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Subclasses @#Z), -2 <pa -1, of the Levy class L of self-decomposable 
measures on a Banach space E are examined. They are closed convolution sub- 
semigroups of the semigroup of infinitely divisible probability distributions on E, 
defined as limit distributions of some prescribed schemes of summation. Each 
element of %&E) belongs to the domain of normal attraction of a stable measure 
with exponent -/I. Their Fourier transforms are characterized. The symmetric 
measures in %‘&l3) are shown to decompose uniquely into the convolution product 
of a symmetric stable measure with exponent -j3 and the probability distribution 
of a random integral of the form [C,,i, t dY(ts), where Y is a Levy process with 
paths in the Skorohod space DECO, co) and Y(1) has finite (-@-moment. 
Topological and algebraic properties of the random-integral mapping 
.fp: UP) + ~Cj(,,,) r dY( ts)] are investigated when E is a Hilbert space. As an 
application of the fact that 3s is a continuous isomorphism, generators for efi are 
found as the images of compound Poisson distributions. Finally, the connection 
between the distributions %‘b and thermodynamic limits in the Ising model with 
zero external field is pointed out. 0 1992 Academic Press, Inc. 

In a series of papers, random-integral representations were found for 
many classes of limit distributions in probability theory, including: 

(1) self-decomposable (L&y class L) distributions [ 111, 

(2) s-selfdecomposable distributions [S], and 
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(3) classes %D of distributions similar to the Levy class L, with /I > - 1 
C6 7, 91. 

In all of this work, the first aim was to produce a random-integral 
representation-random integrals with respect to some Levy process-from 
which characterizations in terms of Fourier transforms (characteristic func- 
tions) easily followed. This approach contrasts with the approach involving 
Choquet theory on extreme points of compact, convex sets taken earlier by 
various authors [13-15, 21-231. 

Second, the weak continuity of the random-integral mapping was 
proven. This allowed one to lind generators for the given class of limit dis- 
tributions as images of Poisson-type measures under the random-integral 
mapping in question (cf. [4, 123). 

The present paper deals with classes %,r for - 2 < /I < -1. It was pointed 
out in [9] that the random-integral representation cannot be completely 
achieved for these classes. We will find the Fourier transforms, however, as 
well as random-integral representations for the symmetric measures in 
these classes. We also demonstrate the continuity of a natural mapping 
between the classes %$(H), where H is a Hilbert space, and a semigroup of 
infinitely divisible measures on H with finite ( -/I)-moments. This leads to 
generators for the classes afi. 

Presenting our results in the context of measures on Banach spaces 
allows for their application to processes with continuous sample paths, i.e., 
measures on C([O, cc)). Furthermore, although the classes %p are defined 
as limit laws for sequences of independent but not identically distributed 
random variables, they arise naturally in describing the thermodynamic 
limits in the Ising model of ferromagnetism. This interesting connection is 
mentioned briefly in this paper, but we hope to investigate it further and 
include the case of the quantum lattice model, i.e., self-adjoint-operator- 
valued random variables. 

1. NOTATION AND DEFINITIONS 

Let E be a real, separable Banach space, E* its topological dual, and 
denote the pairing of E and E* by ( ., . ). By B = B(E) and 99 = 99(E) 
we mean the convolution semigroups of all Bore1 probability measures on 
E and those that are infinitely divisible, respectively. Weak convergence in 
B(E) is denoted by a. We refer the reader to [l, 16, or 201 for the basic 
facts on the theory of probability measures on Banach spaces. 

We shall need the following formula for infinitely divisible measures on 
E, known as the Levy-Khinchine formula [ 11: A measure p E B is 
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infinitely divisible if 
functional) ji satisfies 

P(Y) = exp 

JUREK AND SCHREIBER 

and only if its Fourier transform (characteristic 

+r Ce i<% Y > - 1 - i<x, Y> l&)1 dM(x) , 1 (1.1) JE\{OJ 
where x0 E E, R is a covariance operator, M is a positive measure on E 
finite outside of every neighborhood of 0, and B denotes the unit ball of E. 
In the sequel, we shall write p = [x0, R, M] if the Fourier transform of p 
can be represented as in (1.1). 

It is well known that 99 is the smallest subsemigroup of 9 closed in the 
topology of weak convergence of measures and containing all Gaussian 
measures on E (i.e., those for which M=O in (1.1)) and all Poisson 
measures (i.e., those in whose representation (1.1) R =0 and M has 
one-point support). 

For a >O, PEP, and G a Bore1 set in E, set (Tap)(G) =~(a-lG). We 
shall say that a probability measure PE%~= a@(E) if there exists a 
sequence v, E $9 such that 

T&q * v2 * . . . * V”)+ * p as n+o3. (1.2) 

Note that the convolution power in (1.2) is well defined because the vj are 
infinitely divisible. 

Another way of looking at the classes 4& involves the averaging of 
stochastic processes. If {,, e2, . . . are independent Levy processes (i.e., 
processes starting at 0 with independent and stationary increments) such 
that vi = di”( rj ( 1 )), then 

64(n-‘(<, + <* + . . . + &Jn-8)) = T,,,(v, * v2 * . . . * vn)*? 

These classes arose in the study of unimodality for class L distributions 
[18, 193. 

