sample moments are obtained via
properly normalized ordinary sample moments calculated from those data falling
into a small window. The most prominent local sample moments are the local sam-
ple mean which is simply the standardized mean vector of the data falling into the
window, and the local covariance, which is a standardized version of the covariance
matrix of the data in the window. We establish consistency with rates of con-
vergence and asymptotic distributions for local sample moments as estimates of the
local moments. First and second order local moments are of particular interest and
some applications are outlined. These include locally based iterative estimation of
modes and contours and the estimation of the strength of local association.  © 2000
Academic Press
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1. INTRODUCTION

Local geometric features of a probability density function of p-variate
data, such as its mode and its contours, are important elements of non-
parametric multivariate data analysis. Specific examples are discussed for
example in Scott [ 14]. As we aim to show in this paper, local moments in
R” and their sample counterparts, the local sample moments, provide a
unifying concept to explore such features. Local moments have the addi-
tional appeal of simplicity as they are obtained by localizing the basic
statistical notions of ordinary moments, sample moments and averages.

Of particular interest are first order local moments or local means and
second order local moments or local covariance matrices. First order local
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sample moments have been implicitly used previously in a mode finding
algorithm called the Mean Update Algorithm (compare Thompson and
Tapia [ 16]). Other applications of local moments include the estimation of
local dependence via local covariance matrices and the estimation of den-
sity derivatives. Another area of application of local moments is the estima-
tion of contours, tangent and normal directions, including directions of
steepest ascent.

For the two-dimensional case, the idea of a (k,, k,)-th order local
moment u,, .,(z), at z=(z,, z,), corresponds to the following prescription:
Define a sequence of rectangular neighborhoods or windows S,(z)=
[zi—9,z1+y] % [22—7, 2, + 7], which shrink towards z as y=y(n)—>0
with increasing sample size n — co. Calculate the centered moments of the
data, conditional upon their falling into S,(z), normalize and take the limit
as n— oo. For a fixed z=(z,, z,) € R?, given bivariate random variables
(X1, X3),

. 1
My, kz(z) = ILH;O 4T)2E[(X1 _Zl)kl (Xz_Zz)k2 [ (X, X,)eS,(z)].

We define and investigate local moments in R? and their relation to the
local geometry of the density at z in the following Section 2. The sample
versions of local moments are the local sample moments, which are intro-
duced in Section 3. Local sample moments are obtained as ordinary sample
moments computed only from those data which fall into windows S,,. Our
main result is that local sample moments converge to the local moments
under mild conditions.

The various applications of local moments are briefly discussed in
Section 4. Technical results and proofs are compiled in Section 5.

2. LOCAL MOMENTS

For some p>1, let X= (X, .., X,,) € R? be a random vector with twice
differentiable density f. Given a fixed point z=(zy,..,z,) e R?, and a
sequence of factors y=7v,>0, y, >0 as n— oo, define the rectangular
neighborhood of z,

P
S=Sn=S(Za ')}): 1—[ [Zj_%Zj‘f‘V]-

j=1
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In the following, we use the multiindex notation

P P
a=(ay, .., a,) with integers o; > 1, | = > o, x*=]] x¥
i=1 i=1

for a vector x € ‘R?, and

au1+~~+ D
o ap
T Xy ---0%x,

Dy (x J(x).

For a multiindex «, we define Aa= (Aay, ..., a,) for any real number 4,
and

¥ =laf +3 X [1—(=D*].

i=1

This means that |a™| corresponds to |«|, increased by one for each
occurrence of an odd index among («y, .., «,). Further, let e;=
(0, ..., 1, ..., 0) be the multiindex consisting of zeros except for a 1 at the ith
position.

Given a multiindex « and a sequence y =7y, — 0 as n —» oo, we define the
local moment of order « at z,

o= lim yli+|E{(X—z)°‘|XeS}. 2.1)

y—

The normalization factor y'*’! in the denominator is motivated by the
following result, which shows that the local moments are well defined, and
which reveals the relations with the local geometry of the density at z.
A basic assumption for the derivation of asymptotic properties of local
moments is:

(A1) The point zeR” is an interior point of the support of the
density f, and f is twice continuously differentiable at z, with f(z) > 0.

