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a b s t r a c t

The theory of quasi-arithmetic means represents a powerful tool in the study of covariance
functions across space–time. In the present study we use quasi-arithmetic functionals to
make inferences about the permissibility of averages of functions that are not, in general,
permissible covariance functions. This is the case, e.g., of the geometric and harmonic
averages, for which we obtain permissibility criteria. Also, some important inequalities
involving covariance functions and preference relations as well as algebraic properties can
be derived by means of the proposed approach. In particular, quasi-arithmetic covariances
allow for ordering and preference relations, for a Jensen-type inequality and for a minimal
and maximal element of their class. The general results shown in this paper are then
applied to the study of spatial and spatio-temporal random fields. In particular, we discuss
the representation and smoothness properties of a weakly stationary random field with
a quasi-arithmetic covariance function. Also, we show that the generator of the quasi-
arithmeticmeans can be used as a link function in order to build a space–timenonseparable
structure starting from the spatial and temporal margins, a procedure that is technically
sound for those working with copulas. Several examples of new families of stationary
covariances obtainable with this procedure are shown. Finally, we use quasi-arithmetic
functionals to generalise existing results concerning the construction of nonstationary
spatial covariances, and discuss the applicability and limits of this generalisation.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The importance of quasi-arithmetic means has been well understood at least since the 1930s, and a number of writers
have since then contributed to their characterisation and to the study of their properties. In particular, Kolmogorov [1]
and Nagumo [2] derived, independently of each other, necessary and sufficient conditions for the quasi-arithmeticity of the
mean, that is, for the existence of a continuous strictlymonotonic function f such that, for x1, . . . , xn in some real interval, the
function (x1, . . . , xn) 7→ Mn(x1, . . . , xn) = f −1( 1n

∑n
1 f (xi)) is a mean. Using this result, they partially modified the classical

Cauchy [3] internality and Chisini’s [4] invariance properties. As pointed out by Marichal [5], the Kolmogorov reflexive
property is equivalent to the Cauchy internality, and both are accepted by statisticians as requisites for means.
Early works on the concept of mean include [6–10]. More recent contributions are the works of Wimp [11], Hutník [12],

Matkowski [13,14], Jarczyk and Matkowski [15], Marichal [5], Daróczy and Hajdu [16], and Abrahamovic et al. [52]. Quasi-
arithmetic means, in particular, have been applied in several disciplines. A special case of this class has been used in the
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theory of copulas under the name of Archimedean copulas [17] and a rich literature can be found under this name. In the
theory of aggregation operators and fuzzy measures, a growing literature related to the use of quasi-arithmetics includes
the works of Frank [18], Hajék [19], Kolesaróvá [20], Klement et al. [21], Grabish [22] and Calvo and Mesiar [23].
Despite the extensive quasi-arithmeticmeans literature, to the best of our knowledge, there is no publishedwork relating

quasi-arithmetic means with covariance functions, whose properties have been extensively studied both in mathematical
analysis and statistical fields. In particular, the study of covariance functions is intimately related to that of positive definite
functions, the latter being the subject of a considerable literature in a variety of fields, such as mathematical analysis [24],
abelian semigroup theory, spatial statistics and geostatistics. For basic facts about positive definite functions, we refer to [25]
and to [26]. The importance of positive definite functions in the determination of permissible covariance functions (ordinary
and generalised) in spatial statistics was studied in detail by Christakos [27]. Subsequent considerations, in a spatial and a
spatio-temporal context, include the works of Christakos [28–30], Sasvari [31] and Gneiting [32], among others.
Fundamental properties of covariance functions may be inferred by studying collections of them considered as convex

cones closed in the topology of point-wise convergence. In this paper, quasi-arithmetic averages and positive definite
functions are combined to gain valuable insight concerning certain covariance properties. Also, we apply the general results
obtained by our analysis based on the concept of quasi-arithmeticity to build new classes of stationary and nonstationary
space–time covariance functions. In such a context, we seek answers to the following questions:

(1) Consider an arbitrary number n ∈ N of covariance functions, not necessarily defined in the same space. Their arithmetic
average and product (i.e., the geometric average raised to the nth power) are valid covariance functions, and so is the
kth power average of covariance functions (k is a natural positive number). But, what about other types of averages?
Since quasi-arithmeticmeans constitute a general group that includes the arithmetic, geometric, power and logarithmic
means as special cases, it seems natural to use quasi-arithmetic representations in order to derive positive definiteness
conditions for other classes of averages of covariance functions.

(2) Can we use the properties of quasi-arithmetic means to establish important inequalities, ordering and preference
relations, and minimal and maximal elements within the class of covariance functions?

(3) Is it possible to find a class of link functions that, when applied to k covariances, can generate valid nonseparable
covariances? If this is the case, other potentially desirable properties should be examined, e.g., this approach should
be as general as possible and include famous constructions and separability as special cases; and it should preserve the
margins.

In view of the above considerations, the paper is organised as follows: Section 2 discusses the background, notation
and proposed methodology; it also provides a very brief introduction to positive definite functions. In Section 3, the main
theoretical results are presented. In particular, through straightforward arguments, we show permissibility criteria for the
quasi-arithmetic mean of covariance functions. Of particular importance are two corollaries of this result, where we obtain
permissibility criteria for the (weighted) geometric average of covariance functions, as well as to the harmonic average, and
these results are absolutely novel for the literature.
Furthermore, we derive important covariance inequalities of Jensen type as well as ordering and preference relations

between covariance functions. Finally, minimal and maximal elements of the quasi-arithmetic covariance class are
identified, and an associativity property of this class is provided. In Section 4, we apply our results to the construction
of new families of space–time nonseparable stationary covariance functions. Also, we extend Stein [33] result to a more
general class of spatial nonstationary covariance functions. Several examples of stationary and nonstationary covariances
are proposed and their mathematical properties discussed. Finally, we study the properties of quasi-arithmetic random
fields (defined later in the paper) in terms of mean square differentiability and variance. Section 5 concludes with a critical
discussion of the preceding analysis. All the proofs of the results derived in this paper can be found in the Appendix.

2. Background and methodology

2.1. Covariance functions: Characterisation and basic properties

In this section, we shall assume the real mapping C : X×X ⊆ Rd×Rd → R to be continuous and Lebesgue measurable
on the domain X × X, where X can be either a compact space or the entire d-dimensional Euclidean space, d ∈ N. C is a
covariance function of a Gaussian random field if and only if it is positive definite, that is

n∑
i=1

n∑
i=1

cicjC(xi, xj) ≥ 0 (1)

for any finite set of real coefficients {ci}ni=1, and for x1, . . . , xn ∈ X. Christakos [27] calls the covariance condition (1)
permissibility, and throughout the paper we shall use both this term and that of positive definiteness to characterise valid
covariance functions. A subclass of positive definite functions, called stationary, is obtained if

C(xi, xj) := C̃0(x),

with x = xi − xj and C̃0 : X→ R such that C̃0(0) <∞.



