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Abstract

In the paper we study a semiparametric density estimation method based on the model of an
elliptical distribution. The method considered here shows a way to overcome problems arising
from the curse of dimensionality. The optimal rate of the uniform strong convergence of the
estimator under consideration coincides with the optimal rate for the usual one-dimensional
kernel density estimator except in a neighbourhood of the mean. Therefore the optimal rate
does not depend on the dimension. Moreover, asymptotic normality of the estimator is
proved.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that in high dimensions nonparametric kernel density estimators
have a poor performance for small samples and a very slow optimal convergence rate
(cf. [14,15]). This is one phenomenon of the so-called “curse of dimensionality”.
Thus there is a need for new methods of density estimation in order to overcome this
problem. In this paper we choose a semiparametric approach which is based on
elliptical densities. Our approach goes partially back to Stute and Werner [17], and
to Cui and He [1]. The new idea of the estimator introduced in this paper is to
transform the data before applying the nonparametric estimator in order to avoid
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convergence problems in boundary regions. Moreover, in the two papers mentioned
before, it is supposed that at least a part of the parameters of the elliptical
distribution is known. By contrast all parameters are assumed to be unknown in this
paper. The estimator established in this paper offers interesting applications in areas
where density estimators are needed for high-dimensional data [6]. The discriminant
analysis is one such potential field. It should be pointed out that fitting an elliptical
distribution is a useful alternative to the multivariate normal distribution which is
frequently used. Accounts of the parametric estimation theory of elliptical
distributions may be found in [1]; [3, p. 206]; [8].
The density ' of an elliptical distribution on R? is given by

f(x) =det(Z) Pg((x — ) 27 (x — ) (xeRY), (1.1)

where ueR? is the mean and ¢g: Rt - R" is a measurable function with
/ g(xTx)dx =1,
RLI

R* = [0,400). We restrict ourselves to the case d>2. Assume that g is chosen such
that X is the covariance matrix of the distribution determined by (1.1). This
additional condition on ¢ ensures the identifiability of the parameters in the
distribution model (cf. [8, Theorems 2.6.2 and 2.6.5]). The theory of elliptical
distributions is presented in the monograph by Fang and Zhang [8] where further
references are given (see also [7]). We combine the components of p and X =

(Gij)i.jzl.“d in a parameter vector 6 = (y,, ..., Uy, 011,012, ...,O'dd)TGRd(LH3)/2 with-
out repeating identical quantities (X is symmetric). The main idea for estimating 1" is
to use nonparametric methods as well as parametric estimators. The estimation
procedure works as follows: first an estimator for 0 is computed, then ¢ is estimated
in a nonparametric way and finally, the estimators for u and X are plugged in. It
turns out that the optimal rate of uniform strong convergence of the estimator for f'
coincides with the optimal rate for the usual one-dimensional kernel density
estimator. Therefore the optimal rate does not depend on the dimension. A further
advantage of our estimator is that the methods of bandwidth selection known from
one-dimensional density estimation theory apply (cf. [9,10]).

The paper is organized as follows: The estimator is developed in Section 2. In
Section 3 we provide a theorem about the asymptotic normality of the density
estimator. Moreover, we give the rate of uniform strong convergence. The proofs are
deferred to Section 4.

2. Estimators

Let us consider a random vector X having the density given by (1.1). It is well

known that Z = X~ "/2(X — u) has a spherical distribution. Moreover, ZiRu(")7

d)

where 4@ is uniformly distributed on the unit sphere of R, R is a random variable
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taking values in R, and R, u@ are independent. Y; 4 Y, means that Y; and Y, have

the same distribution. Let ¥ = (X — )" 2~' (X — u). Now Y £ R?, which has the
density
/2

g(») (J’ER+)7 Sdzm (2.1)

fr(y) = sy

(cf. [8, Theorem 2.5.5 and Corollaries 1, 2, p. 65]). To estimate f, we need some
estimator for g. At first glance one could have two ideas:

e Idea I: If fy is an estimator for fy, then ¢(y) = s;'y~¢/>*fy(y) is an estimator for
g. But then g(y) —» o0 as y—0 iffy(y) is bounded away from 0 in a neighbourhood
of 0.