THEOREM 2.1. If for a given multiindex o= (a,, ..., a,) all of the a; are

even, then the local moment of order o at a point z€ R? is given by

; (2.2)
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if all indices o; are even except for one index which is odd, then

P

to(z) =[]

1 4 ocj+1 D%f(z)
i ot

| ; 2.
1 Z O(j+2 f(z) {ajis odd} » ( 3)

j=1

if all indices a; are even except for two indices which are odd, then

1 2 (o4 Do+ 1)

)3

i it Gk=1, j#k (o +2) (ot +2)
D)

X W 1 {aj and oy are odd} *

Il
i~

Uo(2)
(2.4)

The proof and more detailed results can be found in Section 5. From the
proof of Lemma 5.1 it becomes clear how results for local moments of
orders with more than two odd indices can be derived as well; such results
are, however, somewhat unwieldy, and the details are omitted.

Some special cases are of particular interest. If |a| =1, the local moment
Uy 18 of first order. Then a=e, for a k, 1 <k <p, and Theorem 2.1(2.3)
yields

_1 D%
T3 @)

1) . (25)

Regarding second order local moments, where || =2, we can write each
such a as a =e; + e, for some j, kK with 1< j, kK <p. Theorem 2.1(2.2) and
(2.4) then imply

1
3 for j=k,

tore® 1 porerny 20
9 f(z) I

A more detailed analysis is called for to obtain the local analogue of a
covariance matrix. Define 3" = (o)1 < x<p bY

1
ajj:? Var(X;| X e S), (2.7)
and

1
k= Cov((X;, Xi) [ X€S), 1<jk<p, j#k (2.8)
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THEOREM 2.2. As y— 0, it holds that

L [P (DN .
%=3 [<3f(Z)> 2<45f<z>>}”0(” (29)

and

L[ DY %f(z) DYf(z) D%(z } .
04 == +0(1), #k. (2.10)

” 9{ f(z) ) ’

For the case p=2, using e;=(1 0)', e,=(0 1) and the abbrevia-
tions Df(z) = /1%, D%f(z)=fOD, D*f(z)= {1, D*if(z)= [,
D*f(z)= % and f(z)=f we obtain the following local first order
moments and local covariances:

f(lo) f(01)
He(2) = BT He(2) = 37
1 f(lO) 2 2f(20) ) )
0'11=3+{<3f> —45f}y +o(y?), (2.11)

012 =05 =(ff "D — fAOFOD) 912+ 0(y?).

In the limit, eliminating the constant terms and renormalizing, we obtain
for instance

. 1 2 FAON2 ) £(20)
5 = lim — dvar(X, | XeS)— 2 b=(1—) = 2.12
= tim 5 fuarxy I xes) -2 (o) - Z ey

1
5'12=1iH}) ?COU{(XI,X2) |XGS}
y—

= (ffaD — fA0FOD) g £2 (2.13)

Similar expressions hold for the p-dimensional case. These results
demonstrate the close relationship between the local geometry of f at z and
the local moments. We note that the constants such as 1/3, 1/9 in
Theorem 2.2 result from the fact that we use regular unweighted moments
in the definition of local moments. An obvious generalization would be
weighted moments, in which case these constants depend on the particular
choice of weight function. The corresponding calculations are similar to the
ones presented here.
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3. LOCAL SAMPLE MOMENTS

The local sample moment of order « at ze R?, based on a sample of data
vectors Xy, X,, ..., X,, € R?, serves as an estimator of u,(z). It is natural to
define it by

n

)= X (X0 150 || ; x| e

i=1

Here |a™| is as defined before (2.1), and 14(X)=1 if Xe S, 14X)=0 if
X ¢ S. These local sample moments are analogous to the regular sample
moments except that they are conditional for those data falling into the
window S, and are rescaled by the factor y*"!. For example, first order
local sample moments are given by

1
:uAe-(Z) =
j ')}2 ;

I M s

(Xy—2) 15(X,) / T 14(X,),

1

and second order local sample moments by

L2 " .
/‘Zej(z):P z (Xij_zj)2 1S(Xi)/z 15(X,), 1<j<p,
i=1 i=1
and
. 1 n n
Iue]+ek(z) ? Z (Xl] Zj)(Xi _Zk) 1S(Xz)/z 1S(X1)7
i=1 i=1

