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a b s t r a c t

In this paper, the variability of order statistics fromheterogeneous random samples is stud-
ied. It is shown that,without any restriction on the parameters, the variability of order statis-
tics fromheterogeneous exponential samples is always larger than that fromhomogeneous
exponential samples in the sense of Lorenz ordering. Finally, some applications to reliabil-
ity analysis and auction theory are pointed out.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Order statistics have received considerable attention in the literature since they play an important role in many areas
including reliability, data analysis, goodness-of-fit tests, statistical inference, outliers, robustness, and quality control. Let
X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics arising from random variables X1, X2, . . . , Xn. In the reliability context,
Xn−k+1:n denotes the lifetime of a k-out-of-n system. In particular, the parallel and series systems are 1-out-of-n and n-out-
of-n systems, respectively. A lot of work on order statistics has been done in the case when the underlying variables are
independent and identically distributed (i.i.d.); see [12,7,8] for more details. Studies of order statistics from heterogeneous
samples began in early 1970s, motivated by robustness issues. After that, a lot of work has been done on order statistics from
single-outlier andmultiple-outliermodels. Balakrishnan [6] synthesized developments on order statistics arising from inde-
pendent and non-identically distributed random variables. Onemay also refer to [15,25] for some reviews on various recent
developments.

The variability of order statistics has been studied by anumber of authors includingDavid andGroeneveld [11] andArnold
and Villaseñor [5]. Let X1, . . . , Xn be independent exponential random variables with hazard rates λ1, . . . , λn, respectively,
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and Y1, . . . , Yn be i.i.d. exponential randomvariableswith commonhazard rateλ. LetXi:n and Yi:n, for i = 1, . . . , n, denote the
corresponding sets of order statistics. Then, intuitively, Xi:n should exhibit more variability than Yi:n. This has been partially
confirmed in the literature. For example, Sathe [23] proved that if λ = λ̄, where λ̄ =

n
i=1 λi/n, then

Var(Xk:n) ≥ Var(Yk:n).

This result has been partially improved by Khaledi and Kochar [13] that if λ = λ̂ =
n

i=1 λi
1/n, then

Var(Xn:n) ≥ Var(Yn:n). (1.1)
More recently, Kochar and Xu [16] further improved this result by showing that (1.1) holds if λ ≥ λ∗, where

λ∗
=

n
i=1

1
i


n

k=1

(−1)k+1


1≤i1≤···≤ik≤n

1
k

j=1
λij


−1

.

It needs to be noted that λ∗
≤ λ̂ ≤ λ̄ [16]. It can be seen that all existing results in the literature require certain conditions

on the parameters for the comparison of variabilities of order statistics from heterogeneous and homogeneous samples.
It turns out that Lorenz ordering is quite suitable for the purpose of this comparison; see, for example, [2,5,18]. For order
statistics from the same exponential distribution, Arnold and Nagaraja [4] showed that, for i ≤ j,

(n − i + 1)E(Yi:n) ≤ (m − j + 1)E(Yj:m) ⇐⇒ Yj:m ≤Lorenz Yi:n, (1.2)
where≤Lorenz means the Lorenz order defined formally in Section 2. Kochar and Xu [16] showed further that Xn:n ≥Lorenz Yn:n
without any restriction on the parameterλ. This result states that the variability of largest order statistic fromheterogeneous
exponential samples is larger than the one from homogeneous exponential samples in the sense of Lorenz ordering. As a
direct consequence of this result, the coefficient of variation (defined in Section 2) γXn:n

has the following lower bound:

γXn:n
≥

 n
i=1

1
i2

 n
i=1

1
i
.

However, due to the complicated form of distributions of order statistics from independent and non-identical variables,
an analogous result for general order statistics has remained as an open problem. In this paper, we solve this problem by
showing precisely that

Xk:n ≥Lorenz Yk:n

for k = 1, . . . , n. This result does finally confirm that the variability in heterogeneous exponential samples is always larger
than that in homogeneous exponential samples. Consequently, a sharp lower bound for the coefficient of variation of order
statistics from heterogeneous exponential random variables can be readily obtained as

γXk:n
≥

 k
i=1

1
(n − i + 1)2

 k
i=1

1
n − i + 1

.