® Idea 2: We consider ¥ = Y%/ instead of Y. Let f;;(y) be an estimator for the
density f3(y) Y. Then

d .-
F50) = Ssag07) and - g3) = §s7'F0)

This estimator ¢ for g behaves well near zero. But the estimator ¢ has the
disadvantage that it becomes wiggly for large values of y since the data points are
stretched by the power with exponent d/2 if d>2.

Now the final idea is to combine the advantages of the two estimators above and
to introduce a rather general type of estimators. For this purpose, let iy : Rt — R be
a function having a derivative ¥ with /() >0 for y>0, and the property y(0) = 0.
Then the density 4 of ¥ = y(Y) is given by

h(r) = ' (Ofy (P (1) = sa®' ()P ()" g(# (1)),
¥ is the inverse function of . Further
g(x) = 53" XY () B (x)). (2.2)

This formula shows how to compute g from 4. We will see that /& can be estimated
nonparametrically. Then we obtain an estimator for g by applying (2.2). The
function y should be chosen such that the disadvantages described above are
avoided. If lim, o1 x~9/>*1y/(x) is a positive constant and ' is bounded, then we
can expect a good behaviour of an estimator for g in a neighbourhood of 0.
lim,_, o, Y¥(x)/x = const ensures good properties of f;, for large values of the
argument. The precise conditions on  are given in the next section.

Now we turn to establish the specific estimator for f. Let X1, ..., X}, be a sample of
R?-valued random vectors having an elliptical distribution according to (1.1).
Suppose that ¢ is bounded. Let /i, and X, be estimators for u and X, respectively.
Then 0, = (A1, .-y fld, 611,612, ...,édd)TeRd(d”)/z is an estimator for 6. Suppose
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that 0, fulfils the following property:

. n A
llirls;jp ) /m [|6, —0]| = Cy a.s. (2.3)

with a finite nonrandom constant Cp>0. For example, 0, arising from sample
mean and sample covariance matrix satisfies this condition in view of Strassen’s
law of the iterated logarithm. Another appropriate choice for f, and X, could
be the robust M-estimators (cf. [11]). The problem of efficient semiparametric
estimation is examined in the monograph by Bickel et al. [2]. This monograph
also provides a comprehensive overview of literature on semiparametric
estimation.

The next step is to establish a nonparametric estimator for the density /2 of Y. Let
Y =vy((Xi— ﬂn)TF:;'(X[ — i), i=1,...,n. Using the transformed sample
Y, ..., Y, we define the kernel estimate for A:

) = s SR = VB0 ™)+ K(0 + VB ™) (reR) (24
i=1

with a random bandwidth B(n) and a kernel function K. The additional term

K((y+ Yi)B(n)™") is inserted in order to avoid boundary effects in the neigh-
bourhood of zero and according to the idea of reflection methods. The reader

interested in reflection methods is referred to [4,18]. Using the estimator I, from
(2.4), we get the estimator for f as follows:

Gn(2) = 53" 27PN (2) Ia((2))  (zeRY),

Su(x) = det(Z,) 2 ga((x — )2, (x = i) (xeRY), (2.5)

The asymptotic properties of f;,(x) are studied in the next sections. An other
transformation-based estimator for a density is considered in El Barmi and Simonoff
(2000).

Figs. 1 and 2 below show an example of estimators for g. The data were taken
from the UCI Machine Learning Repository (Dataset ‘“‘breast cancer’—new
diagnostic database—variables 3,8,16,29). Obviously, there is a significant difference
between the estimated function g and the function g arising from multivariate
normal distribution.

3. Asymptotic properties of the density estimators

Prior to formulating the main results of the paper, we provide the assumptions on

K and  of the estimatorf;(x) defined in Section 2 by (2.4) and (2.5). Here p is some
positive even integer.
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Condition #'(p). The kernel function K:R—R has a Lipschitz continuous
derivative on R and vanishes outside the interval [—1, 1]. Moreover,

/_tK(z)dz:l, /_

1
FK()dt=0 fork=1,..,p—1.
1
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Condition 7 (p). The (p + 1)th order derivative of ¥ exists and is continuous on
(0, 00), ¥ is the inverse function of ¥, Y/ is positive and bounded on (0, + o), and "

is bounded on (0, + 0 ). The function x— x%/2~1y/(x) " has a bounded derivative on
[0, M;] with some M, >0. Moreover,

11?3 TP (x) = € > 0. (3.1)

There are constants o€ (0, 1], Co, M>>0 such that
[P (0)|< Colt|* for €0, M.