I<jk<p, j#k

Some guidelines for choices of the window S can be derived from the
following asymptotic result. Certain rates of shrinkage of the window S,, to
zero ensure the stochastic convergence of local sample moments to the
local moments. Our main result on local sample moments concerns their
convergence in distribution to a normal limit. The following shorthand
notations will be useful: Given a multiindex «, define

£ —1 z % 2e;
ﬁoc=3f(z) 111 (a;+1) El r+3D f(z)
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and

)4

= ! £ —1 —2 .
U _2pf(Z) {H (20;+1) n (o;+1) }, if all «; are even,

1 P
v, = (20, + 1)1, if at least one «;is odd, 1<i<p.
2pf(z) ,1]1
Furthermore, denote by -2 convergence in probability and by -2 con-
vergence in distribution as n — co.

i=1 i=1

THEOREM 3.1. Let o be a multiindex with at most two odd elements and
assume that (A1) holds and that u,,(z) exists. As n — oo, assume that

y—0, ny2(la+|—lu|)+p_) 0 (3.2)
and
ny2(|oc+|7|<x|)+p+4_>)v2 (33)

for some constant .= 0. Then
{1022 (p(2) = p1,(2) =2 N (2B v). (34)

The proof is in Section 5. If 1 =0, the asymptotic limiting distribution
will be centered at 0. The asymptotic mean squared error (AMSE) is
obtained by summing squared asymptotic bias and asymptotic variance as
given in the limiting distribution (3.4), i.e.,

UM
2(let | —lal)+p" (3'5)

ny

AMSE = (y*f,)* +

It is easy to see that this is minimized for

v, [2(Jct] = o)+ p] 2(Ja* | — o)) + p +4]
* — x
’ { 4f2n }

p VL2t —lah) + p+4] (3.6)

~

which gives the rate of convergence
AMSE ~ n—4[2(a* | = lal) + p+4]

for the asymptotic mean squared error of the local sample moments. The
optimal scaling factor y* depends on unknown quantities, which could be
estimated from the data, leading to a plug-in type bandwidth choice.
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As a more specific example for formula (3.6), consider the important
two-dimensional case p =2 and let a =(1, 0). Then we obtain

f(20) 1
ﬂ(lO) 24f U(IO):Efa

. 48f 1/8
Y(0) = [f(zo)]zn >

as well as AMSE ~n—12,

and

Another consequence of (3.4) is the consistency of the local sample
moments £,(z) for local moments y,(z) as long as the bandwidths y satisfy
(3.2), (3.3).

COROLLARY 3.1.  Under the assumptions of Theorem 3.1

fin(2) = 1,(2). (3.7)
As special cases, we obtain from (2.5), (2.6) and (3.7)
1 D%f(z)
G (2) 2> 3.8
Aalr) 23 =0 (38)
and
1 D9 %f(z) : .
e, L= fi k,1<j,k<p. 3.9
A+ e(2) 5 fz) or j#k 1<j,k<p (3.9)

We turn now to local sample covariance matrices. Forming empirical
covariances within local windows, one obtains

G, == { L(Xy—2)* Ls(Xy) [ X7, (Xy z,)1s<x,-)ﬁ
s TirTo(X) i 15(X)
=floe(2) =75 (2),  for 1<j<p, (3.10)
and

. :{ =1 (Xij_zj)(Xik_Zk) 1s(X;)
g 271 (X))
=1 (Xij_zj) 1s(X,) 272 (Xpe—2p) 1S(Xi)}
i-1 1s(X5) 7o 1s(X))
=fe1e(2) —fe(2) fe(z),  for 1<), k<p, j#k. (3.11)
With covariances g (2.8) (see also (2.9), (2.10)), we have




98 MULLER AND YAN

CoROLLARY 3.2. Under the assumptions of Theorem 3.1, for o=2e,,
assuming ny?+4 -0,