1832 E. Porcu et al. / Journal of Multivariate Analysis 100 (2009) 1830–1844

By Bochner’s theorem, condition (1) is then equivalent to the requirement that C̃0 is the Fourier transformF of a positive
bounded measure Ĉ0 with support in Rd, that is

C̃0(x) := F [Ĉ0](x) =
∫

Rd
eiω
′xdĈ0(ω).

Additionally, if Ĉ0 is absolutely continuous with respect to the Lebesgue measure (ensured if C̃0 ∈ L1(Rd)), then the
expression above can be written as a function of dĈ0(ω) = ĉ0(ω)dω, where ĉ0 is called the spectral density of C̃0. For a
detailed mathematical discussion of the Fourier representation in a spatial–temporal statistics context, we refer to volumes
by Yaglom [34] and Christakos [30].
In what follows, we shall consider some interesting restrictions on the general class of stationary covariance functions.

But first, we need to introduce some standard notation for arbitrary partitions and operations between vectors. In order to
manipulate arbitrary decompositions of nonnegative integer numbers, let us consider the set exp(Z+) = ∅ ∪ Z+ ∪ Z2

+
∪

Z3
+
∪ · · · (disjoint union). An element d of exp(Z+) can be expressed either as d = ∅ or as d = (d1, d2, . . . , dn) if d ∈ Zn

+

with n ≥ 1. In the latter case we denote by n(d) = n the dimension of d and |d| =
∑n
i=1 di the length of d. Both values

are taken to be 0 whenever d = ∅. For d, d′ ∈ exp(Z+) we say that d ≤ d′ if and only if n(d) = n(d′) and di ≤ d′i for
all i = 1, 2, . . . , n(d). Usual vector operations are possible only between elements of the same dimension. Vectors with all
components equal are denoted in bold symbols, such as 0, 1.
Now, the restrictions considered in this paper are of the following type:

1. The isotropic case:

C̃0(x) := C̃1(‖x‖), x ∈ X, (2)

that is, C is said to be represented by the function C̃1 : R+ → R, that is rotation–translation invariant (or radially
symmetric), and where ‖.‖ denotes the Euclidean norm. This is the most popular case in spatial and spatio-temporal
statistics [35,34,36].

2. The component-wise isotropic case: Let us consider the d-dimensional space Rd, and let d be an element of exp(Z+)
such that |d| = d and 1 ≤ d. Thus, one can create opportune partitions of the spatial lag vector x ∈ Rd in the following
way. If d = (d1, d2, . . . , dn) and x ∈ Rd we can always write

x = (x1, x2, . . . , xn) ∈ Rd1 × Rd2 × · · · × Rdn

so that:
(i) C̃0(x) = C̃0(k) for any x, k ∈ Rd if and only if ‖xi‖ = ‖ki‖ for all i = 1, 2, . . . , n.
(ii) The resulting covariance admits the representation

C̃0(x) := C̃1(‖x1‖, . . . , ‖xn‖)

=

∫
∞

0
. . .

∫
∞

0

n∏
i=1

Ωdi(‖xi‖ri)dF(r1, . . . , rn) (3)

with Ωd(t) = 0(d/2)
( 2
t

)
J(d−2)/2(t), Jd(.) denoting the Bessel function of the first kind of order d [37], F an n-variate

distribution function and C̃1 : Rn → R. Thus, Eq. (2) is a special case of (3) (|d| = d and d := d, a scalar) and its
corresponding integral representation can be readily obtained. The special case d = 1 and |d| = d is particularly interesting
in the subsequent sections of this paper, as the function (x1, . . . , xn) 7→ C̃1(|x1|, . . . , |xn|), does not depend on the Euclidean
norm, but on the Manhattan or city block distance, with important implications in spatial and spatio-temporal statistics as
pointed out by Christakos [38] and Banerjee [39].
It is worth noticing that covariance functions of the type (3) have a property called reflection symmetry [40], or full

symmetry [41]. This means that C(x1, . . . , xi, . . . , xn) = C(x1, . . . ,−xi, . . . , xn) = · · · = C(−x1, . . . ,−xi, . . . ,−xn).
Whenever no confusion arises, in the remainder of the paperwe shall drop the under- and super-script denoting a stationary
or stationary and isotropic covariance function, respectively.
As far as the basic properties of covariance functions are concerned, assume that Ci : Rdi → R+ (i = 1, . . . , n) are

positive, continuous and integrable stationary covariance functions with di ∈ Z+ and let d = (d1, . . . , dn) such that |d| = d.
It is well known that somemean operators preserve the permissibility of the resulting structure. In particular, if we assume,
without loss of generality, that the θi are nonnegative weights, the following are then permissible on Rd:

1. The arithmetic average

CA(x) =
n∑
i=1

θiCi(xi),
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2. the nonweighted geometric average up to a power n,

CG(x) =
n∏
i=1

Ci(xi),

3. the k-power average (k ∈ Z+), up to a power k,

Cµk(x) =
n∑
i=1

θiCki (xi).

4. Scale and power mixtures of covariance functions [30],

C(x) =
∫
Θ

C(x; θ)dµ(θ),

for µ a positive measure and θ ∈ Θ ⊆ Rp, p ∈ N.

2.2. The methodology. Quasi-arithmetic multivariate compositions

Quasi-arithmetic averages have been extensively treated by Hardy et al. [42]. Our methodology generalises the concept
of quasi-arithmetic averages and introduces formalisms and notation, since our aim is to find a class of compositions of
covariance functions that satisfies desirable properties.
LetΦ be the class of real-valued functions ϕ defined in some domain D(ϕ) ⊂ R, admitting a proper inverse ϕ−1 defined

in D(ϕ−1) ⊂ R and such that ϕ(ϕ−1(t)) = t for all t ∈ D(ϕ−1). Also, let Φc and Φcm be the subclasses of Φ obtained by
restricting ϕ to be, respectively, convex or completely monotone on the positive real line. Let us call a quasi-arithmetic class
of functionals the class

Q :=

{
ψ : D(ϕ−1)× · · · × D(ϕ−1)→ R : ψ(u) = ϕ

(
n∑
i=1

θiϕ
−1(ui)

)
, ϕ ∈ Φ

}
, (4)

where θi are nonnegative weights and u = (u1, . . . , un)′, for n ≥ 2 positive integer. Also, we shall call Qc and Qcm the
subclasses ofQwhen restricting ϕ to belong, respectively, toΦc andΦcm.

Ifψ ∈ Q, thenwe shouldwriteϕψ as the function such that: for any nonnegative vectoru,ψ(u) = ϕψ
(∑n

i=1 θiϕ
−1
ψ (ui)

)
.

For ease of notation, we simply write ϕ instead of ϕψ , whenever no confusion arises.
Next, we introduce a new class of functionals that will be used extensively throughout the paper.

