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Abstract

Deheuvels proposed a rank test of independence based on a Cramér–von Mises functional of the
empirical copula process. Using a general result on the asymptotic distribution of this process under
sequences of contiguous alternatives, the local power curve of Deheuvels’ test is computed in the
bivariate case and compared to that of competing procedures based on linear rank statistics. The
Gil-Pelaez inversion formula is used to make additional comparisons in terms of a natural extension
of Pitman’s measure of asymptotic relative efficiency.
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1. Introduction

Many procedures have been proposed to test whether two random characters X and Y

are independent. The classical approach is based on Pearson’s correlation coefficient, but
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its lack of robustness to outliers and departures from normality eventually led researchers
to consider alternative nonparametric procedures.

The most commonly used rank tests of independence—those of Savage, Spearman and
van der Waerden in particular—rely on linear rank statistics, which may be conveniently
written in the form

SJ
n = 1

n

n∑
i=1

J

(
Ri

n + 1
,

Si

n + 1

)
− J̄n, (1)

where J : (0, 1)2 → R is a score function,

J̄n = 1

n2

n∑
i=1

n∑
j=1

J

(
i

n + 1
,

j

n + 1

)

is a centering factor, and (R1, S1), . . . , (Rn, Sn) are the pairs of ranks associated with a
random sample (X1, Y1), . . . , (Xn, Yn) from some population with bivariate cumulative
distribution function H(x, y) and continuous margins F(x) and G(y).

In fact, as shown by Behnen [2,3], essentially all statistics of the form (1) yield asymptot-
ically optimal rank tests of independence for suitably selected local alternatives. See Genest
and Verret [17] for a recent account of this literature, which includes major contributions
by Bhuchongkul [4], Shirahata [25,26], and Ciesielska and Ledwina [7], among others.

In practice, however, it is rarely possible to identify with any precision the form of
dependence characterized by a family of alternatives. For this reason, omnibus rank tests
seem desirable. Because Sklar [28] showed that H admits a unique representation

H(x, y) = C {F(x), G(y)} , x, y ∈ R

in terms of a copula C : [0, 1]2 → [0, 1], and given that independence between the
continuous random variables X and Y occurs if and only if C(u, v) = C0(u, v) ≡ uv

everywhere on its domain, a potentially fruitful rank-based approach to testing independence
is rooted in the empirical copula

Cn(u, v) = 1

n

n∑
i=1

1 {Fn(Xi)�u, Gn(Yi)�v} ,

where

Fn(x) = 1

n + 1

n∑
i=1

1(Xi�x) and Gn(y) = 1

n + 1

n∑
i=1

1(Yi�y)

are the re-scaled empirical versions of F and G, respectively. Observe that procedures based
on Cn are rank-based, as Fn(Xi) = Ri/(n+1) and Gn(Yi) = Si/(n+1) for i ∈ {1, . . . , n}.

Deheuvels [8–12] was the first to suggest tests of independence based on a continuous
functional measuring the distance between Cn and C0. This led him to study the weak
convergence of the empirical copula process

Cn(u, v) = n1/2 {Cn(u, v) − uv}
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and its multivariate extension under the null hypothesis of independence. In particular, this
made it possible for him to identify the limiting null distribution of the Cramér–von Mises
test statistic based on Cn, although he did not actually compare the performance of tests
based on this statistic to any competitor.

In a recent extension of Deheuvels’ work, Genest and Rémillard [16] report simulations
which suggest that Cramér–von Mises statistics are generally more powerful than those
based on the classical likelihood ratio statistic assuming normality; see Figs. 3–5 in their
paper. Because it improves convergence and leads to a simpler formula for the test statistic,
the version of the Cramér–von Mises functional they consider is actually based on the
centered empirical copula process

C̃n(u, v) = n1/2 {Cn(u, v) − Cn(u, 1)Cn(1, v)} ,

where Cn(u, 1) = Cn(1, u) is nothing but the distribution function of a uniform random
variable on {1/(n + 1), . . . , n/(n + 1)}. The latter may be defined explicitly by

Cn(u, 1) = Cn(1, u) = 1

n
min (n, �(n + 1)u�) , 0�u�1,

where �x� stands for the integer part of x.
Following Genest and Rémillard [16], therefore, a powerful nonparametric test of inde-

pendence à la Deheuvels may thus be based on the Cramér–von Mises statistic

Bn =
∫
(0,1)2

{
C̃n(u, v)

}2
dv du = 1

n

n∑
i=1

n∑
j=1

Dn(Ri, Rj )Dn(Si, Sj ),

where

Dn(s, t) = 2n + 1

6n
+ s(s − 1)

2n(n + 1)
+ t (t − 1)

2n(n + 1)
− max(s, t)

n + 1
.

In addition to being simple to compute, this statistic can be simulated easily in order to
construct tables of critical values for any fixed sample size n through Monte Carlo methods.
Asymptotic critical values for the standard levels may also be found in Table 1 of Genest
and Rémillard [16].

The purpose of this paper is to compare the large-sample performance of standard rank
tests of independence to the procedure based on Bn. To this end, the common asymptotic
behavior of Cn and C̃n under contiguous sequences (C�n

) of parametric alternatives is
considered in Section 2. The result is then used in Sections 3 and 4 to derive the asymptotic
distribution of SJ

n and Bn under such sequences of alternatives. Examples of calculations
are given in Section 5.