(my?)'2 (6, —5) -5 N(0,v5,),  1<j<p, (3.12)

and for a=e; + e, assuming ny?+8 72 1>0,

(ny?+4)12 (6jk_0jk);@>'/1/‘(/lﬂej+ek’ Vet er) 1<jk<p, j#k (3.13)

The proof is in Section 5. It is clear that 6,53 and 6, gy.
Along the same lines, 2{/22e — Gy} = ue(2). We note in passmg that

there 1S an 0bv10us alternatlve definition for 6;, which is based on

=l (2) — ( ). Analogously to the proof of (3.12), one can show that
(ny )1/2( —1/3) N (AP ess V2e))-
Spemallzmg these results to the two-dimensional case, we infer from
(3.12) and (3.13) that

Gu=3+0,((ny*)~"2), i=1,2, (3.14)
and

lf(ll)f f(lO)f(Ol)

Gi2=7 1B +0,((ny*)~12). (3.15)

4. APPLICATIONS OF LOCAL MOMENTS

We review here some statistical estimation problems which can be
phrased in terms of the unifying concept of local moments. These problems
concern the definition and estimation of a local dependence function; the
estimation of derivatives of a density function; the problem of estimating
tangents and normals of the density contours and the uphill search for
modes of the density by a mode climbing algorithm.

4.1. Measures of Local Dependence

The local covariance (2.10) immediately suggests the following measure
of local dependence between components X; and X; of a p-dimensional
distribution:

DY*ef(z) DY(z) Dekf(z)}’ j#k. (1)

’)""(Z):{ o far
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For the two-dimensional case, this becomes

1
pl) =5 L = 100 V), (42)

This latter measure of local dependence was considered previously as a
local dependence function by Holland and Wang [8] and Jones [10],
compare also Lancaster [11], Scarsini and Venetoulias [12] and Wang
[17] for related discussions. We note that nonparametric measures of local
dependence also found renewed interest in the context of regression
analysis (Bjerve and Doksum [2]; Doksum et al. [5]). We have seen that
for 6,5 (2.13), 96,,=p(z) (4.2), and that for the local sample covariance
615 (3.11), 6,5, 645, according to Corollary 3.2, so that 96,, % p(z), see
(3.15). This shows that the intuitive local sample covariance indeed
provides a consistent estimate of the local dependence function p(-), and
this holds for any two components of the p-variable random vector.

4.2. Density Derivatives

We consider the two-dimensional case, p = 2. Define the two-dimensional
kernel density estimator with rectangular kernel

f=F(z) i (43)

ny?

Abbreviating [ = f(10)(z) f10 — 7007y £ f(g ), (3.10) and (3.11)
motivate the following estimators for derlvatlves f( =340 /o fOV =
3401, f and f )—9u(11)f As Corollary 3.1 yields /i, % u,, consistency of
these estimates is ensured by /-2 f, which follows from classical results on
nonparametric density estimation when y — 0, ny>— oo (see for instance
Cacoullos [4]).

Regarding the asymptotic limit distributions for estimates /%, /D and
FA1 we obtain the following Corollary of Theorem 3.1.

COROLLARY 4.1. If y— 0, ny* — oo, ny® - 0, then

(my*)V2 (fOO — ra0y 2, (0,3 £), (4.4)

and the same holds when replacing O, £ py FOU £OD fr 5,0,
ny® — o0, ny'® =0, then

(my®)V2 (fOD — £A0Y 2 47(0, 5 f). (4.5)

These special cases are comparable to results obtained for kernel
estimators of partial derivatives, see Singh [15]. Analogous results
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obviously hold for R?, p > 2. Direct kernel estimation of derivatives in one
dimension can be interpreted as using a basic nonnegative weight function
multiplied with a polynomial so that the product satisfies certain moment
conditions (Miiller [13]). In local polynomial fitting, such kernels are
implicitly constructed (Jones [9]). The “equivalent” kernels to the
proposed moment based derivative estimates are the uniform kernels
g

An interesting problem occurs when one wishes to estimate derivatives
@O £ yia local moments. These derivatives cannot be directly
estimated, as they do not appear among the leading terms of the local
moments. They do, however, appear in higher order terms such as

1 2 f(20)
ﬂ(zO)zg"‘EVz 7 +o(y%), (4.6)

according to Lemma 5.1. This motivates the estimates

. 457/ 1
1= 27})2 <,U(20) _3>a (4.7)

analogously for /2,

COROLLARY 4.2. Ify—0, ny®— oo, then
f(20) _’f(20)~ (48)

We note that the scaling for (4.7) requires that ny® — oo which means
that (1/y%)/(ny*)? - 0. Thus, the scaling y =2 in (4.7) is of smaller order
than the scaling (ny?)"/? used for the corresponding asymptotic normality
result (3.4) for /159y, where it was required that ny® — 1>>0.