Definition 1 (Quasi-arithmetic compositions). If fi : Rdi → R+ such that ∪ni fi(R
di) ⊂ D(ϕ−1) for some ϕ ∈ Φ , the quasi-

arithmetic composition of f1, f2, . . . , fn with generating function ψ ∈ Q is defined as the functional

Qψ (f1, . . . , fn)(x) = ψ (f1(x1), . . . fn(xn)) (5)

for x = (x1, . . . , xn)′, xi ∈ Rdid = (d1, . . . , dn)′ and |d| = d.

Throughout the paper, we refer to ψ ∈ Q or the corresponding ϕ ∈ Φ as the generating functions of Qψ . Note that
Qψ (f , . . . , f ) = f for any function f and generating function ψ .

Remark 1. A very special case of the quasi-arithmetic compositions is obtained when θi = 1/n, i = 1, . . . , n, and it is
called Archimedean composition. This setting has been used by Porcu et al. [43], who work with n = 2 to build classes
of nonstationary spectral densities for spatial data. It is important to observe that, whilst the Archimedean composition
of spectral densities defines a permissible structure, the same construction does not hold, in general, for quasi-arithmetic
compositions of spectral densities.
Moreover, in this paper quasi-arithmetic functionals are used for the composition of n ≥ 2 covariance functions. It should

be noted that great part of the formalism following subsequently coincides with that in [43], even if the methodology is
proposed in a completely different setting and with different purposes.

Ordering relations as well as a minimal element can be found among the set of quasi-arithmetic compositions of n ∈ N
fixed functions indexed by convex generating functions (a maximal element can also be found only when both fixed
functions are upper bounded). For a finite set of weights {θi}, i = 1, . . . , n summing up to one, we shall write

QG(f1, . . . , fn) =
n∏
i=1

f θii ,
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which is the quasi-arithmetic composition associated with ϕ(t) = exp(−t) that generates a geometric average, with the
conventions ln 0 = −∞ and exp(−∞) = 0. Also, let

QA(f1, . . . , fn) =
n∑
i=1

θifi,

for f1, . . . , fn : Rd → [0,M]), be the quasi-arithmetic composition associated with ϕ(t) = M(1− t/M)+ that generates the
arithmetic average. Finally, we shall call

QH(f1, . . . , fn) =
1

n∑
i=1

θi
fi(xi)

,

the quasi-arithmetic composition associated with ϕ(t) = 1/t and generating the harmonic average, with the conventions
1/∞ = 0, 1/0 = ∞ and 0/0 = 0.
We shall write g1 ≤ g2 whenever g1(x1, . . . , xn) ≤ g2(x1, . . . , xn) for all x = (x1, . . . , xn)′ ∈ Rd. Finally, recall that a

function g is subadditive whenever g(a + b) ≤ g(a) + g(b) for all a, b in its domain. The following result is the natural
extension of that in [43] to the n-variate case and where the involving functions in the compositions are quasi-arithmetic.

Proposition 1. For any finite system of functions f1, . . . , fn and any arbitrary generating functions ϕ, ϕ1, ϕ2 ∈ Φcm, to which
ψ,ψ1, ψ2 ∈ Qcm are respectively associated with, we have the following point-wise order relations:

(i) If ϕ−11 ◦ ϕ2 is convex, thenQψ1(f1, . . . , fn) ≤ Qψ2(f1, . . . , fn).
(ii) If ϕ−11 ◦ ϕ2 is concave, thenQψ1(f1, . . . , fn) ≥ Qψ2(f1, . . . , fn).

In particular,
(iii) Qψ (f1, . . . , fn) ≤ QΠ (f1, . . . , fn) ≤

∑
i θifi
n (=QΣ (f1, . . . , fn) whenever f1, . . . , fn are bounded).

(iv) QH(f1, . . . , fn) ≤ QΠ (f1, . . . , fn) ≤
∑
i θifi
n (=QΣ (f1, . . . , fn) whenever f1, . . . , fn are bounded), which is the classical

inequality of general means.

The proof of the result is omitted as it is obtained by the same arguments as that in [43].
Note that this result should extend to the functional case those reported byNelsen [44]. Surprisingly, this extension needs

different requirements on the compositions ϕ−11 ◦ ϕ2, as Nelsen result needs subadditivity of this composition.

2.3. Other useful notions and notation

A real mapping γ : X ⊆ Rd → R such that γ (0) = 0, is called an intrinsically stationary variogram [45] if it is
conditionally negative definite, that is

n∑
i=1

n∑
i=j

aiajγ (xi − xj) ≤ 0

for all finite collections of real weights ai summing up to zero and all points xi ∈ X. The restriction to the isotropic case is
analogue to that of covariance functions, that is γ (x) := γ̃ (‖x‖), x ∈ X and γ̃ : R+ → R conditionally negative definite.
A completely monotone function ϕ is a positive function defined on the positive real line and satisfying

(−1)nϕ(n)(t) ≥ 0, t > 0,

for all n ∈ N. Completely monotone functions are characterised in Bernstein’s theorem (see [46], p. 439) as the Laplace
transforms of positive and bounded measures. By a theorem of Schoenberg [47], a function C is radially symmetric and
positive definite on any d-dimensional Euclidean space Rd if and only if C(x) := ϕ(‖x‖2), x ∈ Rd, with ϕ completely
monotonic on the positive real line.
Bernstein functions are positive functions defined on the positive real line, whose first derivative is completely

monotonic. Once again, an intimate connection with (negative) definiteness arises, as γ is a radially symmetric and
conditionally definite function on any d-dimensional Euclidean spaceRd if and only if γ (x) := B(‖x‖2), withB a Bernstein
function.
Sufficient conditions for positive definiteness are stated in Pólya’s criteria [25] in R1; and in [27,30,48], who extend

criteria of the Pólya type to Rd.

3. Theoretical results

In this section we present theoretical results in a general setting, i.e.working with arbitrary partitions of d-dimensional
spaces as explained previously. In particular, we shall obtain permissibility criteria for quasi-arithmetic averages of
covariance functions on Rd. This will be done for (a) a general case in which the respective arguments of the covariance
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functions used for the quasi-arithmetic average have no restrictions; (b) the restriction to the component-wise isotropic
case; and (c) the further restriction to covariances that are even and defined on the real line. Also, we shall show some
properties of this construction. In particular, we refer to the associativity of quasi-arithmetic functionals and to the extension
of ordering relations in Proposition 1 to the case of compositions of covariance functions. The proof of these new results can
be found in the Appendix.

Remark 2. The proposition following subsequently is proven through straightforward arguments. The importance of this
result relies on its two corollaries, that establish permissibility criteria for the geometric andharmonic averages of covariance
functions, which represents a novel result in the literature.