In Section 6, the local asymptotic power curve of the test based on Bn is computed and
compared to that of the locally most powerful linear rank statistic, identified by Shira-
hata [25,26]; see also Genest and Verret [17]. A natural extension of Pitman’s measure of
asymptotic relative efficiency is then used in Section 7 to make numerical power compar-
isons under various families of copula models. Finally, some concluding remarks are made
in Section 8.
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2. Asymptotic behavior of Cn

Consider a family (C�) of absolutely continuous bivariate copulas indexed by a real
parameter � ∈ � in such a way that C�(u, v) is monotone in � and C�0(u, v) = uv for all
u, v ∈ (0, 1). Let � ∈ R be such that �n = �0 + �n−1/2 ∈ � for n sufficiently large, and
suppose that

(i) the density �2
C�(u, v)/�u�v = c�(u, v) admits a square-integrable, right derivative ċ�

at � = �0 for every fixed u, v ∈ (0, 1), and

lim
n→∞

∫
(0,1)2

[
n1/2

{
c

1/2
�n

(u, v) − 1
}

− �

2
ċ�0(u, v)

]2

dv du = 0;

(ii) for every u, v ∈ (0, 1), the following identity holds:

Ċ�0(u, v) = lim
�→�0

�
��

C�(u, v) =
∫ u

0

∫ v

0
ċ�0(s, t)dt ds.

Let also Qn denote the joint distribution of a random sample (Xn1, Yn1), . . ., (Xnn, Ynn)

from distribution C�n
{F(x), G(y)}, and denote by Pn the joint distribution of the same

sample under independence. As can be deduced from Lemma 3.10.11 of van der Vaart and
Wellner [29], Condition (i) is sufficient to ensure the contiguity of Qn with respect to Pn.
More precisely, if (An) is any sequence of sample-based events such that Pn(An) → 0 as
n → ∞, then Qn(An) → 0, as n → ∞.

Under these assumptions, the asymptotic behavior of the process Cn may be characterized
as follows.

Proposition 1. Under Conditions (i)–(ii), the sequence of empirical rank processes Cn =
n1/2

(
Cn − C�0

)
converges weakly in D([0, 1]2), under Qn, to a continuous Gaussian limit

C+�Ċ�0 , where C is a continuous centered normal process such that cov{C(u, v), C(u′, v′)}
= �(u, u′)�(v, v′), with �(s, t) = min(s, t) − st .

Proof. Write Uni = F(Xni), Vni = G(Yni), and introduce

�n(u) = 1

n + 1

n∑
i=1

1 (Uni�u) and �n(v) = 1

n + 1

n∑
i=1

1 (Vni�v) .

Let also

An(u, v) = n−1/2
n∑

i=1

{1 (Uni�u, Vni�v) − uv} .

Then

Cn(u, v) = An

{
�−1

n (u), �−1
n (v)

}
+ n1/2

{
�−1

n (u)�−1
n (v) − uv

}
. (2)
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Under Condition (i), it follows from Theorem 3.10.12 of van der Vaart and Wellner [29]
that, under Qn, the sequence (An) of processes converges in D

([0, 1]2
)

to a continuous
Gaussian limit of the form A + �Ċ�0 , where Ċ�0 is defined as in Condition (ii).

In particular, underQn, An(u, 1) = n1/2 {�n(u) − u} converges in D ([0, 1]) to A(u, 1)+
�Ċ�0(u, 1), and the latter reduces to A(u, 1), since

Ċ�0(u, 1) = lim
�→�0

C�(u, 1) − C�0(u, 1)

� − �0
= lim

�→�0

u − u

� − �0
= 0.

Thus, using identities (11) and (12) in Chapter 3 of Shorack and Wellner [27], one may
deduce that

sup
u∈[0,1]

|�n(u) − u| = sup
u∈[0,1]

∣∣∣�−1
n (u) − u

∣∣∣
tends to zero in probability, whence it follows thatn1/2

{
�−1

n (u) − u
}

converges in D ([0, 1])
to −A(u, 1).

Likewise, supv∈[0,1]
∣∣�−1

n (v) − v
∣∣ tends to zero in probability, and n1/2

{
�−1

n (v) − v
}

converges in D ([0, 1]) to −A(1, v). Writing the second summand in (2) in the alternative
form

n1/2
{
�−1

n (u) − u
}

�−1
n (v) + un1/2

{
�−1

n (v) − v
}

,

one may thus conclude that under Qn, Cn converges in D
([0, 1]2

)
to C + �Ċ�0 , where

C(u, v) = A(u, v) − vA(u, 1) − uA(1, v),

whose covariance structure is as given in the statement of the proposition. �

3. Asymptotic behavior of SJ
n

Henceforth, J : (0, 1)2 → R is called a score function if it is right-continuous, square-
integrable and quasi-monotone, i.e., J (u′, v′) − J (u′, v) − J (u, v′) + J (u, v)�0 for all
u�u′ and v�v′. Under these standard conditions, which are met in all classical cases,
Quesada-Molina [24] showed that if (Ui, Vi) is distributed as copula Ci , then

E {J (U1, V1) − J (U2, V2)} =
∫
(0,1)2

{C1(s, t) − C2(s, t)} dJ (s, t),

provided E {|J (Ui, Vi)|} < ∞ for i = 1, 2. Using this result, one may then reexpress the
linear rank statistic SJ

n , defined by (1), as

n1/2SJ
n =

∫
(0,1)2

C̃n(u, v)dJ (u, v).