4.3. Density Contours, Tangents, and Normals

We develop these concepts in R?, keeping in mind that extensions to R”
are readily available. The contours or level curves of a density f are defined
by

C,={zeR?|f(z)=7} for y>0.

We assume that the density is smooth and does not have any plateaus, i.c.,
there are no sets with positive measure where the density has a constant
value, so that the contours C, are simple differentiable curves in R>.
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A vector pointing in the direction of the steepest ascent of the density
function at z e R? is referred to as normal vector. Its direction is given by
the differential (£1%(z), f©°Y(z))”; the line (or, in general, plane)
orthogonal to this vector passing through z is the tangent. In R? the
tangent consists of all x satisfying f1(z)(x; —z,) + fV(z)(x, —z,) =0.

The direction of the normal vector can be easily estimated via local
sample moments, observing that, according to Theorem 3.1, see also (3.9),

7 1 (10)
(i) 3700 (poni ) £ 0L )

Accordingly, any vector (plane) orthogonal to (£10), £(01))" Which contains
z assumes the role of an estimated tangent vector (plane). The esti-
mator (4.9) essentially is the rescaled sample mean of the data falling into
the neighborhood S, centered at z,

X(z)= ) (X;—12) 1s(X,-)/Z (X)), (4.10)

i=1 i=1

noting that X(z)= 72(/2(10): ﬁ(m))T-

4.4. Mode Climbing

One can employ the simple approach provided by (4.9), (4.10) to
estimate normal directions for steepest ascent methods by noting that the
normal direction corresponds to the direction of steepest ascent. When
starting at an arbitrary point z, iterative local averaging can be used to
iteratively climb up the density slope towards the mode. The first version
of a corresponding “Mean Update Algorithm” apparently goes back to
Fwu, Tapia and Thompson [7]. Versions of such iterative mode finding
algorithms were proposed in [7] and further discussed in Boswell [3],
Elliott and Thomson [6] and Thompson and Tapia [16].

One version of this algorithm is as follows: (1) Start with a grid of points
ze R? or with the observed data themselves; (2) For each starting point z,
obtain X(z) (4.10); (3) Iterate step (2) by choosing X(z) as new starting
point, until there is no or only a small change in the starting point, ie., z
and X(z) are close according to some criterion.

The starting points and their updates can be connected by an arrow, and
these mode climbing paths help to visualize features of the density surface.
An example of such paths can be seen in Fig. 1, which is based on n= 1500
data sampled from the bivariate normal distribution with parameters
Ui =p>=0, c?=0%=1 and p = cov(X;, X,) =0.2. The true mode is at the
point (0, 0). We use y =2 in constructing the paths. The estimated mode is
at (0.037, 0.047).
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< A <
[SVI N A
> o A > O
S S
T T
-3 -1 0 1 2 3 -4 2 0 2 4
X X

FIG 1. Data sample (left) and mode climbing path (right) for y=2 and 500 data ran-
domly drawn from the bivariate normal density with g, = —2=0, 67 =a3=1, and p=0.2.

For very large and high-dimensional continuous data sets such as one
may encounter in “data mining” applications, the mode has thus the attrac-
tive property that it can be computed using exclusively “local” data
repeatedly. Updating requires only a small fraction of the data. Only a sub-
set of the data needs to be accessible at a time, which reduces memory
requirements. This subset consists of data which are contained either in the
updated window or in the previous window, when using updating formulas
for the means. Using fast updating, the mode may be reached quickly.
Furthermore, the length of mode climbing paths can be used as a distance
measure from mode to data points, and thus these paths may be useful for
cluster analysis and related applications.