Proposition 2. (a) General case. Let ϕ ∈ Φcm and Ci : Rdi → R (i = 1, . . . , n) be continuous stationary covariance functions
such that ∪ni Ci(R

di) ⊂ D(ϕ−1) and d = (d1, . . . , dn)′, |d| = d. If the functions xi 7→ ϕ−1 ◦ Ci(xi), i = 1, . . . , n, are
intrinsically stationary variograms on Rdi , then

Qψ (C1, . . . , Cn) (x1, . . . , xn) (6)

is a stationary covariance function on Rd.
(b) Component-wise isotropy. Let ϕ ∈ Φcm andCi : Rdi → R (i = 1, . . . , n) be continuous stationary and isotropic covariance
functions such that ∪ni Ci(R

di) ⊂ D(ϕ−1) and d = (d1, . . . , dn)′, |d| = d. If the functions x 7→ ϕ−1 ◦ Ci(x) are Bernstein
functions on the positive real line, then

Qψ (C1, . . . , Cn) (‖x1‖, . . . , ‖xn‖) (7)

is a stationary and fully symmetric covariance function on Rd.
(c) Univariate covariances. Let ϕ ∈ Φcm and Ci : R→ R (i = 1, . . . , n) be even, continuous stationary covariance functions
defined on the real line such that ∪ni Ci(R) ⊂ D(ϕ

−1) and |d| = n. If the functions x 7→ ϕ−1◦Ci(x) are continuous, increasing
and concave on the positive real line, then

Qψ (C1, . . . , Cn) (|x1|, . . . , |xn|) (8)

is a stationary and fully symmetric covariance function on Rn.

It is worth noticing that case (8) represents a covariance permissibility condition that does not depend on the Euclidean
metric, as it is function of the Manhattan or city block distance. For a detailed discussion of the limitations of the Euclidean
norm-dependent covariances, see [39].
The previous result is of particular importance for its implications of two classes of means, the geometric and harmonic

ones. Results are specified subsequently as corollaries.

Corollary 1 (Geometric Average). Let Ci : Rdi → R (i = 1, . . . , n) be continuous permissible covariance functions. Let θi
(i = 1 . . . , n) be nonnegative weights summing up to one. If the functions x 7→ − ln (Ci(x)), x > 0 satisfy any of the relevant
conditions described in (a), (b) and (c) of Proposition 2 above, then

QG(C1, . . . , Cn) =
n∏
i=1

Cθii

is a covariance function.

An example of this setting can be found by using the function x 7→ (1 + xδ)−ε , x positive argument, δ ∈ (0, 2] and ε
positive, also known as generalised Cauchy class [49]. One can verify that the composition of this function with the natural
logarithm is continuous, increasing and concave on the positive real line for δ ∈ (0, 1]. Another function satisfying these
requirements is the function x 7→ exp(−xδ), which is completely monotonic for δ ∈ (0, 1]. It should be stressed that these
permissibility criteria do not apply to compactly supported covariance functions, such as the spherical model [30].

Corollary 2 (Harmonic Average). Let Ci : Rdi → R (i = 1, . . . , n) be continuous permissible covariance functions. If the
functions x 7→ Ci(x)−1, x > 0 satisfy any of the relevant conditions described in (a), (b) and (c) of Proposition 2, then for θi ≥ 0
such that

∑
i θi = 1, the

QH(C1, . . . , Cn) =
1∑ θi
Ci

is a covariance function.

An example of this setting can be found by considering, as previously, the covariance function x 7→ (1+ xδ)−ε , x positive
argument, δ ∈ (0, 2] and restricting ε to belong to the interval (0, 1]. It can be readily verified that this function satisfies the
requirements of Corollary 2. Another function that satisfies these requirements is the so-called Dagum covariance function
[50], having expression (1+ x−δ)−ε , for δ ∈ (0, 2] and ε ∈ (0, 1]. We conjecture that these requirements are also satisfied
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for the Matérn class (1960), when its smoothing parameter belongs to some specified interval. Certainly, this property is
not satisfied when the smoothing parameter is either identically equal to 1/2 or tends to infinity, as these cases respond
respectively to the exponential model and the Gaussian one, for which it can be readily verified that Corollary 2 does
not apply.
In order to complete the picture about quasi-arithmetic covariance functions, it would be desirable to establish at least

some of their algebraic properties. The following results show some important features of the theoretical construction
obtained from Proposition 2.

Proposition 3 (Associativity). Consider the same arrangements as in Proposition 2 and set θi = 1/n (i = 1, . . . , n). Let
ϕ1 ∈ Φcm and ϕ2 ∈ Φ . If the functions x 7→ ϕ−1 ◦ϕ2(x), x 7→ ϕ−12 ◦Ci(x) (i = 1, . . . , k) and x 7→ ϕ−11 ◦Cj(x) (j = k+1, . . . , n;
t > 0 and k < n) satisfy any of the relevant conditions described in (a), (b) and (c) of Proposition 2, then

Qψ1

(
Qψ2(C1, . . . , Ck), Ck+1, . . . , Cn

)
(x1, . . . , xk, xk+1, . . . , xn), (9)

Qψ1

(
Qψ2(C1, . . . , Ck), Ck+1, . . . , Cn

)
(‖x1‖, . . . , ‖xk‖, ‖xk+1‖, . . . , ‖xn‖) (10)

and

Qψ1

(
Qψ2(C1, . . . , Ck), Ck+1, . . . , Cn

)
(|x1|, . . . , |xk|, |xk+1|, . . . , |xn|) (11)

and accordingly any coherent permutation of ϕ1, ϕ2 with Ci (i = 1, . . . , n) are covariance functions.

One may notice that we deviate from the associativity condition defined in [51] and (in a more general form called
decomposability) in [5]. Nevertheless, it can be readily verified that the associativity condition of Bemporad is always
satisfied for our construction, whereas the strong and weak decomposability of Marichal [5] is certainly satisfied by
construction (8), but not, in general, by constructions (6) and (7).

Remark 3. Proposition 1 applies mutatis mutandis to the case of quasi-arithmetic compositions of covariance functions.
This fact has some implications on the variance of the stationary random field generated by a quasi-arithmetic operator.
This will be discussed in the subsequent sections. Also, it is important to specify that other results, in particular inequalities
involving quasi-arithmetic operators, can be readily extended to the case of quasi-arithmetic compositions of covariance
functions. This is the case, for instance, of Theorem 1 in [52].