Since

sup
u∈[0,1]

|Cn(u, 1) − u| � 1

n
,
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Cn and C̃n obviously have the same limiting behavior under the conditions of Proposition 1.
Thus for any closed interval K ⊂ (0, 1)2, one has∫

K

C̃n(u, v)dJ (u, v)�
∫
K

C(u, v)dJ (u, v) + �
∫
K

Ċ�0(u, v)dJ (u, v),

where� denotes convergence in law. A technical argument described in the Appendix then
implies that n1/2SJ

n converges in law to

SJ =
∫
(0,1)2

C(u, v)dJ (u, v) + �
∫
(0,1)2

Ċ�0(u, v)dJ (u, v),

under the additional condition

(iii)
∫
(0,1)2

∣∣Ċ�0(u, v)
∣∣ dJ (u, v) < ∞.

This finding may be summarized as follows:

Proposition 2. Under Conditions (i)–(iii), n1/2SJ
n is asymptotically normal, under Qn. Its

mean and variance are, respectively, given by E(SJ ) = ��J and var(SJ ) = �2
J , where

�J =
∫
(0,1)2

Ċ�0(u, v)dJ (u, v)

and

�2
J =

∫
(0,1)4

�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′) =
∫
(0,1)2

{
J̃ (u, v)

}2
dv du,

with

J̃ (u, v) = J (u, v) −
∫
(0,1)

J (u, t) dt −
∫
(0,1)

J (s, v) ds +
∫
(0,1)2

J (s, t) ds dt.

This is consistent with the results already reported by Genest and Verret [17] under a
different set of conditions.

Remark. As can be seen from Table 1 below, many classical linear rank statistics have score
functions of the form J (u, v) = K−1

1 (u)K−1
2 (v), where, for i = 1, 2, Ki is a cumulative

distribution function with zero mean and finite variance �2
i . In that case, it follows from

Proposition 2 that

n1/2SJ
n =

∫
R2

C̃n {K1(x), K2(y)} dy dx,

whence J = J̃ and �2
J = �2

1�
2
2, as already reported in Proposition 3.1 of Genest and

Rémillard [16].
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4. Asymptotic behavior of Bn

Under the conditions of Proposition 1, Ċ�0 is continuous and bounded on [0, 1]2, so that
the limiting distribution of Bn under the contiguous sequence (Qn) is given by

B =
∫
(0,1)2

{
C(u, v) + �Ċ�0(u, v)

}2
dv du.

Now it is well known (see, e.g., Shorack and Wellner [27], p. 213) that C admits a
Karhunen–Loève expansion

C(u, v) =
∑

k,�∈N

�1/2
k� fk�(u, v)Zk�,

where the Zk� are mutually independent N (0, 1) random variables, and for all integers
k, � ∈ N = {1, 2, . . .},

�k� = 1

k2�2�4
and fk�(u, v) = 2 sin(k�u) sin(��v), u, v ∈ (0, 1).

Accordingly, one has

B0 =
∫
(0,1)2

{C(u, v)}2 dv du =
∑

k,�∈N

�k�Z
2
k�

and hence

B =
∑

k,�∈N

�k�Z
2
k� + 2�

∑
k,�∈N

�k�Ik�Zk� + �2I,

where

I =
∫
(0,1)2

{
Ċ�0(u, v)

}2
dv du and Ik� = �−1/2

k�

∫
(0,1)2

fk�(u, v)Ċ�0(u, v)dv du.

Letting �2
1(	) denote a chi-square random variable with one degree of freedom and non-

centrality parameter 	, one may then state the following result:

Proposition 3. Under Conditions (i)–(ii), the limiting distribution of Bn, under Qn, is given
by the weighted sum

B =
∑

k,�∈N

�k� (Zk� + �Ik�)
2 =

∑
k,�∈N

�k��
2
1

(
�2I 2

k�

)

of noncentral �2
1 random variables which depends on the underlying contiguous family

(C�n
) of copula alternatives only through Ċ�0 via the formula

Ik� = 2k��2
∫
(0,1)2

sin(k�u) sin(��v)Ċ�0(u, v)dv du.
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Proof. From direct substitution into the integral representation of B of Parseval’s identity,
I = ∑

k,�∈N �k�I
2
k�. �

5. Examples

Several commonly used families of bivariate copulas satisfy Conditions (i)–(ii). Interest-
ingly, many of them yield the same value for Ċ�0 , up to a constant. The copula models listed,
e.g., in the books of Joe [20], Nelsen [21] or Drouet-Mari and Kotz [13] may thus be clus-
tered into classes whose members all lead to essentially the same asymptotic distribution
for Bn. Here are three examples.

Class 1: A simple calculation shows that Ċ�0(u, v) ∝ uv(1 − u)(1 − v) for the Ali-
Mikhail-Haq, Dabrowska [23], Farlie-Gumbel-Morgenstern, Frank, and Plackett families
of copulas. Note that Condition (iii) holds for any score function J, and that

�J ∝
∫
(0,1)2

(1 − 2u)(1 − 2v)J̃ (u, v)dv du

=
∫
(0,1)2

(1 − 2u)(1 − 2v)J (u, v)dv du,

while

Ik� ∝

⎧⎪⎨
⎪⎩

32

k2�2�4
if k and � are odd,

0 otherwise.