Example (For ).
W(x) = —a+ (a¥? + x4 (3.2)

with a constant ¢>0. Then

lim x~ 2y (x) = @'~ lim vl _ 1 and
x|0 X— 0 X

W(1) = ((t+ @) — a9 = a2 (@) o(r) as 110,
Hence Condition 7 (p) is satisfied with o = 2/d.

The random bandwidth B(n) is assumed to fulfil the conditions

C3b(n) < B(n) < Cab(n), (3.3)
lim b(n)Inlnn=0 and b(n)>Csn~ /. (3.4)

where Cs3, C4, Cs>0 are constants and {b(n)},_,, is a sequence of positive real

numbers. Now the theorem about rates of uniform strong convergence of f;, defined
in (2.5) reads as follows:

Theorem 3.1. Suppose that the pth order derivative g») of g exists and is bounded on
R* for some even integer p=2. Let conditions A (p), 7 (p), (2.3), (3.3), (3.4) and
E||Z]|"< + oo be satisfied for some t>4. Then, for any compact set D with u¢ D,

sup | £o(x) — f(x)] = 0(\/111 n(nb(n))~'? + b"(n)) a.s. (3.5)
xeD
For any compact set D with we D, we still have

sup | fo(x) — f(x)] = 0(\/1?2(%(;1))*1/2 + b”*’(n)) as.
xeD
with y = min{a,o + 1 — ad/2}, o from Condition T (p).

This theorem improves the rates given in [5]. For the function  determined
by (3.2), 7 is equal to 2. Putting b(n) = const(n/In(n)) "V we obtain the
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optimized (w.r.t. the bandwidth) convergence rate sup,.p | f;(x) —f(x)] =
O((n/In(n))?/®**V) of (3.5). This rate is the optimal one known from one-

dimensional kernel density estimation. The strong convergence rate of f; for
arguments away from p does not depend on the dimension. The reason for the slow

convergence rate of f; for arguments close to u is the following: In many cases we
have lim, o //'(¢) = + oo or —oo. This holds for example if lim, o x~¥/**1¢/(x) = + o0
or —oo and the derivative of the function ¥'¥%/>~! is bounded in a neighbourhood
of zero.

The following theorem states the asymptotic normality of the estimator f;. Here
V, = op(a,) means that a;l v, ﬂO, {V.} and {a,} are sequences of random

variables and positive real numbers, respectively.

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied and b(n) = Cegn~"/(P+1)
with a constant C¢>0. Moreover, assume that

|B(n)b(n)™" — 1] = op (\/m Inn n_l/z). (3.6)
Then for any xeR?, x# u such that g¥) is continuous at u = (x — u)" =~ (x — p),
~ 9 o
VnBn)(fu(x) = f(x)) =N (7,6%)  as.

where
1
& = det(Z) 57 u Y () g (u) / K2(1) dt
-1

1
f = det(2) sy w2 (w) PV %h([’)(l//(u)) / 1 PK (1) dt.

A similar theorem was proved by Stute and Werner [17] in the case of known u
and (x) = x. From Theorem 3.2 one may construct confidence regions for f, for
example. But when doing so, one needs estimators for g and ¢> which in turn
requires an appropriate estimator for %) (\ (u)). Moreover, fi, and 3, should be used
instead of p and ~. Bandwidth selection methods satisfying (3.6) can be found in [9].

4. Proofs

Assume that (2.3), (3.3) and (3.4) are satisfied, and ¢’ exists and is bounded on
finite subintervals of R*. Thus there is some ny such that 3Csb(n)<1 for n=n.
Further on let n>ny. First we provide two lemmas which are used at several places
below.
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Lemma 4.1. Under Condition 7 (2), the functions t— ¥ (0)¥())"*™" and h are
bounded on bounded subsets of R .