4. Using quasi-arithmetic functionals in the construction of nonseparable space–time covariance functions

4.1. Review of space–time covariance functions

Natural (physical, health, cultural etc.) systems involve various attributes, such as atmospheric pollutant concentrations,
precipitation fields, income distributions, and mortality fields. These attributes are characterised by spatial–temporal
variability and uncertainty that may be due to epistemic and ontologic factors. In view of the prohibiting costs of spatially
dense monitoring networks, one often aims to develop a mathematical model of the natural system in a continuous
space–time domain, based on sequential observations at a limited number of monitoring stations. This kind of problem
has been a motivation for the development of the spatio-temporal random field (S/TRF ) theory; see [28–30,41] for a detailed
discussion of the ordinary and generalised S/TRF theory and its various applications. In the following, we slightly change
notation in order to be consistent with classical nomenclature in the Geostatistical literature [53,54]. Let {Z(s, t), (s, t) ∈
Rd × R} be a real-valued S/TRF , where s, t denote respectively the spatial and temporal positions. Then, the function
Cs,t(s1, t1, s2, t2) = cov(Z(s1, t1), Z(s2, t2)), defined on the product space Rd × R × Rd × R, is the covariance function of
the associated Gaussian S/TRFZ if and only if it is permissible, i.e. satisfies (1). When referring to the spatial index, the term
homogeneity instead ofweak stationarity is equivalently adopted [28,30]. Thus, under the assumption of spatial homogeneity
and temporal stationarity (sometimes, simply called spatio-temporal stationarity in the weak sense), the underlying S/TRF ,
ergo denoted byH/S, has finite and constantmean and the covariance function, defined on the product spaceRd×R, is such
that cov(Z(s1, t1), Z(s2, t2)) = Cs,t(h, u), with (h, u) = (si − sj, ti − tj) ∈ Rd × R denoting the spatio-temporal separation
vector, and the h and u denoting the spatial and the temporal lags, respectively. The special case of isotropy in the spatial
component and symmetry in the temporal one is denoted as

Cs,t(h, u) := C̃s,t(‖h‖, |u|), (12)

where the ‖.‖ denotes the Euclidean norm. Obviously, (12) is fully symmetric.
Another popular assumption concerning the S/TRF model is that of separability, that is [41,83]

Cs,t(h, u) = Cs,t(h, 0)Cs,t(0, u). (13)

In other words, separability means that the spatio-temporal covariance structure factors into a purely spatial and a
purely temporal component, which allows for computationally efficient estimation and inference. Consequently, separable
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covariance models have been popular even in situations in which they are not physically justifiable. Another interesting
aspect is that separable covariances are also fully symmetric, whereas the converse is not necessarily true.
It has been argued in the relevant literature that separable models allow for ease of computation and dimensionality

reduction, as the space–time covariance matrix is obtained through the Kronecker product of the marginal spatial and
temporal ones. However, separability is an unrealistic assumption for many applications, since it implies a considerable loss
of information about important interactions between the spatial and temporal variations. Therefore, various techniques
have been introduced for generating different classes of nonseparable spatio-temporal covariance models. Most of these
techniques have been developed in the context of applied stochastic analysis and include H/S as well as non-H/S covariances
(e.g., [55–57,28–30,28,29,38,41,58–60]). Also, covariance models have been developed in the context of spatio-temporal
statistics (e.g., [61,53,62,63,54,64–67]).
Being the Laplace transform of positive bounded measures, completely monotone functions are particularly appealing

for the construction of stationary and nonstationary space–time covariances. In particular, they are intimately connected
with the concept ofmixture-based covariance functions, that has been repeatedly used by several authors. In the stationary
case, see [54,68,64,69,65,67]. In the nonstationary case, [70,71,33,43] have made use of this technique.
Also, mixture-based covariances have been developed with less sophisticated instruments than completely monotone

functions. This is the case of the so-called product summodel [62] and their extensions [72,73]. These groups of authors build
nonseparable space–time covariances through simple application of the basic properties of covariances seen as a convex
cone. The mixture-based procedures and the basic properties of covariance functions are properly combined in the present
paper.
In the following, a stationary RF with a quasi-arithmetic covariance function will be called quasi-arithmetic random field

and denoted with the acronym QARF.

4.2. On the representation and smoothness properties of QARF

In this sectionwe focus on the representation of a QARF and discuss the smoothness properties in terms of (mean square)
partial differentiability. These properties are intimately related to those of the associated covariance function.
Let Zi(s) be univariate mutually independent continuous weakly stationary Gaussian random processes defined on the

real line (i = 1, . . . , (d + 1); s ∈ R; and d ∈ Z+). In particular, let the process Zd+1 be continuously indexed by time t .
Consider also a (d + 1)-dimensional nonnegative random vector R = (R1, . . . , Rd+1)′ with Ri independent of Zi. Let the
univariate covariances Csi and the temporal covariance Ct be respectively associated with Zi, i = 1, . . . , d and Zd+1. In the
following we shall assume these covariances to be stationary, even, and of the type Csi(hi) = exp(−νi(|hi|)), i = 1, . . . , d,
and Ct(u) = exp(−νt(|u|)), with νi = ϕ−1 ◦ Ci, νt = ϕ−1 ◦ Ct , where the ϕ ∈ Φcm and Ci are positive definite and such that
the compositions νi are continuous, increasing and concave on the positive real line. Positive definiteness of this construction
is guaranteed by direct application of the theorem of [47] and according to a Pólya-type criterion (see [25], Proposition 10.6).
We are interested in inspecting the properties of the following stationary spatio-temporal scale mixture-based random

field, defined on Rd × R,

Z(s, t) := Zd+1(tRd+1)
d∏
i=1

Zi(siRi), (14)

with s = (s1, . . . , sd)′ ∈ Rd and t ∈ R. It can be easily seen that the covariance structure associated to this random field is
nonseparable, as

Cs,t(h, u) =
∫

Rd+1
+

exp

(
−

d∑
i=1

νi(|hi|)ri − νt(|u|)rd+1

)
dF(r), (15)

with h = (h1, . . . , hd)′ ∈ Rd, u ∈ R and r = (r1, . . . , rd+1)′ ∈ Rd+1, and where F is the (d + 1)-variate distribution
function associated to the randomvectorR. If F is absolutely continuouswith respect to the Lebesguemeasure, then previous
representation can be reformulated with respect to the (d+ 1)-variate density, say f , that is

Cs,t(h, u) =
∫

Rd+1
+

exp

(
−

d∑
i=1

νi(|hi|)ri − νt(|u|)rd+1

)
f (r)dr.

It can be seen easily that this construction allows for the case of separability if and only if the integrating (d + 1)-
dimensional measure F (or equivalently its associated density f ) factorises into the product of (d + 1) marginal ones, i.e.
if the nonnegative random vector R has mutually independent components.
Now, if we suppose that the measure F is concentrated on the line r1 = · · · = rd+1 = r and that ϕ−1 is such that

ϕ := L[F ], i.e. the Laplace transform of the positive univariate measure F , then we obtain that the QARF is a special case of
(15). For this random field, further inferencesmay bemade about its mean square partial differentiability if, additionally, we
assume the function t 7→ exp(−νi(t)) to be absolutely integrable on the positive real line (i = 1, . . . , (d+ 1)). In this case,
one can show (technicalities can be found in the Appendix) that the kth order mean square partial derivative with respect to
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the ith coordinate exists and is finite whenever the function χ(r) :=
∫
[0,∞) ω

2k
i ĉi(ωi; r)dωi, with ĉi := F −1[exp(−rνi)] =∫

R exp(−iωihi − rνi(hi))dhi is measurable with respect to F (i = 1, . . . , d).
It should be stressed that Proposition 1 gives somemore information about the characteristics of the underlying QARF in

terms of variance, as QARF can be ordered with respect to their minimum or maximum variance. Thus, the QARF generated
by ψ := A has the largest variance among all the other QARF, for any choice of ψ .
Finally, observe that the trivial quasi-arithmetic composition, obtained by setting Ci := ϕ ∈ Φcm (i = 1, . . . , d) preserves

permissibility and results in a model of the type

Cs(h) = ϕ
(
θ′h
)

where θ = (θ1, . . . , θd)
′
∈ Rd and h = (h1, . . . ,hd)′ is the arbitrary partition of the spatial lag vector. Thus, the trivial

case results in a composition of a completely monotonic function with an affine function, and can be used for modelling
geometric anisotropies.
It should be noted that, recently, there has been some interest in statistical modelling of gradients [74,75]. Large-scale

inference for random spatial surfaces over a region using spatial process models has been studied. Under such models,
local analysis of the surface (e.g., gradients at given points) has received recent attention. Learning about where the surface
exhibits rapid change is called wombling. The concept of rapid change in the spatial surface is central to wombling and is
mathematically formalized using spatial gradients. In this context, smooth covariance functions play a role in the statistical
modelling. Thus, our QARF constructions could have potential applications in such timely problems.