Class 2: For the Clayton and Gumbel-Barnett families, as well as for Model 4.2.10 of
Nelsen [21], one has Ċ�0(u, v) ∝ ±uv log(u) log(v), and hence

Ik� ∝ ± 2

k��2
SI (k�)SI (��), where SI (x) =

∫ x

0
t−1 sin(t)dt.

Class 3: If C� is the Gaussian copula and N denotes the cumulative distribution function
of a N (0, 1) random variable, then

Ċ�0(u, v) = N ′ {N−1(u)
}

N ′ {N−1(v)
}

with N ′ = dN(t)/dt , so that Ik� = 2k��2 g(k)g(�), where

g(m) =
∫

R
{N ′(t)}2 sin{m�N(t)}dt.

Because of their connection with frailty models, bivariate Archimedean copula models
[21, Chapter 4] are particularly common in practice. They can be expressed in the form

C�(u, v) = 
−1
�

{

�(u) + 
�(v)

}
in terms of a generator 
� : (0, 1] → [0, ∞) which is convex, decreasing, and such that

�(1) = 0. A simple formula for Ċ�0 is given next for such models, under the assumption
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that 
̇�(t) = �
�(t)/�� exists and is continuous in a neighborhood of �0. The result extends
readily to the multivariate case.

Proposition 4. If (C�) is a parametric family of Archimedean copulas whose generators

� are normalized in such a way that 
�(t) → − log(t) and 
′

�(t) → −1/t as � → �0,
then

Ċ�0(u, v) = uv
{

̇�0

(uv) − 
̇�0
(u) − 
̇�0

(v)
}

.

Proof. The conclusion obtains by letting � → �0 in the expression

Ċ�(u, v) = �
��


−1
� (t)

∣∣∣∣
t=
�(u)+
�(v)

+
{

̇�(u) + 
̇�(v)

} �
�t


−1
� (t)

∣∣∣∣
t=
�(u)+
�(v)

= − 
̇�{C�(u, v)}

′

�{C�(u, v)} + 
̇�(u) + 
̇�(v)


′
�{C�(u, v)} ,

which results from straightforward applications of the Chain Rule and the Inverse Function
Theorem. �

6. Comparisons between tests based on Bn and SJ
n

In addition to characterizing the asymptotic behavior of tests of independence based on
Bn or SJ

n , Propositions 2 and 3 help to delineate the circumstances under which these various
procedures might perform best.

6.1. Consistency

An advantage of basing a test of independence on Bn is that it is always consistent. Such
is not necessarily the case for procedures involving SJ

n . Assume, for instance, that the data
arise from the family (Cr) of Student copulas indexed by their “correlation coefficient” r,
as is often assumed in financial applications (see [6] and references therein). Note that in
this case, C0 is not the independence copula.

Now suppose that J is a score function such that

J (u, v) + J (u, 1 − v) + J (1 − u, v) + J (1 − u, 1 − v) = 0

for all u, v ∈ (0, 1). Under the latter condition, which is met for several of the classical
score functions listed in Table 1, one finds J̄n = 0 and∫

(0,1)2
J (u, v) dC0(u, v) = 0 (3)

whenever this integral exists.
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The main result in Chapter 5 of [14] coupled with Quesada-Molina’s identity, implies
that

n1/2SJ
n�S̃

J =
∫
(0,1)2

C̃(u, v) dJ (u, v),

where

C̃(u, v) = Ã(u, v) − uÃ(1, v) − vÃ(u, 1)

and Ã is the limiting distribution of the process n1/2{Cn(u, v) − C0(u, v)}. In view of
(3), SJ is Gaussian with zero mean, so that the test based on this particular SJ

n would be
inconsistent, while Bn/n would still converge in probability to∫

(0,1)2
{C0(u, v) − uv}2dv du > 0.

Note, incidentally, that the same inconsistent behavior of SJ
n would hold true for any non-

Gaussian, meta-elliptical copula with r = 0. See Abdous et al. [1] for related properties of
this large class of copulas.

6.2. Asymptotic local power

Additional comparisons between procedures based on Bn and SJ
n can be made through the

notion of asymptotic local power function for tests of size � based on these statistics. Letting
z�/2 = N−1(1 − �/2) represent the quantile of order 1 − �/2 of a standard normal random
variable Z, and assuming the conditions of Proposition 2, one can see that the asymptotic
local power of the test based on SJ

n along the sequence (Qn) of contiguous alternatives is
given by

�SJ (�, �) = lim
n→∞ Qn

(∣∣∣n1/2SJ
n

∣∣∣ > �J z�/2

)
= P

(∣∣Z + ��J /�J

∣∣ > z�/2
)
.

Note that since the mapping a �→ P(−z�/2 − a�Z�z�/2 − a) is decreasing in a on
[0, ∞), a rank test of size � based on score function J will be preferable to another rank test
of the same size based on score function K whenever |�J /�J | > |�K/�K |. Moreover,

ARE
(
SJ , SK

)
=

(
�J /�J

�K/�K

)2

,

known as Pitman’s asymptotic relative efficiency, may be interpreted as the ratio of sample
sizes required for the two test statistics to maintain the same level and power along the
contiguous sequence (C�n

) of copula alternatives. Obviously, the index ARE(SJ , SK) is
the same for any two families (C�) and (D�) in the same class, i.e., whenever Ċ�0 ∝ Ḋ�0 .