Mode climbing paths could also be useful for tracking resources. Assume
local information on the occurrence of certain phenomena is available, such
as the frequency of a biological species in a local neighborhood. The goal
is to find areas of peak occurrence by moving forward sequentially. The
available information on local distribution can be used to form local means
and to determine the normal direction. After progressing in that direction,
one then would obtain a new local sample and normal direction. Iterating
this process, one ultimately arrives in high-density areas. Of course, this
approach works also to find the direction of steepest descent, for instant if
the goal is to move away from danger zones corresponding to high density
areas.
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5. PROOFS AND AUXILIARY RESULTS

For all of the proofs, we denote the volume of a set 4 by |A4|. For
p-variate multiindices, we define the indicator sets

Ny ={a o;are even, 1 <i<p}
N, = {o: exactly one of the «; is odd, 1 <i<p}

N, = {a: exactly two of the a; are odd, 1 <i<p}.

In addition, the following abbreviations will be convenient. For a given
multiindex «, let

a,+1 D*(z)

4
=2 )
P a1 D*(z)
m(fx)—i;l w2 f(z) {a; odd}
2 o+ 1 ap+1 DI*%f(z)
0- (a) = ! o and o O b
’ j,k=lz,j;ek y+2 a+2  f(z) o and o 0dd}
2 %; 2e;
03(01)=i:1 mD f(z),
p
m(a) =[] (;+1)7",

i=1

and the conditional moment
M(x)=E{(x—2z)* | xeS}.

5.1. Proof of Theorem 2.1

Theorem 2.1 is an immediate consequence of the following lemma, which
provides a more detailed result for conditional moments from which local
moments are obtained by taking the limit as y — 0. Following the details of
the proof, more general local moments for the cases where more than two
indices «; are odd can be easily obtained.

Lemma 5.1.  For a multiindex o with o€ Ny U Ny U N,,
> 2 a D*f(z)

+Lo1(@) + 00*)] Vaemy +[o2(@) + 0] 1 iaeny } (5.1)
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Proof. By a Taylor expansion of f around z,

P
+3 Y DUf(z)(x;—z,)(x;— z;) + 0(77), (5.2)
i, j=1
and thus
& e
L roax=1si s 142 $ gt +ot )|
whence

[ (xam =181 771r(e) Ty

P
f (x—2)* ). D*f(z)(x;—z,) dz=|S| """ 'n(a) f(2) 01(2) L (neny

N i=1
and
L (x —2z)* i DT (z)(x; — z;)(x;— z;) dX
i j=1

=S y™*2n(0) f(2)[00o(@) 1 iaenyy +02(0) Ligeny ]
With (5.2), this leads to

2

ELX =2 1501 =181 = () /)| (145 000) ) ey

1
+01(0) Ligeny +§U1(°ﬁ) Liaeny +0(V2)} . (54)

Combining (5.4) with (5.3), observing

[s(x—2)" f(x)dx

M) =1 700 dix
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and collecting the terms according to whether a e Ny, a€ N;, or a € N,,
then leads to the result.

5.3. Proof of Theorem 2.2
Choosing a = e, € N, in the conditional moment M(a), such that || =1,
|| =2, we find from (5.1) that

D% (z)
3/(z)

Analogously, choosing a =2e,, such that a e N, |a| =2, |a*| =2, we find
from (5.1) that

M(e,) = 2+ 0(y?). (5.5)

7> 2D*f(z) , 4
M(2e,) = + 45/(2) *+o(y). (5.6)

Furthermore, choosing a=e;+e, for j#k, one has aeN,, |« =2,
| *| =4, and, according to (5.1),

D&+ kf
M(ej+ek)=9f(zf)(Z)V4+0(j/4). (57)

We conclude
Var(X, | X € S)=M(2e,) — [ M(e,) 17,
Cov(X;, X; | X eS)=M(e;+e,)— M(e;) Me,),
and (2.9), (2.10) follow by inserting (5.5)—(5.7) into these expressions.

5.3. Proof of Theorem 3.1
It follows from y — 0 that

E| s 21650 | = g [, A

1 " 2 1 5 .
E{I’Z|S| igl IS(Xi):| :|S|2<L~f(x) dx> —>f(Z) , as 71— o0.