4.3. Applications of quasi-arithmeticity in the construction of stationary nonseparable space–time covariances

The results presented in the previous section can be useful in the construction of space–time covariance functions. For
this purpose, some remarks are in order. The functional in Eq. (4) should be adapted in the spatio-temporal case. It does not
make sense to consider a weighted average of a spatial covariance with a temporal one. Also, the use of weights forbids,
in this case, the construction of a nonseparable model admitting separability as a special case. For this reason, we suggest
to reduce the class in Eq. (4) to the case of trivial weights, e.g. θi = 1, ∀i. Then, it is more appropriate to call the class (4)
Archimedean, in analogy with the class built in [17]. It should be mentioned that one can easily prove that the restriction
to trivial weights does not affect the permissibility of the resulting covariance function, provided that either one of the
constraints imposed in cases (a), (b) or (c) of Proposition 2 is fulfilled. By analogy with the construction of copulas, and
following [17], the definition of a generator for ϕ ∈ Φcm is more meaningful.
Working this way, one can obtain some new families of covariance functions whose analytical expressions are familiar

for those interested in probabilistic modelling through copulas. It should be noticed that all the families we propose in this
section include separable covariance models as special cases, depending on the parameter values of the generators.

Example 1 (The Clayton Family). Consider the completely monotone function

ϕ(x) = (1+ x)−1/λ1 , x > 0, (16)

where λ1 is a nonnegative parameter with inverse ϕ−1(y) = y−λ1 − 1. Observe that (16) is the generator of the Clayton
family of copulas; refer to [17] for mathematical details about this class.

Also, consider the covariance functions Cs(h) = (1+‖h‖)−1/λ2 and Ct(u) = (1+|u|)−1/λ3 , for λ2, λ3 positive parameters.
It is easy to verify that ϕ−1 (Ci(y)) = (1 + y)λ1/λi (i = 2, 3) is a positive function whose first derivative is completely
monotone if and only if λ1 < λi. Under this constraint, and applying case (b) of Proposition 2, we find that

Cs,t(h, u) = Qψ (Cs, Ct)(h, u) = σ 2 [(1+ ‖h‖)ρ1 + (1+ |u|)ρ2 − 1]−1/λ1 (17)

is a valid nonseparable stationary fully symmetric spatio-temporal covariance function, with ρi = λ1/λi, λi > 0 (i = 2, 3)
and σ 2 a nonnegative parameter denoting the variance of the underlying S/T process. It is interesting that both margins
(the spatial and the temporal one) belong to the generalised Cauchy class. This is desirable for those interested in the local
and global behaviour of the underlying random field.
Another covariance function that preserves Cauchy margins can be obtained as follows. Consider the function x 7→

ϕ(x) = x−α , t > 0, that belongs to Φcm for any positive α, being the Laplace transform of the function x 7→ xα−1/0(α),
with α positive parameter and 0 the Euler Gamma function. Also, for the spatial margin consider Cs(h) = (1+‖h‖δ)−ε that
belongs toΦcm if and only if δ ∈ (0, 2] and ε is strictly positive. Finally, let the temporal margin be of the type Ct(u) = |u|−ρ ,
which is not a stationary covariance function but respects the composition criteria, as ϕ−1 ◦Ct is continuous, increasing and
concave on the positive real line if and only if α < ρ. Then, it is easy to prove that Qψ (CS, Ct)(h, u) is a valid space–time
function if and only if α < ε and α < ρ, and that this covariance function has margins of the Cauchy type.

Example 2 (The Gumbel–Hougard Family). Consider the completelymonotone function, the so-called positive stable Laplace
transform

ϕ(x) = e−x
1/λ1
, x > 0, (18)
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Fig. 1. Realizations of Gaussian RF with a Gumbel–Hougard covariance function: (a) λ1 = 1.01, λ2 = 1.05, λ3 = 5; (b) λ1 = 1.01, λ2 = 2.9, λ3 = 5;
(c) λ1 = 2.5, λ2 = 2.9, λ3 = 5; (d) λ1 = 4.9, λ2 = 4.5, λ3 = 5.

where λ1 ≥ 1. Eq. (18) admits the inverse ϕ−1(y) = (− ln(y))λ1 . This is the generator of the Gumbel–Hougard family
of copulas, whose mathematical construction and details are exhaustively described in [44]. Consider two respectively
spatial and temporal covariance functions admitting the same analytical form, i.e. Cs(h) = exp(−‖h‖1/λ2) and Ct(u) =
exp(−|u|1/λ3). Then, it can be easily verified that ϕ−1 (Cs(y)) = yλ1/λ2 , and ϕ−1 (Ct(y)) = yλ1/λ3 are always positive for
y > 0 and possess completely monotone first derivatives if and only if λ1 < λi, i = 2, 3. So we get that

Cs,t(h, u) = Qψ (Cs, Ct)(h, u) = σ 2 exp
(
−(‖h‖ρ1 + |u|ρ2)1/λ1

)
, (19)

is a permissible nonseparable stationary fully symmetric spatio-temporal covariance function, with ρi = λ1/λi, i = 2, 3 and
σ 2 as before. Fig. 1 shows realizations of Gaussian RF with this type of covariance under different settings of the parameters.

Example 3 (The Power Series Family). The so-called power series

ϕ(x) = 1− (1− exp(−x))1/λ1 , x > 0, (20)

with λ1 ≥ 1, admits the inverse ϕ−1(y) = − ln(1 − (1 − y)λ1). Suppose a spatial and a temporal covariance function of
the same analytical form as in Example 2. The composition ϕ−1(Ci(y)) = −ln(1 − (1 − exp(−y))λ1/λi), i = 2, 3, is always
positive for y > 0 and admits a completely monotone first derivative if and only if λ1 < λi. So we get that

Qψ (CS, CT )(h, u) = 1− (1− exp(−‖h‖))ρ1 − (1− exp(−|u|))ρ2 + (1− exp(−‖h‖))ρ1(1− exp(−|u|))ρ2 (21)

is a permissible nonseparable stationary fully symmetric spatio-temporal covariance function, with ρi = λ1/λi (i = 2, 3).