Listed in Table 1 are the score functions J of some linear rank statistics SJ
n that satisfy

the conditions of Proposition 2. Except for two, they are all products of quantile functions,
and hence the remark at the end of Section 3 applies to them. The exceptions are the
symmetrized versions both of the Wilcoxon and of the Blest [5] statistic, obtained by taking
J ∗(u, v) = J (u, v) + J (v, u). (See [15] for additional details.)
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Table 1
Score function of some linear rank statistics SJ

n whose expectation vanishes under the null hypothesis of indepen-
dence

Test statistic J (u, v)

Blest
{

1 − 3(1 − u)2
}

(2v − 1)

Symmetrized Blest (3 − u − v) {3 (2u − 1) (2v − 1) − 1} + 2
Exponential {1 + log(1 − u)}{1 + log(1 − v)}
Laplace 
(u)
(v)

Savage (1 + log u)(1 + log v)

Spearman (2u − 1) (2v − 1)

van der Waerden N−1(u)N−1(v)

Wilcoxon (2u − 1) log

(
v

1 − v

)

Symmetrized Wilcoxon (2u − 1) log

(
v

1 − v

)
+ (2v − 1) log

(
u

1 − u

)

with 
(u) = 0.5 sign(1/2 − u) log{2 min(u, 1 − u)}.

Table 2 gives the value of ARE(SJ , SJopt ) for the various choices of J listed in Table 1 and
Jopt ∝ ċ�0 for the three families of copulas considered in Section 5. As shown by Genest
and Verret [17], this choice of Jopt is equivalent in the limit to the locally most powerful rank
test statistic for the family of alternatives under consideration. The calculation of the ARE
for the symmetrized statistics is facilitated by the fact that when J (u, v) = K−1

1 (u)K−1
2 (v)

is a product of quantile functions with mean zero and finite variance, Proposition 2 implies
that

ARE
(
SJ ∗

, SJ
)

= 2

1 + �2
�1,

where � = corr{K−1
1 (U), K−1

2 (U)}.
As clearly illustrated in Table 2, the performance of a linear rank statistic can vary

substantially when it is compared to the locally most powerful rank test of independence
within a given class. It is as low as 41.59% for the exponential rank statistic when alternatives
belong to the Clayton family, for example, but it reaches 99.07% for the symmetrized version
of Wilcoxon’s rank statistic in the normal copula model.

In a sense, however, the AREs reported in Table 2 are deceptively low. For, it should be
borne in mind that while no linear rank test can ever be more efficient that the locally most
powerful procedure, identification of the latter is contingent on the exact knowledge of the
direction in which departures from independence occur.

To make comparisons with the Cramér–von Mises statistic Bn, one must resort to the
following formula of Gil-Pelaez [18], which states that if X is a random variable with
continuous distribution function F and characteristic function f̂ , then

1 − F(x) = 1

2
+ 1

2�

∫ ∞

−∞
Im

{
t−1e−ixt f̂ (t)

}
dt,

where Im(z) denotes the imaginary part of the complex number z.
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Table 2
Pitman asymptotic relative efficiency ARE(SJ , SJopt ) of test statistic SJ

n versus the locally most powerful rank

test S
Jopt
n of independence for local alternatives in the three classes of copulas considered in Section 5

Test statistic Copula families

Class 1 Class 2 Class 3

Blest
15

16
= 0.9375

125

192
≈ 0.6510

135

16�2
≈ 0.8549

Symmetrized Blest
30

31
≈ 0.9677

125

186
≈ 0.6720

270

31�2
≈ 0.8825

Exponential
9

16
= 0.5625

(�2 − 6)2

36
≈ 0.4159 0.6655

Laplace
729

1024
≈ 0.7119 0.6615 0.9274

Savage
9

16
= 0.5625 1.0000 0.6655

Spearman 1.000
9

16
= 0.5625

9

�2
≈ 0.9119

van der Waerden
9

�2
≈ 0.9119 0.6655 1.0000

Wilcoxon
9

�2
≈ 0.9119

�2

16
≈ 0.6169 0.9471

Symmetrized Wilcoxon
18

9 + �2
≈ 0.9539

�4

8(�2 + 9)
≈ 0.6453 0.9907

To use this identity in the present context, proceed as in Imhof [19] and write

�̂(t, �) = 1

(1 − 2it)1/2
e

(
i�t

1−2it

)
= 1

(1 + 4t2)1/4
e
− 2t�2

1+4t2 e
it

�
1+4t2 eiarctan(2t)/2 .

Then call on Proposition 3 to see that

f̂ (t, �) = E
(
eitB

)
=

∏
k, � ∈ N

�̂
(
�k� t, �2I 2

k�

)
= 
(t) e−2�2

t2�1(t) ei�2(t)+i�2�3(t),

where


(t) =
∏

k, � ∈ N

(1 + 4t2�2
k�)

−1/4, �1(t) =
∑

k, � ∈ N

�2
k�I

2
k�/(1 + 4t2�2

k�),

�2(t) = 1

2

∑
k, � ∈ N

arctan(2t�k�), �3(t) = t
∑

k, � ∈ N

�k�I
2
k�/(1 + 4t2�2

k�).