Proof. Condition (3.1) implies that

lim ()P ()P = ¢t
t

Since /(1) >0 for >0, the function ¢+ ¥'(z) ¥(1)">~" and hence h are bounded on
any interval [my,my], m; =0. O

Lemma 4.2. Under Condition 7 (2),

sup |A(t) —h(v)| |t —v| "< + o
t,e[0,M]

for any M >0, where y = min{o, o+ 1 — ad/2}.
Proof. Observe that by the Lipschitz continuity of g,
[h(2) = h(v)| < G ¥(1) — ¥ (v)]
uniformly for ¢, ve [0, M]. By Condition 7 (2),
#(1) = P (v)| < Gyl —of

uniformly for z,ve[0, M]. C7, C3>0 are constants. This completes the proof. [J

Let us introduce some notations
Ky(y, 1) =K((y — 1)/b) + K((y + 1)/b) for y,1>0,
Vi = (X; = )" £, (X = fin),
V=X -2 (Xi—p), Yi=y(¥;) fori=1,..n,

and

- 1 n N 1 n
hn(yab):EZKb(ya Yl)a Vs :_bz y, m yER+)

i=1

Note that Y;, = y(¥,;) fori = 1, ..., n. Obviously, each ¥; has the density / such that
h,(.,b) is the usual density estimator for / with some boundary adjustment. In the
first part of this section we prove strong convergence rates for h, and later for f;,
Let b, = C3b(n), b, = C4b(n). The compact set [m, M] x [b,,b,] with arbitrary m
and M, 0<m<M can be covered with closed rectangles Uy, ..., U, having sides
of length (M —m)n~', (b, —b,)n~" and centres (uy,by), ..., (u,,b,2) such that
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UL, Ui = [m, M] x [b,,b,]. m and M will be determined later. Observe that

~

sup |hn(y) — h(y)|
ye[m,M)]

< sup  sup  |hu(p,b) = h(y)]
yE[va] be[’_)n‘b”]

< max 2 ( sup |1';n(ya b) - /’;n(uka bk)' + V;"(uk’ bk) B };n(uk’ bk)l
k=1,...n* \ (y,b)e Uy

+ Ve, bic) = h(ue)| +  sup Ih(uk)—h(y)l)- (4.1)

¥ (vbi)e Uy

Lemma 4.3. Assume that Condition 7 (2) is satisfied. Then

O(n=") if m#0,

. y as above.
on7) if m=0,

max sup () — h(y)| = {

k=1,....n% y: (nbi)eUx

Proof. By construction of the sets Uy, the assertion follows from Lemma 4.2. [

Lemma 4.4. Assume that the pth order derivative %) of h exists for some even integer
p=2 and is bounded on every interval [my,my] with my>0. Moreover, let the
Conditions K (p) and T (p) be fulfilled. Then

max [ (e, bi) — hu)| = O(W(nb(n))_m n Bn) as.

where f, = b (n) if m>0 and p, = b’ (n) if m =0, y as above.
Proof. By standard arguments, one can show that

max (e, bi) — By (i, by)| = O(Jm_n(nb(n))””) a.s. (4.2)

(cf. [16, Theorem 1.2]). In the case m >0, we obtain

max |, (ug, bi) — h(uy)|

= max
k=1,...n?

b [ K= 00000 dr )| = 08 1) (43)
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by Taylor expansion for n large enough. Eqs. (4.2) and (4.3) imply Lemma 4.4 in the
case m>0. By Lemma 4.2,

sup  sup |Ehu(y,b) — h(y)|
bE[b n] }E[OM]

= sup  sup .b'/w(K(( —1)/b) + K((y + 1) /b)) (h(1) — h(y)) dt

belb,,b) yel0.M]

(“F’MV K th) — h(y)) di
e / (=1+2y/b))(h(y —zb)_h(y))dt>
y€[0,2b)
— O(b(n)).

Eq. (4.2) completes the proof of Lemma 4.4 in the case m =0. [

Lemma 4.5. Assume that Conditions # (1) and 7 (2) are satisfied and E||Z||" < + o0
for some t>4. Then

max (i (g, ) — (e, )| = o(nb(n)”?) - as.

For the proof of this lemma, a series of further lemmas is needed. Using the
Lipschitz continuity of K’, we obtain

max | (e, br) = ha(ug, bi)| < Bin + O(n™'b(n) ) (Ba + Bsy) (4.4)

where Gy(y, 1) = K'((y — 1)/b) = K'((v + 1)/b),

By = max n b (Vi — Y9) G, (e, YW/ (7)),

By= max 3 (V= ¥ + Vi = Tl (Y(Tin) = Vil > 1),

X (I (Jux — Vi <2bx) + I (lug + Yi[ <201) W' (T7).
Let Z; = 3~ V2(X; — p) such that ¥; = Z7Z; and