Example 4 (The Semiparametric Frank Family). Here we show that a stationary covariance function can be obtained, starting
from the proposed setting, even if the arguments of the quasi-arithmetic functional are not covariance functions.
The Frank family of copulas [76] is generated by the function ϕ(x) = 1

λ
ln
(
1− (1− e−λ)e−x

)
with inverse ϕ−1(y) =

−ln
(
(1− e−λy)/(1− e−λ)

)
. Nelsen [44] shows that, forλ positive,ϕ is the composition of an absolutelymonotonic function

with a completely monotonic one, i.e. a completely monotonic function. As far as the inverse is concerned, it is easy to see
that ϕ−1 ◦ γ (γ an intrinsically stationary variogram) is negative definite. Thus, the

Cs,t(h, u) = −
1
λ
ln
(
1+

(1− e−λγS (h))(1− e−λγT (u))
1− e−λ

)
,

for γS, γT intrinsically stationary variograms defined on Rd and R, respectively, is a stationary space–time covariance
function.
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4.4. Quasi-arithmeticity and nonstationarity in space

The direct construction of spatial covariances that are nonstationary is anything but a trivial fact. Only few contributions
refer to this kind of construction: see, among them, Christakos [28,29], Christakos and Hristopoulos [41] and Kolovos et al.
[60]. More recent contributions can be found in [33,71]. It seems that something more could be done concerning the
construction of nonstationary covariances, knowing that stationarity is very often an unrealistic assumption for several
physical and natural processes.
In this section, we show that both approaches discussed in [33,71], admit a natural extension through the use of quasi-

arithmetic functionals. We need to introduce some more notation concerning the restriction of the class Φcm. For abuse of
notation, a completelymonotonic function is the Laplace transform of some positive and boundedmeasure, so that ϕ ∈ Φcm
if and only if ϕ := L[F ].

Theorem 1. Let Σ be a mapping fromRp×Rp to positive definite p×pmatrices, F a nonnegative measure onR+, ϕ1, ϕ2 ∈ Φcm
and g a nonnegative function such that, for any fixed s ∈ Rp, hs = ϕ−12 ◦g(.; s) ∈ L

1(F). DefineΣ(s1, s2) = 1/2(Σ(s1)+Σ(s2))
and Q (s1, s2) = (s1 − s2)′Σ(s1, s2)−1(s1 − s2). Then,

Cs(s1, s2) =
|Σ(s1)|1/4|Σ(s2)|1/4

|Σ(s1, s2)|1/2

∫
∞

0
ϕ1 (Q (s1, s2)τ )Qψ2(gs1 , gs2)(τ )dF(τ ) (22)

with θi = 1, i = 1, 2, is a nonstationary covariance function on Rd × Rd.

Some comments are in order. One can see that Stein’s [33] result is a special case of (22), under the choice ϕ1(t) =
exp(−t), t positive, and ψ2 := G. So is the result in [71]. Nevertheless, the form we propose has some drawbacks that need
to be noticed explicitly. The first problem is that it is very difficult to obtain a closed form for expression (22), unless one
chooses ψ2 := G. Secondly, if one’s purpose is to generalise the Matérn covariance function [35] to the nonstationary case,
then the problem has already been solved by Stein [33] and his approach is in our opinion the most suitable, as he finds
a Matérn-type covariance that allows for a spatially varying smoothness parameter and for local geometric anisotropy. On
the one hand, the Matérn covariance possesses some desirable features (i.e., it allows for arbitrary levels of smoothness of
the associated random field). On the other hand, there are other covariance functions that are of considerable interest to the
statistical and scientific communities. In particular, we refer to the Cauchy class, whose properties (in terms of decoupling
of the global and local behaviour of the associated random field) have been discussed in [49]. After several trials, we did not
succeed in obtaining a Cauchy-type nonstationary covariance. Several examples of covariances can be derived that belong to
the class (22) and can be numerically integrated. Here, we propose some closed form that is obtained by lettingψ2 := G. As a
first example, take dF(τ ) = dτ , ϕ1(τ ) = τ λ−1, that is completely monotonic for λ ∈ (0, 1), g(τ ;αi, νi) = (1+α(si)τ )−ν(si),
where α and ν are supposed to be strictly positive functions of si (i = 1, 2) and additionally 0 < α(si), ν(si) < π . One can
readily verify that all integrability conditions in Theorem 1 are satisfied. Letting k = |Σ(s1)|

1/4
|Σ(s2)|1/4

|Σ(s1,s2)|1/2
Q (s1, s2)λ−1 and using

[3.259.3] in [82], one obtains the following covariance function

Cs(s1, s2) = kα(s1)−λB(λ, ν(s1)+ ν(s2)− λ)2F1
(
ν(s2), λ; ν(s1)+ ν(s2); 1−

α(s2)
α(s1)

)
,

where B(., .) is the Beta function, and 2F1(., ., ., .) is the Gauss hypergeometric function.
Another example is obtained by considering F(dτ) = exp(−τ)dτ , ϕ1(τ ) = τ ν−1, with ν ∈ (0, 1), g(τ ; si) =

exp(− α(si)
2 τ), with α(si) strictly positive (i = 1, 2) and using [3.478.4] of [82], we find that

Cs(s1, s2) = 2k
(
α(s1)+ α(s2)

2

)−ν/2
Kν

(
2
(
α(s1)+ α(s2)

2

)1/2)
is a nonstationary spatial covariance that allows for local geometric anisotropy, but has a fixed smoothing parameter.
It should be stressed that numerical integration under the setting (22) could outperform previously proposed models if

the objective is to find a different type of interaction between the local parameters characterising the integrating function
g . In all the examples proposed by Paciorek and Schervish [71] and Stein [33] the varying-smoothing, spatially adaptive
parameter is obtained as the semisum of a parameter acting on the location s1 with another one depending on the location
s2. This is a serious limitation of the method, as only one type of interaction can be achieved. Starting from a different
setting, Pintore and Holmes [77] obtain the same type of spatially adaptive smoothing parameters. Thus, quasi-arithmetic
functionals could be of help, at least through numerical integration. Finding a closed form for a functional different thanQG
remains an open problem to which we did not find any solution for the meantime.