Note that 
(t) and t2
(t) are integrable, that �1 is bounded, that �i (t)/t is bounded for
i = 2, 3, and that �2(t)/t → 1/36 and �3(t)/t → I 2, as t → 0.

In the light of the Gil-Pelaez formula, one may deduce that

P(B > x) = 1

2
+ 1

�

∫ ∞

0

sin{�(x, t)}
t�(t)

dt, (4)
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Fig. 1. Comparative power of two rank statistics used to test independence for alternatives from three different
classes of copulas: broken line, Cramér–von Mises statistic; solid line, locally most powerful procedure.

where

�(x, t) = −xt

2
+ 1

2

∑
k,�∈N

{
arctan(�k� t) + �2 �k�I

2
k�t

1 + �2
k� t2

}

and

�(t) = exp

⎛
⎝�2t2

2

∑
k,�∈N

�2
k�I

2
k�

1 + �2
k� t2

⎞
⎠ ∏

k,�∈N

(
1 + �2

k�t
2
)1/4

.

Accordingly, numerical approximation routines can be used to compute the local power
function �B(�, �) = P(B > p�) of Bn. The critical values p� = 0.0469, 0.0592 and 0.0869
correspond to the traditional levels � = 0.1, 0.05, and 0.01, respectively.

Fig. 1 compares graphically the power of the 5%-level rank tests of independence based
on the Cramér–von Mises statistic (broken line) and the locally most powerful procedure
(solid line) for the three classes of parametric copula alternatives considered in Section 5.
Panels 1–3 (from left to right) correspond to Classes 1–3, for which the optimal rank tests
are based on the Spearman, Savage and van der Waerden statistics, respectively.

The plotted curves are based on a numerical approximation of (4) obtained by integrating
on [0, 100] and restricting the sum and integral to integers k, ��10, which guaranteed
numerical stability within computer accuracy. As the picture highlights, the power of the
test based on Bn is generally close to that of the asymptotically optimal rank statistic SJ

n

with J = ċ�0 . The statistic Bn does best for Class 1 alternatives in the neighborhood of
independence; its performance is least impressive for moderate values of � in Class 2, i.e.,
dependence models of the Clayton or Gumbel-Barnett variety.

7. Asymptotic relative efficiency calculations

For score functions J and K, the asymptotic relative efficiency

ARE
(
SJ , SK

)
=

(
�J /�J

�K/�K

)2



C. Genest et al. / Journal of Multivariate Analysis 97 (2006) 274–294 287

is a natural measure of local power comparison because the asymptotic behavior of the
related statistics SJ

n and SK
n is Gaussian, under the assumptions of Proposition 2. However,

a more general definition of asymptotic relative efficiency is needed if comparisons must be
extended to statistics such as Bn, whose limiting distribution is not normal. Several options
exist; see, e.g., Nyblom and Mäkeläinen [22] and references therein.

The approach pursued here for comparing tests based on statistics Tn and T ′
n involves a

ratio of the slopes of the power curves in a neighborhood of � = 0, viz.

e
(
T , T ′) = lim

�→0

�T (�, �) − �

�T ′(�, �) − �
.

This ratio, which is superior to 1 for all T ′ whenever T is locally most powerful, provides
a natural extension of Pitman’s efficiency beyond the case of normal statistics. For, suppose
that under Qn, the limiting power function �T (�, �) of tests of size � based on Tn is given
by

�T (�, �) = 1 − N(z�/2 − ��T /�T ) + N(−z�/2 − ��T /�T ),

where N is the distribution function of the standard Gaussian and N ′ is the corresponding
density. Then

lim
�→0

�−2 {
�T (�, �) − �

} = z�/2N
′(z�/2)

(
�T /�T

)2

and hence

e
(
T , T ′) = lim

�→0

�T (�, �) − �

�T ′(�, �) − �
= ARE

(
T , T ′) .

The following proposition characterizes the local behavior of �B(�, �) − � at � = 0
for the Cramér–von Mises statistic Bn. The proof of this result, which uses the Gil-Pelaez
representation, is given in the Appendix.

Proposition 5. Under Conditions (i)–(ii), one has

lim
�→0

�−2{�B(�, �) − �} =
∑

k, � ∈ N

�k�I
2
k� hk�(p�),

where hk� is a density whose associated characteristic function

f̂ (t, 0)

1 − 2i�k� t
= (1 − 2i�k� t)−1

∏
q, r ∈N

(
1 − 2i�qr t

)−1/2

is that of B0 + �k� �2
2, in which the summands are taken to be independent.