The rest of this paper is organized as follows. Section 2 introduces some pertinent notation and stochastic orders. The
Lorenz order between order statistics from heterogeneous and homogeneous random samples is studied in Section 3,
wherein the above stated general result is established. Finally, in Section 4, we mention some applications of the estab-
lished result to reliability analysis and auction theory.

2. Preliminaries

In this section, we recall some stochastic orders that will be used in the sequel. Let the random variables X and Y have
distribution functions F and G, survival functions F̄ = 1 − F and Ḡ = 1 − G, respectively.

Definition 2.1. X is said to be smaller than Y in the star order, denoted by X ≤⋆ Y (or F ≤⋆ G), if the function G−1F(x) is
star-shaped in the sense that G−1F(x)/x is increasing in x on the support of X .

Definition 2.2. X is said to be smaller than Y in the convex order, denoted by X ≤cx Y , if

E[φ(X)] ≤ E[φ(Y )]

for all convex functions.

Definition 2.3. Let X and Y be non-negative random variables having finite positive expectations. Then, X is said to be
smaller than Y in the Lorenz order, denoted by X ≤Lorenz Y (or F ≤Lorenz G), if

X
EX

≤cx
Y
EY

.
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The Lorenz order is closely connected to the so-called Lorenz curve, which is used in economics tomeasure the inequality
of incomes. The Lorenz curve LX , corresponding to X , is defined as

LX (p) =

 p
0 F−1(u)du 1
0 F−1(u)du

, p ∈ [0, 1],

where F−1(u) = sup{x : F(x) < u}. Then, the Lorenz order defined above can be equivalently defined in terms of the Lorenz
curve as

X ≤Lorenz Y ⇐⇒ LX (p) ≥ LY (p), p ∈ [0, 1].

It iswell-known that ifEX = EY , thenX ≤cx Y ⇐⇒ X ≤Lorenz Y . However, ifE(X) ≠ E(Y ), those orders are not equivalent.
It has been shown in the literature [18, p. 69] that

X ≤⋆ Y H⇒ X ≤Lorenz Y H⇒ γX ≤ γY ,

where γX =
√
Var(X)/E(X) denotes the coefficient of variation of X .

It needs to be mentioned that the star ordering and Lorenz ordering are both scale invariant. A detailed discussion of
these orders can be found in [18].

Definition 2.4. X is said to be smaller than Y in the usual stochastic order, denoted by X ≤st Y , if F̄(x) ≤ Ḡ(x) for all x.

For a thorough discussion on various stochastic orders, one may refer to [24].
We shall also use the concept of majorization in our discussion. Let {x(1), . . . , x(n)} denote the increasing arrangement of

the components of the vector x = (x1, . . . , xn).

Definition 2.5. The vector x is said tomajorize the vector y, denoted by x≽m y, if
j

i=1

x(i) ≤

j
i=1

y(i)

for j = 1, . . . , n − 1 and
n

i=1 x(i) =
n

i=1 y(i).

For extensive and comprehensive details on the theory of themajorization order and its applications, we refer the reader
to [19].

3. Lorenz ordering of order statistics

In this section, we study the variabilities of order statistics from heterogeneous and homogeneous exponential samples.
We first present some lemmas, which will be used in the sequel.

The following lemma, due to Lefèvre and Utev [17], presents a sufficient condition for the closure property of Lorenz
ordering under convolution.

Lemma 3.1. Let {Xi, i = 1, . . . , n} and {Yi, i = 1, . . . , n} be two sequences of independent random variables such that

Xi ≥Lorenz Yi,

and
EXi

EYi
= c, i = 1, . . . , n

for some constant c. Then,
n

i=1

Xi ≥Lorenz

n
i=1

Yi.