5. Conclusions and discussion

In this work, novel results are presented concerning permissible spatial–temporal covariance functions in terms of
the theory of quasi-arithmetic means, and valuable insight is gained about their space–time structure. The theory of
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quasi-arithmetic means is used, together with the relevant permissibility criteria, to derive new classes of nonseparable
space–time covariances and to investigate their properties in considerable detail.
There are several possible avenues for research based on the results of the present paper. From the spatial and spatio-

temporal statistics perspectives, the QARF representation considered in this paper seems very promising. E.g., the QARFmay
provide a naive separability testing procedure, as follows. Consider the setΨcm of all possible generators of theQARF class and
letΘ be the set of parameter vectors indexing the generators, i.e.Θ : {θ ∈ Rp : ϕθ ∈ Φcm}. Thus, testing for separability of
the covariance function associated to the QARF is equivalent to testing for the null hypothesis ϕ0 := ϕ0(x; θ0) = exp(−θ0x),
x > 0. This is a topic worth of further investigation.
Another interesting topic is that of generator estimation. A tempting choice would be to consider the approach proposed

by Genest and Rivest [78], and that in [79] who find a serial version of Kendall’s tau and a relationship between this
concordance index and the generating function ϕ. In this case, one would extend the result of these authors at least to
the lattice Z2.
Future research effort would also focus on a deeper study of the properties of quasi-arithmetic covariances along several

directions. For instance, it would be interesting to find limit properties of the covariance functions specified through this
construction. Also, exploring the usefulness of our constructions to cross-covariance modelling would provide additional
interest to multivariate spatial and spatio-temporal modelling. Finally, questions such as adequacy of QARF constructions
to model large spatial data sets versus the use of tapered covariance functions would be a natural and interesting way to
explore.
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Appendix

A.1. Proof of Proposition 2

Recall that, for Bernstein’s theorem [46, p. 439], ϕ ∈ Φcm if and only if

ϕ(t) =
∫
∞

0
e−rtdF(r), (23)

with F a positive and bounded measure. Now, for the proof of (a), notice that, if ϕ ∈ Φcm, Eq. (6) can be written as∫
∞

0
exp

(
−r

n∑
i=1

θiϕ
−1 (Ci(hi))

)
dF(r).

Now, observe that if, for every i, ϕ−1 ◦ Ci is a variogram, then so is the sum
∑n
i=1 θiϕ

−1
◦ Ci. Then, by Schoenberg theorem

(1939), we have that for every positive r , the integrand in the formula above is a covariance function. So is the positive scale
mixture of covariances. This completes the proof.
For (b), it is sufficient to notice that, by Schoenberg theorem [47], the mapping γ : Rd → R+ is the variogram associated

to an intrinsically stationary and isotropic random field if and only if γ (h) = ψ(‖h‖2), for ψ a Bernstein function. The rest
of the proof comes from the same arguments of point (a).
For (c), notice that, being continuous, increasing and concave on [0,∞), each of the functionsϕ−1(Ci), is negative definite

onR, according to a Pólya-type criterion (see [25], Proposition 10.6). So is their sum. Sinceϕ ∈ Φcm, by Schoenberg’s theorem
(cf. [25]), we get once again the result.

A.2. Proof of Proposition 3

We shall only prove the result in (9), as (10) and (11) follow the same argument. Recall that here we impose θi = 1/n∀i.
Call h(1) = (‖h1‖, . . . , ‖hk‖)′ and h(2) = (‖hk+1‖, . . . , ‖hn‖)′, k < n. Also, let f1 = 1/n

∑n
j=k+1 ϕ

−1
1 ◦ Cj, f2 = ϕ

−1
1 ◦ ϕ2 and

f3 = 1/n
∑k
i=1 ϕ

−1
2 ◦ Ci. Thus, Eq. (9) can be written, using Bernstein’s theorem, as∫

∞

0
e−rf1(h

(2))−rf2◦f3(h(1))dF1(r)

where F1 is the distribution associated to its Laplace transform ϕ1. Thus, the proof follows straight by arguments of the
previous proofs.
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A.3. Proof of Theorem 1

The result is a direct consequence of the work of Stein [33]. First, observe that C(s1, s1) =
∫
∞

0 g(τ ; s1)dF(s1) <∞. Now,
we need to show that

∑n
i=1 aiajC(si, sj) ≥ 0, for every finite system of arbitrary real constants ai, i = 1, . . . , n. Write K

τ ,r,r ′
i

for the normal density centered at si and with covariance matrix (τ rr ′)−1Σsi . Also, by abuse of notation, ϕ1 := L[F1] and
ϕ2 := L[F2]. Then, by a convolution argument in [80, p. 27], by Bernstein’s theorem, and using Fubini’s theorem, we get

n∑
i,j=1

aiajC(si, sj)

= πp/2
n∑
i,j=1

aiaj|Σsi |
1
4 |Σsj |

1
4

∫
∞

0

∫
∞

0

∫
∞

0

(∫
Rp
K τ ,r,r

′

i (u)K τ ,r,r
′

j (u)du
)
(τ rr ′)−p/2

× e−r
′(1/2ϕ−12 ◦g(τ ;si)+1/2ϕ

−1
2 ◦g(τ ;sj))dF(τ )dF1(r)dF2(r ′)

= πp/2
∫
∞

0

∫
∞

0

∫
∞

0

∫
Rp

(
ai|Σsi |

1
4 K τ ,r,r

′

i (u)e−r
′1/2ϕ−12 ◦g(τ ;si)

)2
du(τ rr ′)−p/2dF(τ )dF1(r)dF2(r ′) ≥ 0. (24)

Thus, the proof is completed.

A.4. M.S. differentiability of the QARF

Recall that the existence of the kth order ith mean square partial derivative of Z is related to the existence of the 2kth
order ith mean square partial derivative of the covariance function. This is in turn related to the spectral moments through
the following formula [81, p. 31]:

(−1)k
δ2kC(h)
δh2ki

∣∣∣∣
h=0
=

∫
Rd
ω2ki dĈ(ω) <∞.

Under the setting in Section 4.2, we ensure the existence of the spectral density ĉ, thus∫
Rd
ω2ki ĉ(ω)dω ∝

∫
Rd
ω2ki

∫
Rd
e−iω

′hC(h)dhdω

=

∫
Rd
ω2ki

∫
Rd
e−iω

′h
∫
∞

0
e
−r
∑
i
θiνi(|hi|)

dF(r)dhdω

=

∫
Rd

∫
∞

0
ω2ki

(∫
Rd−1

e−iω̃
′h̃e
−r

∑
j6=i
θjνj(|hj|)

dh̃
)(∫

R
e−rθiνi(|hi|)dhi

)
dF(r)dω

where h̃ = (h1, . . . , hi−1, hi+1, . . . , hd)′ ∈ Rd−1 and where we repeatedly make use of Fubini’s theorem for standard
integrability criteria. Now, observe that, for the assumption of absolute integrability of exp(−rθiνi(x)) for any positive r ,
the last equality can be written as∫

∞

0

∫
Rd
ω2ki ĉ(ω̃; r)ĉ(ωi; r)dωdF(r)

where ĉ(ω̃; r) := F −1[Cr ](ω̃), with Cr(h̃) = exp(−r
∑
j6=i θjνj(|hj|)) and where ĉ(ωi; r) = F −1[Cr ](ωi), with Cr(hi) =

exp(−rθiνi(|hi|)). Then, by noticing that
∫

Rd−1 ĉ(ω̃; r)dω̃ = Cr(0̃) < ∞, one obtains that the integral above is finite if and
only if the function r 7→

∫
R ω

2k
i ĉ(ωi; r)dωi is F-measurable. Thus, the proof is completed.
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