Finally, note that

hk�(x) = 1

�

∫ ∞

0
(1 + 4�2

k� t2)−1/2
(t) cos {�2(t) + arctan(�k�) − tx} dt
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Table 3
Local asymptotic relative efficiency of Bn with respect to the locally most powerful statistic SJopt for three classes
of copulas

Level Copula families

Class 1 Class 2 Class 3

1% 0.8337 0.4229 0.6961
5% 0.8122 0.4181 0.6791
10% 0.8380 0.4386 0.7019

from which it is possible to conclude that

e
(
B, SJ

)
= lim

�→0
�−2 {

�B(�, �) − �
} /

lim
�→0

�−2 {
�SJ (�, �) − �

}
= 1

z�/2N ′(z�/2)
(
�J /�J

)2

∑
k, �∈N

�k�I
2
k� hk�(p�) ,

whenever the score function also satisfies Condition (iii).
The local asymptotic relative efficiencies e

(
B, SJopt

)
of Bn with respect to the locally

most powerful statistic S
Jopt
n for copulas from Classes 1–3 are presented in Table 3. These

numerical approximations were obtained by integrating on [0, 1500] by the trapezoidal
rule (with a mesh of 1/2500) and restricting the sum and product to terms with integers
k, ��10 in the Gil-Pelaez formula. Comparisons involving any other linear rank statistic
SJ

n in Table 1 may be made easily since

e
(
B, SJ

)
= e

(
B, SJopt

)
e
(
SJ , SJopt

) .

In conformance with Fig. 1, Bn is seen to do quite well against the locally most powerful
nonparametric test of independence for Class 1 alternatives. Its performance is somewhat
worse for Class 3 Gaussian alternatives, and more questionable for Class 2 alternatives,
namely the Clayton and Gumbel-Barnett copulas. A rationale for this phenomenon is still
lacking.

8. Conclusion

Because they allow analysts to model dependence separately from the margins, copulas
provide a handy (and increasingly popular) way of constructing alternatives to independence
in multivariate contexts. This paper identifies conditions under which a family of copulas
gives rise to a contiguous sequence of alternatives. The asymptotic behavior of the empirical
copula process is characterized under alternatives of this sort. This leads to a computable
expression for the limiting local power of a bivariate Cramér–von Mises statistic originally
suggested by Deheuvels, and to meaningful asymptotic relative efficiency comparisons with
various linear rank tests of independence.

In addition to being easy to implement, Deheuvels’ test based on Bn is always consistent.
The numerical comparisons reported in Fig. 1 and Table 3 also show that as an omnibus
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procedure, it generally holds up its power reasonably well against the model-specific locally
most powerful rank-based test. Considering that the latter test may not be consistent if the
alternatives have not been specified correctly, the test based on Bn certainly represents a
viable solution, if not an ideal one. Its mitigated success in reproducing the optimal power
is obviously a function of the type of departure from independence embodied in the family
of local alternatives. Just what aspect of association is at stakes seems hard to pin down,
however.
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Appendix

A.1. Proof of Proposition 2

First, one needs to show that the expression for �2
J is correct. To this end, set

A =
∫
(0,1)4

�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′) = A1 + A2 + A3 + A4,

where

A1 =
∫

0<u�u′<1, 0<v�v′<1
�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′),

A2 =
∫

0<u�u′<1, 0<v′<v<1
�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′),

A3 =
∫

0<u′<u<1, 0<v�v′<1
�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′),

A4 =
∫

0<u′<u<1, 0<v′<v<1
�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′).

Using Tonelli’s Theorem, one may write

A1 =
∫

0<u�u′<1, 0<v�v′<1
u(1 − u′)v(1 − v′)dJ (u, v)dJ (u′, v′)

=
∫
(0,1)4

∫
0<u�u′<1, 0<v�v′<1

1(x < u)1(u′�y)1(z < v)1(v′�w)

×dJ (u, v)dJ (u′, v′)dx dy dz dw

=
∫
(0,1)8

1(x < u�u′)1(x < u′ < y)1(z < v�v′)1(z < v′�w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw
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=
∫
(0,1)8

1(x < u�u′)1(x < u′�y)1(z < v�v′)1(z < v′�w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw,

where the last equality follows from the absolute continuity of Lebesgue’s measure.
Similarly,

A2 =
∫

0<u�u′<1, 0<v′<v<1
u(1 − u′)v′(1 − v)dJ (u, v)dJ (u′, v′)

=
∫
(0,1)4

∫
0<u�u′<1, 0<v′<v<1

1(x < u)1(u′�y)1(z < v′)1(v�w)

×dJ (u, v)dJ (u′, v′)dx dy dz dw

=
∫
(0,1)8

1(x < u�u′)1(x < u′�y)1(v′ < v�w)1(z < v′ < w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw

=
∫
(0,1)8

1(x < u�u′)1(x < u′�y)1(v′ < v�w)1(z < v′�w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw.

Hence

A1 + A2 =
∫
(0,1)8

1(x < u�u′)1(x < u′�y)1(z < v�w)1(z < v′�w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw.

Using the same technique, one also gets

A3 + A4 =
∫
(0,1)8

1(u′ < u�y)1(x < u′�y)1(z < v�w)1(z < v′�w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw

from which one may conclude that

A =
∫
(0,1)8

1(x < u�y)1(x < u′�y)1(z < v�w)1(z < v′�w)

×1(x < y)1(z < w)dJ (u, v)dJ (u′, v′)dx dy dz dw

=
∫
(0,1)4

{J (x, z) + J (y, w) − J (y, z) − J (x, w)}2 1(x < y)1(z < w)dx dy dz dw

= 1

4

∫
(0,1)4

{J (x, z) + J (y, w) − J (y, z) − J (x, w)}2 dx dy dz dw

= 1

4

∫
(0,1)4

{
J̃ (x, z) + J̃ (y, w) − J̃ (y, z) − J̃ (x, w)

}2
dx dy dz dw

=
∫
(0,1)2

{
J̃ (u, v)