The following lemma discusses the mixture of Lorenz order, which is also of independent interest.

Lemma 3.2. Let X1, . . . , Xn be non-negative independent random variables with respective distribution functions F1, . . . , Fn. Let
Y be another non-negative random variable with distribution function G. If Xi ≥Lorenz Y for i = 1, . . . , n, then

F =

n
i=1

piFi ≥Lorenz G,

where pi’s are positive weights such that
n

i=1 pi = 1.
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Proof. Assume that X(Θ) has themixture distribution F , whereΘ is a discrete random variable with P(Θ = θi) = pi. Then,
we may represent Xi as X(θi), which is independent of Θ . We, therefore, need to prove that

X(Θ) ≥Lorenz Y ,

i.e.,

X(Θ) ≥cx
E[X(Θ)]

EY
Y .

It is enough to prove that

E [f (X(Θ))] ≥ E


f

E[X(Θ)]

EY
Y


for all convex functions f . Note that

E[X(Θ)] =

n
i=1

piE[X(θi)] =

n
i=1

piµi,

where µi = E[X(θi)]. Hence, it is equivalent to proving that

n
i=1

piE [f (X(θi))] ≥ E


f


piµi

EY
Y


. (3.1)

Since X(θi) ≥Lorenz Y , it follows that

X(θi)

µi
≥cx

Y
EY

,

i.e.,

E [f (X(θi))] ≥ E


f


µiY
EY


.

Therefore, we have

n
i=1

piE [f (X(θi))] ≥

n
i=1

piE

f


µiY
EY


. (3.2)

Since f is a convex function, using Jensen’s inequality, we have

n
i=1

piE

f


µiY
EY


≥ E

f


n

i=1
piµi

EY
Y


 . (3.3)

Combining inequalities (3.2) and (3.3), inequality (3.1) follows immediately. �

Remark 1. Xu and Balakrishnan [26] showed a similar result that if the density function g of G is such that g(ex) is log-
concave, and Xi ≥⋆ Y for i = 1, . . . , n, then

F =

n
i=1

piFi ≥⋆ G,

where ≥⋆ denotes the star ordering. It is known that star ordering implies the Lorenz ordering. Thus, Lemma 3.2 presents a
weaker result without any restriction on the density function.

The following lemma gives a sufficient condition for comparing convolutions of random variables in terms of Lorenz
ordering.

Lemma 3.3. Let {X1, . . . , Xn} and {Y1, . . . , Yn} be two sets of i.i.d. random variables and X1
st
= Y1, where st

= means equality in
law. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be two sets of positive constants. If

β(n)

α(n)
≥

β(n−1)

α(n−1)
≥ · · · ≥

β(1)

α(1)
, (3.4)
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then
n

i=1

βiYi ≥Lorenz

n
i=1

αiXi,

where α(i) and β(i) are the ith smallest elements of α and β, respectively.

Proof. Since the Lorenz ordering is scale invariant, the required result is equivalent to proving that
n

i=1
βiYi

n
i=1

βi

≥Lorenz

n
i=1

αiXi

n
i=1

αi

.

Since both sides have the same means, it is enough to prove that

n
i=1

βi
n

i=1
βi

Yi ≥cx

n
i=1

αi
n

i=1
αi

Xi. (3.5)

From the result in B.1.b of [19, p. 188], (3.4) implies that

β
n

i=1
βi

≽m
α

n
i=1

αi

.

Therefore, the required result in (3.5) follows immediately from Theorem 3.A.35 of Shaked and Shanthikumar [24,
p. 129]. �

Remark 2. It is easy to see that the i.i.d. assumption in Lemma3.3 can be relaxed to exchangeability by using Theorem3.A.35
of Shaked and Shanthikumar [24, p. 129]

Pǎltǎnea [22] proved that order statistics can be represented as a convolution of two independent random variables as
stated in the following lemma.