)7”1 _ }71 = ZI.TA,,Zi +2ﬁnTZl + B
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where A, = X'2E 52— 1 B= (= i) 2 (0 — i), AT = (n— ) 2120
By virtue of (2.3), we obtain that

An:0<n_l/2vlnlnn), ﬁ,,zO(n_‘/z\/lnlnn), B,=O(n'Inlnn) as.

and
| Vi — Vil <n(|1Zi])F + 1), K0 = O(n_l/zvln In n) a.s. (4.5)
(i=1,...,n). {Kk,} is a sequence of positive real numbers not depending on i.
Moreover,
Vinlnn d s N _
Bln< 0(W2(}1) k:nl'l?.?inz Z . ZijZﬂGb" (uk7 }Il)‘// ()]l)
oI 520,11 i=1
Inlnn d | . _
O —— ¢ Gy, (u, YU (T3], 4.6
<n2b2(n)) max HZZI > b (e, Yo' (T) (4.6)
where Z; = (Z;, ...7Z,-d)T . In the sequel we derive the convergence rates of By, to

Bs,. For this purpose, we next need the following auxiliary statement.

Lemma 4.6. Assume that Condition 7 (2) is satisfied. Let K:R—R be a bounded
Sfunction with K(t) =0 for t: |t|>1. Then, for j,I =1, ...,d and 6,k =0, 1,

n

> (Ui — EUniic)
i=1

max
k=1,...,n%

:0< nb(n)ln(n)) a.s.

with Uy = Zl‘.;Z;jK((uk - Y) /bW (Y7), and

n

1> (O — ETr)
i

:O( nb(n)ln(n)) a.s.

with Uy = Z3ZSK (u + ¥) /o)W (7).

Proof. We only prove the first assertion since the proof of the second assertion
proceeds similarly. Choose M such that [0, M]> ¥([0, M + 1]). Hence Uy = 0 for
w: Yi(w)> M since then Y;>M + 1 and uy <M. By Lemma 4.1,

| Uil < M9 sup /(1) sup K (1)]
te[0,M] re[-1,1]
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and

TN, DU max, EZGZLRY (e F/b) /(T
lgk\gn\z 5 =1,....n
<M sup W(1)* max  EK((ur — Y1)/by)
1[0, k=1,...n?

ug+by
< const- max / h(t) dt
"2 max{u,—by,0}

= 0(b(n))

forj,l =1, ...,d. D? is the symbol for the variance. Let a, = /nb(n)In(n). Applying
the Bernstein inequality (cf. [13, p. 112]), we get
> (Uniie = EUpiic)

P< max >eay
k=1,...,n% P

< Z [P’{ >8a,,}
k=1

< Con? exp{—Cyoe’a>(nb(n) + ea,) '}

<Cpexp{2In(n) — Ce® In(n)(1 +¢)~'}

n

n

Z( Unijic — EULijikc)

i=1

for e>1. Cy to Cy, are positive constants not depending on n, j, [ or ¢&. Hence

o0
Z [P’{knlqax

2
pa s st?

n

Z( Unijic — EUnijik)
i1

>san}< + o

and the lemma follows by virtue of the Borel-Cantelli lemma. [

Throughout the remainder of this section, we suppose that Conditions (1) and
7 (2) are satisfied.

Lemma 4.7. We have

(a)

EZ;Gy(y, VW' (Y1) =0 forj=1,...,d,b>0,
(b)

ys[légﬂ b:[zlnl?};”] [EZ;ZuGy(y, YW/ (T1)| = O(b*(n))  for j,I=1,....d
and (¢)

sup  sup |EGy(y, Y)Y/ (¥1)| = O(b(n)).
yel0,M] belb, b,
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Proof. Obviously, Z; has a spherical distribution. Let R; = ||Z;]|. Now R; and
R;'Z, are independent random variables (cf. [8, p. 57]) and R? has the density given
by (2.1). Moreover, ER;'Z; = 0.

(a) Hence

EZ1,Gy(y, YO (Y1) = ER[' Z;ER, Gy(p, y(R}))W' (RT) = 0

for j=1,...,n, ye[0, M] which is the first assertion of the lemma.