This implies that

, |S| ¥ 15(X) 2 /i) (58)
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Defining a triangular scheme of random variables

1

=g L= 2 = ) T 15X,

Ui, n

we can write for local sample moments (3.1)

N 2(X—2)" 1(X) — 91 y(2) 14(X))
Ao(2) — u,(2) ,-;1 TS o)

n 1 n
=§ U,.’,,/ 2 Ls(X)). (5.9)

By Theorem 2.1 and (5.4), using

_ 2D |
ELX) =Is] fin)| 147 £ 20 o).
we find
EL(X—2)° 1500~ (2) 15X) )
=181 ) flo)| S ois@ o). (510)

Furthermore, noting that y'*"! = o(y!) if |a*| > |«|, and that |a*| = |«| for
a€ Ny, we find

E[(X—2)* 15(X) =7 lu,(2) 15(X)]°

= 151£(2)| 1700230 {1+ 0020 + 07 } =7 < alo)?

% T peeny (012 Tpaengy + (02(2)) 1yaongy + 0(%)}}

=S| f(z) y* [ 7(20) — (n())* 1 (aepy 1 +0(|S] 2 ). (5.11)
Defining now the triangular array of i.i.d. random variables
Vi,n= [nyp+2(|a+|—|<x|)]1/2 Ul_,n’ 1<ign, n=12,..

we obtain from (5.10) and (3.3) that

T a(a) o5(a) + 0 @) (5.12)
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and

“ 1 L
E | = A % p )
(£ Vi )=5 7m0 3 bty +ott)

Similarly, observing |S| = (2y)? and (5.11),
var(U; ,) = E(U7,)(1 +0(1))
— (nlyl(loﬁlflal) |S|)71
x A f(2)[7(200) — (m(@))* L emgy 1 +0(1)} (5.13)

and

var <i V,-,n> =277f(2)[n(2¢) — (n())* 1qeny ] + (1)

Applying Lindeberg’s Central Limit Theorem (see, e.g., Billingsley [1])
then shows

Y Vin—2 N (341(x) o5(a), 272 (2)[7(20) — (7(0))* 1 ey 1)-

The result follows by applying (5.8), (5.9) and Slutsky’s theorem.
5.4. Proof of Corollary 3.2
Observing
(m7?)"2 (flag)(2) = pae,(2)) > N(0, 03,
tae(2) = 3 and (ny?)"? y?fi (z) > 0 then implies (3.12). For (3.13), we use
(”VP+4)1/2 (OA-jk - Ujk) = (nyp+4)1/2 {(ﬁej+ek(z) *ﬂej—o—ek(z))
—[(e)(2) — 116,(2)) Aey(2) — (ef(2)) 11e,(2) 1}

Observing f,(z) =5 ue(2), fe(2) — e (z) = O,((ny?*?)~"?) and Theorem
3.1 implies the result.

5.5. Proof of Corollary 4.1
Note that

: » 1
(10) _ #(10) _ —
70— 0 =3~ 1)+ 3 (-5 )
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and

(10) 1
e g ) (0157)

according to Theorem 3.1.
Basic results on kernel density estimation (see, e.g., Scott [14]) imply
that f— /= 0,((ny*)~'?), so that

(my")2 (3a)(f—f) = 0,(1).
This implies the result for /!9, and the other cases are proved similarly.

5.6. Proof of Corollary 4.2

The result follows from the following more general Lemma. To see this,
choose p=2 and a=(2,0) and observe that uy=1/3 and 2(|a*|—
lx|)+p+4=6.

LEMMA 5.2. Assume that o is a multiindex with at most two odd
elements, (A1) holds and u,,(z) exists. Furthermore, assume that y — 0, and
ny? Tl =lal+p 44 on  Then

1
) 2 ‘;?((Z";). (5.14)

~

Proof. With U, , asin (5.9),

By (5.13),

<
IS
=
VN
\QN._.
M s

SY U ) ~ [T e, (5.15)
i=1
and by (5.12),

E<12 Z U,-,,,>—>n(3“)a3(oc). (5.16)
i

i=

Now (5.14) follows by combining (5.15) and (5.16) with (5.8).
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