Lemma 3.4. Let S = {X1, . . . , Xn} be a set of independent exponential random variables with respective hazard rates λ1, . . . , λn.
For i = 1, . . . , n, let S[i]

= S \ {Xi}, and Xk:n and X [i]
k:n−1 denote the kth order statistics from S and S[i] with distribution functions

Fk:n and F [i]
k:n−1, respectively. Then, the (k + 1)th order statistic from S is the sum of two independent random variables X1:n and

Zk with distribution function
n

i=1

λi

Λ
F [i]
k:n−1,

i.e.,

Fk+1:n = F1:n ∗


n

i=1

λi

Λ
F [i]
k:n−1


,

where ‘‘∗’’ denotes the convolution, and Λ =
n

i=1 λi.

Now, we are ready to establish our main result presented in the following theorem.

Theorem 3.5. Let X1, . . . , Xn be independent exponential random variables with respective hazard rates λ1, . . . , λn. Let
Y1, . . . , Yn be i.i.d. exponential random variables with common hazard rate λ. Then,

Xk:n ≥Lorenz Yk:n. (3.6)

for all k = 1, . . . , n.

Proof. The proof is based on mathematical induction and proceeds as follows involving four steps.
Step 1: for k = 1 and all n ≥ 1, the assertion holds since both X1:n and Y1:n are exponential random variables.
Step 2: assume that (3.6) holds for some positive integer k and all n ≥ k. Then, it is enough to prove that (3.6) also holds true
for k + 1 and n ≥ k + 1. Let F (a)

k:n be the distribution function of the kth order statistic from an i.i.d. exponential sample of
size nwith common hazard rate a > 0. The induction assumption implies

F [i]
k:n−1 ≥Lorenz F

(γ )

k:n−1
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for n ≥ k + 1 and γ > 0, i = 1, . . . , n. From Lemma 3.2, it follows that

n
i=1

λi

Λ
F [i]
k:n−1 ≥Lorenz F

(γ )

k:n−1, (3.7)

where
n

i=1
λi
Λ
F [i]
k:n−1 is the distribution function of the randomvariable Zk defined in Lemma3.4, and F (γ )

k:n−1 is the distribution
function of random variable Uγ , which is independent of X1:n. Hence, (3.7) can be written as

Zk ≥Lorenz Uγ .

Since there is no restriction on the parameter γ , we may choose a proper γ , say γ0, such that

EZk = EUγ0 . (3.8)

Then, by using Lemmas 3.1 and 3.4, we have

X1:n + Zk ≥Lorenz X1:n + Uγ0;

that is,

Xk+1:n ≥Lorenz X1:n + Uγ0 .

In the following step, we will prove

X1:n + Uγ0 ≥Lorenz Yk+1:n. (3.9)

Then, the required result follows from the transitive property of Lorenz ordering.
Step 3: since Uγ0 is the kth order statistic from an exponential sample of size n − 1, it can be rewritten as

Uγ0 =
V1

(n − 1)γ0
+ · · · +

Vk

(n − k)γ0

where V1, . . . , Vk are i.i.d. standard exponential random variables; see, for example, [3]. Similarly, Yk+1:n can be represented
as

Yk+1:n =
W1

nλ
+ · · · +

Wk+1

(n − k)λ
,

where Wi’s are i.i.d. standard exponential random variables. Thus, it suffices to prove that

X1:n +

k
i=1

Vi

(n − i)γ0
≥Lorenz

k+1
i=1

Wi

(n − i + 1)λ
.