(b) Let §(¢) = sqt??g(r). Since |R{'Zy;|<1 for j=1,...,d and ¥, = R3, we
obtain the following inequalities and identities by partial integration and by
Lemma 4.1:

sup  sup |EZyZyGy(y, Y)Y (1))
ye[O,M] be[l_)n,b,,]
< sup  sup |ERTGy (v, W/ (RD) )W/ (RY)|
yel0,M] beb, b

= sup  sup /OC(K'((y—lﬂ(t))/b) =K' ((y+ (1) /D) (1)g(2) dt

vel0.M] belb,b]

0
1
~ sup  sup 5/ (K'(=v) — K'(0+ 29b~" ) (¥ (y + vb)) do
yelo.M] belp,b)| J-r/b

1

- swp sup |¥ / (K(=0) + K(v -+ 296™1) (P(y + b))
yel0,M] belb,,b] —y/b

x V' (y + vb) dv

1
<O(bZ<n)) sup sup / (‘K(—U)| +|K(U+2)/b_1)|)
velo.M] bel,.b] /-y/b

X | (y + vb) ¥ (y + vb)* | dv
= 0(b*(n)).

Hence the proof of part (b) is complete.
(c) Analogously to part (b),

sup  sup |EGy(y, Y)Y/ (1))
yelo,M] belb,.by)

<O(b(n))
1
sup  sup / (K'(—0) = K'(0+ 20b™ 1)) (y + 0b) 2" g (W (y + vb)) do
velo,M] belb,b,]|/ —r/b
— 0(b(n))

which is assertion (¢). [
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Lemma 4.8.

By, = o(nfl/zb(n)fl/z) a.s.

Proof. An application of Lemmas 4.6 and 4.7 leads to

max ZZUZ,ZGbA(uk, W (Y;) :0( nb(n)ln(n)+nb2(n)) a.s.,
_max Z G, (ug, Y)W (T7) _0( nb(n)ln(n)+nb(n)> as.
I P

for0 =0,1,j,/=1,...,d. Hence, by (4.6), we obtain the lemma. [

Lemma 4.9. Suppose that E||Z||" < + oo for some ©>4. Then
Boy = o(v/nb(n)*?)  as.

Proof. By the law of large numbers and (4.5), we obtain

n

Z (¥; — ¥)*<O(nlnn) ( IZ 1Zi||* —|—1> O(Inlnn) as.

i=1

and by the Lipschitz continuity of y,
Jhax Z | Y = Yiul L[ (Yin) — Y (¥3)| > bi)
) Z|Y Vil W(Tir) = w ()
—1/2+1 7, o 17/2
) )Z | — Tl
i1
o \/—b( )3/20( ( ) 7/271/2(1111nn)‘£/4n77:/4+1/2) (l’ll Z ||ZZH‘E+ 1)
i=1

= Vab(n)**O((In In n) /434720y = 0(ﬁb(n)3/2> as.

which implies the lemma. [
Lemma 4.10.

By, = o(v/nb(n)*?) as.
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Proof. By (4.5), we deduce
B3, < O(n’llnlnn)kmax b Y (V7 + DI(Yie[o, M)y (T7)
=l Py
X (I(Jux — Yil <2bx) + I (Jug + Yi| <2bz))
< O(n 'Inlnn)

x max b0 ST (I — Vil <2bi) + I(ug + Vi <2b) W' ()

i=1

(M as in Lemma 4.6). Observe that by Lemma 4.1,
N u+2by
max b 'EI(juy — Y;|<2bi) < max b;l/ h(v) dv<const
k=1,...n? k=1,...n2 max{u,—2b;,0}

and

.....

Applying Lemma 4.6, we obtain
By, = O(n"'Inlnn) (n + \/nln(n)b(n)fl/z) =O(Inlnn) as.
which is Lemma 4.10. O

Proof of Lemma 4.5. Combine Lemmas 4.8-4.10 and (4.4) to get Lemma 4.5.