}2
du dv = �2

J .
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Next, observe that under Pn, it follows by construction that

E
{

C̃n(u, v)
}

= 0

for any (u, v) ∈ [0, 1]2. Furthermore, for any (u, v, u′, v′) ∈ [0, 1]4 and n�2, one has

E
{

C̃n(u, v)C̃n(u
′, v′)

}
= n

n − 1
�n(u, u′)�n(v, v′)� 9

2
�(u, u′)�(v, v′),

where

�n(u, v) = � {Cn(u, 1), Cn(v, 1)} � n + 1

n
�(u, v)

for arbitrary (u, v) ∈ [0, 1]2.
For any A ⊂ (0, 1)2, let

RA,n =
∫

A

C̃n(u, v) dJ (u, v)

and define

�2
A,J =

∫
A×A

�(u, u′)�(v, v′)dJ (u, v)dJ (u′, v′).

For arbitrary n�2, one can then see that under Pn,

var
(
RA,n

) = n

n − 1

∫
A×A

�n(u, u′)�n(v, v′) dJ (u, v) dJ (u′, v′)

� 9

2

∫
A×A

�(u, u′)�(v, v′) dJ (u, v) dJ (u′, v′) = 9

2
�2

A,J .

It follows from the Dominated Convergence Theorem that for any A ⊂ (0, 1)2,

lim
n→∞ var

(
RA,n

) =
∫

A×A

�(u, u′)�(v, v′) dJ (u, v) dJ (u′, v′) = �2
A,J ��2

J .

In particular, for any m�1, one can find a closed interval Km ⊂ (0, 1)2 so that Km ↑
(0, 1)2, �2

Kc
m, J < 1/m and �2

Km, J + 1/m > �2
J . Hence, for any � > 0 and any n�2,

Pn

(|RKc
m, n| > �

)
� 9

2m�2
.

Since m can be chosen arbitrarily large, it follows from the contiguity of Qn with respect
to Pn that for fixed � > 0, lim supn→∞ Qn

(|RKc
m, n| > �

)
may be made arbitrarily small.

Finally, SJ
n = RKm, n + RKc

m, n. Moreover, under Qn, one has

RKm, n�
∫
Km

C(u, v)dJ (u, v) + �
∫
Km

Ċ�0(u, v)dJ (u, v),
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which is Gaussian, with mean ��Km,J and variance �2
Km, J . In the light of Condition (iii),

it follows that both �Km,J → �J and �2
Km, J → �2

J , as m → ∞. This completes the proof
of Proposition 2.

Remark. Under additional assumptions, e.g., if

J̃ (u, t)�Ċ(u, t)
/

�u and J̃ (t, v)�Ċ(t, v)
/

�v

both converge boundedly to 0 as t → 1, then one may conclude that

�J =
∫ 1

0

∫ 1

0
J̃ (u, v)ċ(u, v) du dv,

as obtained by Genest and Verret [17], under different assumptions on J.

A.2. Proof of Proposition 5

For simplicity, set x = p�. It follows from the Gil-Pelaez representation that

�B(�, �) − � = 1

2�

∫ +∞

−∞
t−1Im

{
e−itx f̂ (t, �) − e−itx f̂ (t, 0)

}
dt.

From the definition of f̂ , one has

t−1Im
{
e−itx f̂ (t, �)

}
= t−1
(t) e−2�2

t2�1(t) sin
{
�2(t) + �2�3(t) − tx

}
and it follows that(

�2t
)−1

Im
{
e−itx f̂ (t, �) − e−itx f̂ (t, 0)

}
can be decomposed as the sum of A1(t, �)t2
(t) + A2(t, �)
(t), where

A1(t, �) =
(
�2t3

)−1 {
e−2�2

t2�1(t) − 1
}

sin
{
�2(t) + �2�3(t) − tx

}
and

A2(t, �) =
(
�2t

)−1 [
sin

{
�2(t) + �2�3(t) − tx

}
− sin {�2(t) − tx}

]
.

Now, both terms are bounded and converge, respectively, as � → 0, to

A1(t, 0) = −2t−1�1(t) sin {�2(t) − tx}
and

A2(t, 0) = t−1�3(t) cos {�2(t) − tx} .
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An application of Lebesgue’s Dominated Convergence Theorem thus yields

lim
�→0

�−2
∫ ∞

−∞
t−1Im

{
e−itx f̂ (t, �) − e−itx f̂ (t, 0)

}
dt =

∫ ∞

−∞

(t, x) dt,

where


(t, x) = 
(t)
[
t−1�3(t) cos{�2(t) − tx} − 2t�1(t) sin{�2(t) − tx}

]
.

It is easy to check that 
 can also be expressed as


(x, t) =
∑

k, � ∈ N

�k�I
2
k� Re

{
e−itx f̂ (t, 0)(1 − 2it�k�)

−1
}

.

Since 
 is integrable, it follows that the characteristic function f̂ (t, 0)(1 − 2it�k�)
−1 is

integrable, and hence

(2�)−1
∫ ∞

−∞

(t, x) dt = �−1

∫ ∞

0

(t, x) dt =

∑
k, � ∈ N

�k�I
2
k�hk�(x),

where hk� is the density of B0 +�k� �2
2, whose summands are taken to be independent. This

completes the proof.
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