Note that X1:n can be represented as Vk+1/Λ, where Vk+1 is a standard exponential random variable, which is independent
of V1, . . . , Vk, and Λ =

k
i=1 λi, and so we need to prove that

k
i=1

Vi

(n − i)γ0
+

Vk+1

Λ
≥Lorenz

k+1
i=1

Wi

(n − i + 1)λ
. (3.10)

If Λ ≥ nγ0, then

1
Λ

≤
1

(n − 1)γ0
≤ · · · ≤

1
(n − k)γ0

,

and hence
1

(n−k)γ0
1

(n−k)λ

≥

1
(n−k−1)γ0

1
(n−k−1)λ

≥ · · · ≥

1
(n−1)γ0

1
(n−1)λ

≥

1
Λ

1
nλ

,

where the last inequality follows from the assumption that Λ ≥ nγ0. According to Lemma 3.3, (3.10) follows immediately.
Hence, all that is left is to verify that Λ ≥ nγ0.
Step 4: we now prove Λ ≥ nγ0 by contradiction, by first assuming that γ0 > Λ/n = λ̄. It is known from Corollary 2.1 of
Kochar and Rojo [14] that if γ0 > λ̄, then

Zk ≥st Uγ0 .

However, from (3.8), we have EZk = EUγ0 . Hence, it follows from Theorem 1.A.8 of Shaked and Shanthikumar [24] that

Zk
st
= Uγ0 .

We shall now invalidate this result.
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If Zk
st
= Uγ0 , then

n
i=1

λi

Λ
F [i]
k:n−1(t) = F (γ0)

k:n−1(t) ∀t ≥ 0. (3.11)

Let us denote λ = (λ1, . . . , λn) and

sk(λ) =


1≤i1<···<ik≤n

λi1 · · · λik , k = 1, . . . , n.

Then, we have (see, for example, [9])

F [i]
k:n−1(t) = s[i]k (λ)tk + o(tk), t → 0,

where

s[i]k (λ) = sk(λ \ {λi}).

Similarly, we have (see [3])

F (γ0)
k:n−1(t) =


n − 1

k


γ k
0 t

k
+ o(tk), t → 0.

From (3.11) and the assumption that γ0 > λ̄, it then follows that
n

i=1

λi

Λ
s[i]k (λ) =


n − 1

k


γ k
0 ≥


n − 1

k


λ̄k,

i.e., 
n − 1

k

−1 n
i=1

λi

Λ
s[i]k (λ) ≥ λ̄k. (3.12)

It can be seen that (see [22])
n − 1

k

−1 n
i=1

λi

Λ
s[i]k (λ) = (mk+1)

k+1λ̄−1,

where

mk+1 =


n

k + 1

−1

sk+1(λ)

 1
k+1

, j = 1, . . . , n.

Thus, (3.12) implies that

mk+1 ≥ λ̄,

which obviously contradicts Maclaurin’s inequality [21]. Hence, we should have γ0 ≤ λ̄.
Upon combining Steps 1–4, the proof gets completed. �

In terms of Lorenz curves, Theorem 3.5 states that the Lorenz curves of order statistics from i.i.d. exponential samples are
always upper bounds for those from independent heterogeneous exponential variables. In particular, it should be pointed
out that the Lorenz curves of order statistics from i.i.d. exponential samples are independent of the hazard rate λ. This point
can be easily argued by noting that the star order is preserved under the formation of order statistics from i.i.d. samples (see
Theorem 4.B.15 of [24]). In Fig. 1, we have plotted the Lorenz curves of X2:3 from exponential random variables X1, X2 and
X3 with parameters (0.05, 0.5, 2) and (0.05, 2, 6), respectively, and the Lorenz curve of Y2:3 from i.i.d. exponential random
variables Y1, Y2 and Y3 with common parameter λ.

Using Theorem 3.5 and (1.2), we readily obtain the following result.

Corollary 3.6. Let X1, . . . , Xn be independent exponential random variables with respective hazard rates λ1, . . . , λn. Let
Y1, . . . , Ym be i.i.d. exponential random variables with common hazard rate λ. Then, for i ≤ j,

Xi:n ≥Lorenz Yj:m

if

(n − i + 1)
i

k=1

1
n − k + 1

≤ (m − j + 1)
j

k=1

1
m − k + 1

.
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Fig. 1. The upper bound for the Lorenz curves of the second order statistic from three heterogeneous independent exponential variables.