Lemma 4.11.
max  sup  |hy(y,b) — hu(u, bi)| = O(n~'b(n) %) as.

and

max sup 7|i;,,(y7b) — /;n(uk,bk)| = O(n_]b(n)fz) a.s.
k=1,...n* (yb)e U

Proof. Observe that the Lipschitz continuity of K implies
|Kb(y7 t) - Kb(W7 t)|

219

O

SIK(( =¥ (0))/b) = K((w = () /b)| + [K((y + ¥(1)) /) = K((w + (1)) /b))

<Cply—wlb™' for y,weR", belb,,b,]
and
[Ks(y, 1) — Kp(y, 1)

<IK((b = y(0))/b) = K((y =¥ (0)/B)| + [K((y + (1)) /b) — K((w+¥(1))/B)|

<Cpislb — Blmax{h~', B!} for yeR",b,B>0
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with a constant Cj3>0. Hence, by construction of the sets Uk,

n

1 B »
max sup o b Kb Vs Yin — b, I</7c U, Yi
k=l (ybyet; |1 ; ( ( ) = b Ky, ( )

<Cish(n) > max Sup (ly — k] + b= brl)
=l,...n* (3 h)eU;

1
+ max  sup - |b~" — b | K, (ug, Yin)|
k=l,...n* (ybyev, I ; k ¢

= 0(n'b(n)?).
This also holds true if Y;, is replaced by Y;. Therefore the proof is complete. [
Proof of Theorem 3.1. (i) Case u¢ D: Obviously,
| /() = £ ()| < det(Z0) 2 (1Gu(Un(x)) = g(Un ()| + 9(Un(x) = g(u(x))])
+ |g(u(x))| |det(Z,)""/* — det(2)""?| for xeD,

where U, (x) = (x — fi,) " (x — i), u(x)=(x—u)" 27" (x —u). Choose 1>0
such that there are Mz, My>0 with [Ms, My]o{(x— ) 2 "(x — p): xeD,
l|a—p||<n, ||2 = 2||<n}. Now choose m, M >0 such that y([M3, M4))<[m, M].
By (2.3), ||fin — u]| <1, ||Z, — Z||<n for n=n;(w). Then we obtain

sup | fu(x) —f(x)[< det(Z,)""* sup  |gu(y) — g(v)]

xeD ye[M3,M4]
+ det(f,n)_l/2 sup g’ ()| sup |Un(x) — u(x)|
ye[M3,My) xeD
o\ —1/2 ~1)2
+ sup  [g(y)|[det(2,) /T —det(X) /7| (4.7)
Ve ([M3,My)

for n=n;(w). An application of Lemmas 4.3-4.5, 4.11 and (4.1) leads to

A

sup [ga(y) —g(v)| < const- sup — sup |/, (x) = h(x)]

ye[Ms,My] xelmM] beb,b)
- o(\/m n(nb(n)) "> + b"(n)) as. (4.8)
Using (2.3) we obtain
sup |U,(x) —u(x)| = O(n*m\/ln ln(n)) a.s., (4.9)
xeD
det(£,)7* = det(2)""?] = 0(11_1/2 In 1n(n)> a.s. (4.10)

In case (i) Theorem 3.1 follows now from (4.7) to (4.10).
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(i1) Case pe D: Here the proof is similar to that of case (i). The main differences are
that here M3 = 0 and

sup [g,(y) 90| = O(Vinn(nb(m) "+ ' () as. O

ye(0,My]

Now we proceed with proving asymptotic normality. Suppose that Conditions
A’ (1) and 7 (2) are satisfied. By (4.10),

VB0 (fu(x) 1 ()
= nB(n)(det( 50" 2 (Ga(Un(x)) — g(w) + (det(2,) 7% = det(2)~")g(u)
= /nB(n)det(£,) (G, (Un(x)) — g()) + o(1)  as. (4.11)

(U, = U,(x) and u = u(x) as in the previous proof). Now we have to consider the
convergence of g,(U,(x)) — g(u) and get

nb(n)(gn(Un) — g(u))
= \/nb(n)s; U, P (U) (e (W(Us), B(m)) = h((w)) + Ay,
where
An = /nb(n)sy (U P2 (Uy) — a0 () h(9 ().

Since the derivative of the function ¢+ ¢~4/**1y/(¢) is bounded on finite intervals
[t1, %], 11 >0, Eq. (4.9) implies

(4 <O(V/nb())|Uy — ul = o(1) as.
Hence
nb()(Ga(Un) — 9()
= (Vrbln)s a1 () + 0p(1) ) U (Y (Uy), B()) — h( ()
+ op(1). (4.12)

We have U, (x) € [u/2,2u] for n=n;(w). Let m, M >0 such that y([u/2, 2u]) = [m, M].
By Lemmas 4.5 and 4.11,

sup  sup |l (y,b) — hu(y,b)] = o((nb(m))"?) as.
yelmM] belb,,b)

and
Il (Uy), B(n)) = hu(W(Uy), B(n)) + op((nb(n))~'"?). (4.13)

(n=ny(w)). The next step is to prove asymptotic normality of (h,(y(U,),
B(n)) — h(y(u))). The following lemma is a classical result by Parzen [12] since
hu(.,b(n)) is a kernel estimator for the density 4 of Y;.



222 E. Liebscher | Journal of Multivariate Analysis 92 (2005) 205-225

Lemma 4.12. Suppose that for some integer p=2, h?) exists on (0,+c0) and is

continuous at y>0. Assume that Condition A (p) is fulfilled and b(n) = Cy4n'/r+1)
with a constant C14>0. Then

(1) (v, (1)) = h(¥)) 2 N (11, 0%),

1
= CEPE ) / PR, / K2(1)

Lemma 4.13. Assume that h is Lipschitz continuous in some neighbourhood of (u).
Then

i W(Uy). () — o () b)) = 05 ((nb(m))~"7).

Proof. Let n; be such that 2b(n) <y/(u) for n>=n;. Using the Lipschitz continuity
of K’,

<nb(n ZK’ — Fb(n) ™) |l9(U) — blw)]

n

+ O b(m) ) Y (W () — Vil <2b(n) (W (Uy) — v (w))*

i=1
+ Ob(n) VI(W(U) = (u)|>b(n))
=An+Ap+An, say (4.14)

(n=n3). By (4.9),
W (U,) —y(u)| = O((Inlnn/n)'/?)  as. (4.15)

Analogously to Lemma 4.6, one proves

n

Y (K'((b(w) = Y)b(n)™") — EK'((W(u) — Yi)b(n) ™))

i=1
:0( nb(n)ln(n)) a.s.
Moreover,

EK' (4 () — Yi)b(n) ")
/ Kt — th(n) — h(Y(w))) di = OB (n)).
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Hence

An = O(n*3/2b(n)_2\/ln In n) (nb2 (n) + nb(n)ln(n))
=o(n?b(n)™V?) as. (4.16)

The consistency of density estimators (cf. [12]) and (4.15) lead to

Ay =O0(n~2b(n) " Inlnn) Z I([y(u) — Yi|<2b(n)) as.

i1
=op(n2b(n)~1?). (4.17)

Further by (4.15), we obtain

A <Ob() )W (Un) =) =o(n”'?) as. (4.18)
Therefore, the assertion of Lemma 4.13 follows from (4.14) and (4.16) to (4.18). [
Lemma 4.14. Assume that for some integer p=2, h") exists on (0,4+0) and is

continuous at Y(u). Let Condition A (p) and (3.6) be fulfilled and b(n) = Cy4n'/r+1)
with a constant Ci4>0. Then

N/nb() (0 (U, B(n)) — h( (1)) = A (112, 53),
o= P ) | PR d, 0 = hy() / K2(1) di.

1

Proof. Observe that

Further

|K(v/b1) — K(v/b2)| < Cis

by
1 _E}l[blabl](v) for veR
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with a constant Cjs>0 provided that b; > b, >0. Let n4(w) such that B(n) <2b(n) for
n>=n4(w). Hence, by consistency of density estimators,

)i (Uy), B(n)) = s ((Uy), b))
<2/l B(n)b(n) " — 1| max{1,b(n)B(n) "'}

x o 'b(n) V2 2”: (1Y; = b (Un)| <2b(m)) + (| ¥ + 1 (Uy) | < 2b(m)))

k=1

<op (\/W b(n)fl/z)

<lz (17: = ()| <3b(m)) + (| Vi + ¢ ()| < 3b(m)))

(Y () - l//(Un)|>b(n))>

- OP( In lnnb(n)) = op(1) (4.20)
for n=ny4(w) in view of (4.18). Combining Lemma 4.13, (4.19) and (4.20),

RB) ra(W(Uy), B(n)) — (b () = % (o (), b)) — b)) + 05 (1),

Now apply Lemma 4.12 to get Lemma 4.14. [
Proof of Theorem 3.2. In view of (4.12), (4.13) and Lemma 4.14, we have
. 9
nb(n)(g(Un(x)) = g(u)) = N (u3,0%),
where

= S;]ufd/2+]l///(u)’u2’ O'% — S;Z(ufd/2+]lpl(u))20_%.

By virtue of (4.11), the proof of Theorem 3.2 is complete. [
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