As a direct consequence of Theorem 3.5, we also obtain the following result for general sample spacings.

Corollary 3.7. Let X1, . . . , Xn be independent exponential random variables with respective hazard rates λ1, . . . , λn. Let
Y1, . . . , Yn be i.i.d. exponential random variables with common hazard rate λ. Then,

Xk:n − X1:n ≥Lorenz Yk:n − Y1:n

for all k = 1, . . . , n.

Proof. From Lemma 3.4, it is enough to prove that
n

i=1

λi

Λ
F [i]
k:n−1 ≥Lorenz F

(λ)
k:n−1.

From Theorem 3.5, we have

F [i]
k:n−1 ≥Lorenz F

(λ)
k:n−1

and so the required result follows immediately from Lemma 3.2.

4. Some applications

In this section, we present two applications of the results established in the last section.

4.1. Reliability analysis

The lifetime of a k-out-of-n system can be represented as Xn−k+1:n. Reliability engineers are not only interested in
controlling themean life of a system, but also its variability. One important issue is in designing a systemwith less variability,
subject to given mean life constraints. This naturally leads to Lorenz order comparisons [5]. In this case, Theorem 3.5 leads
to the following insight with regard to k-out-of-n systems.

Proposition 4.1. The k-out-of-n systemwith homogeneous exponential components has a smaller variability than any k-out-of-n
system with heterogeneous exponential components.

The following result provides a sharp lower bound for the variability of the lifetime of an (n − k + 1)-out-of-n system.

Proposition 4.2. Let X1, . . . , Xn be the lifetimes of independent exponential components. Then,

γXk:n ≥

 k
i=1

1
(n − i + 1)2

 k
i=1

1
n − i + 1

.
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Proposition 4.2 can be used to develop a simple test for the heterogeneity of exponential samples, for example. The null
hypothesis is that the system is composed of the same type of components. Then, we may formulate the hypothesis testing
problem as

H0 : γ =

 k
i=1

1
(n − i + 1)2

 k
i=1

1
n − i + 1

versus

Ha : γ >

 k
i=1

1
(n − i + 1)2

 k
i=1

1
n − i + 1

,

where γ is the population coefficient of variation of the (n− k+ 1)-out-of-n system. Note that γ can be estimated from the
sample as

γ̂ =
S
X̄

,

where S is the sample standard deviation and X̄ is the sample mean of the available system lifetime data. The distribution
of γ̂ based on large/small samples has been extensively discussed in the literature; see, for example, [1] and the references
contained therein. The null and non-null properties of this test procedure can be studied in more detail, which we hope to
do in a future work.

4.2. Auction theory

It is well-known that asymmetries (heterogeneities) among bidders are widespread in auction markets. One important
question is how the differences in bidders’ distributions of valuations affect their behavior, and in turn their profits.
Unfortunately, the effect of asymmetries on the auctioneer’s revenue has not beenwell understood. Here, we briefly explain
how the asymmetries affect the revenue in the second price auction. The second price auction is an auctionmechanism that
the bidder who submitted the highest bid is awarded the object being sold and pays a price equal to the second highest
amount bid.

Maskin and Riley [20] showed that the revenue ranking between the second price auction depends generally on the
kind of asymmetries among bidders. Cantillon [10] proved that, under some suitable conditions, the expected revenue from
heterogeneous auction is larger than that from homogeneous auctions in the second price auction. It is well-known that, in
the second price auction, bidding one’s own valuation is a dominant strategy.

Let X1, . . . , Xn be n bidders’ valuations. Then, the revenue of the auctioneer in this setting is equal to Xn−1:n; see, for
example [20,10]. In this case, Theorem 3.5 leads to the following insight into the effect of asymmetries.

Proposition 4.3. Let X1, . . . , Xn be independent exponential random variables. Then, for the second price auction, the bidders’
payoffs from the asymmetric auction always possesses larger variability.
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