If p in (1.2) is not degenerate, then /I 2 -2 [S]. Moreover, SV2 consists 
of Gaussian measures only, while for j? > -1, ‘?Z!O can be characterized in 
terms of random integrals. Namely, 

Ifp>O, then~uEDifandonlyif~=~ 
[ 

[ tdY(ts) , 1 (1.3) (O,l) 

where Y is any DE( [O, I])-valued random variable with independent and 
stationary increments, and Y(O)= 0 (i.e., Y is a Levy process) [6]. The 
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class a,-, coincides with the Levy class L of self-decomposable measures, 
and 

e-‘dY(t) , 1 (1.4) 

where Y is a DE([O, cc))-valued Levy process such that E[log(l + 
I\Y(l)J\)] < cc [ll]. For negative fl we have 

If-1</3<0,then~~E,,ifandonlyif~=yys*P’ [ s,o,l, t dY(t’)], (1.5) 

where ys is a strictly stable measure with exponent -p and Y is a 
DE([O, co))-valued Levy process with E[((Y(1)((-8] < 00 [7,9]. 

The random integrals appearing above are understood to be defined via 
formal integration by parts. Note that in (1.4) and (1.5) the integrals 
involve the paths of Y over infinite time intervals, and the moment condi- 
tions guarantee the existence of those random integrals. Unfortunately, for 
- 2 < /I < -1 and Y(t) = tx, a.s., x0 # 0, the integral in (1.5) does not exist. 
Thus we cannot expect to have characterizations like those above for 
PE%~ with - 2 < j3 < -1. Furthermore, our general approach here is 
different from those employed by the first author in his earlier papers. Here 
we will study measures in eD by concentrating on how a factorization 
property that they must possess reflects itself in their Levy-Khinchine 
representations. In the past the approach involved first developing the 
appropriate random integral and then relating this to (1.1) (cf. [6, 7, 9, 
111). The descriptions in terms of the Levy-Khinchine representations 
follow easily from the random-integral information. 

2. FOURIER TRANSFORM CHARACTERIZATIONS 

Our main aim here is to describe Fourier transforms fi of measures 
p E qfi when - 2 < /? < -1. The starting point is the following equivalent 
definition of the classes %$ (for any /I 2 -2): 

p E @& if and only if for all t > 0 there exists p, E $9 such 
that p = (T,-,p)*‘-” * vu, (2.1) 

[6, Theorem 1.11. Hence the classes ‘BP are closed subsemigroups of 32. 

Remark 2.1. From (2.1) it is clear that each %$, /? < 0, is a subclass of 
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the class L of self-decomposable measures, the latter being characterized by 
(2.1) with /3 = 0. Furthermore, for /? d -1, we have from (2.1), 

Thus the symmetrization p” of ,u satisfies the conditions for the thermo- 
dynamic limit distribution in the Ising model for ferromagnetism in 
statistical physics [3], 

In fact, the factor g, in (2.1) is given by the following random integral 
L71: 

where Za( t) = j s dY(sS), 2 2 0. (2.2) 
ce-‘,I) 

Here Y is a DE( [0, co))-valued process with stationary, independent 
increments, and Y(0) = 0 a.s. In terms of Fourier transforms, one can write 

log@(Y(l))(-sy)&‘ds 1 (2.3) 
ce-1.1) 

[7, Lemmas 2.1 and 3.11. Note that (2.3) implies that 

$ clom-,o,s(YL, = -1% ~WWY)~ YEE*, 

and therefore the process Y in (2.2) is uniquely determined by p. Further- 
more, if 9( Y(l))= [a, R, M] and pr= [aiB’, RIB’, M?], then using (1.1) 
and (2.3) we obtain: 

P 
RY’= 3+8 

(1 -e-‘(fl+*))R 

M;B’(A) = -fl j--, 1) M( -s-IA) ss-l ds 

= -B I,,-, 1) fE I,(-sx) #-I dM(x) ds 

(2.4) 

(2.5) 

(2.6) 

for all Bore1 subsets A of E\(O). We are now in a position to present the 
main result of this section. 
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THEOREM 2.2. Let -~-C/I<--1 and p=[b,S,N]E%Q. Set R= 
-p-‘(2+/?)s. Th en there exists a unique v = [a, R, M] with finite ( -p)- 
moment and a stable probability measure 8, with exponent (-/3) such that 

p = 0, * [O, s, M’,8’], (2.7) 

where 

M’,B’(A)= +jco l,M(-s-lA)sB-l ds, AE~(E\(O}). 

Conversely, each measure of the form (2.7) belongs to afi. 

Proof. Using (1.1) we have 

( Te-‘p)*e-6’ = [e-‘lB+li(b+~~<,,~,,~~,xdN(x)),e-’(’+~)S,e-’~T~-,N]. 

(2.8) 

Since p satisfies (2.1), where p, is given by (2.3) and p,= [aIp’, Rjs’, MiB’] 
with a?, RIB’, and MI@) as in (2.4)-(2.6), we have the following decom- 
position: 

p=[b,S,Nl =[e-“B”‘(b+Jl<,,~,,~~,xdN(x)) 

+ a?, 0, e-@T,+N 1 
* [0, e--t(2+B)S + Rjs), 0] * [0, 0, MjB’]. (2.9) 

(As already noted, (2.3) implies that v = 8( Y( 1)) = [a, R, M] is uniquely 
determined by /.L) Since the Gaussian part in (2.9) converges to 
[O,-/?(2+B)-‘R,O] as t--*cq weinfer that 

+ aiB’, 0, e-@T,-,N 1 * [0, 0, Mja)] (2.10) 

also converges as t + cc. Hence both factors in (2.10) belong to shift- 
compact sets of measures. In fact, by [ 16, Proposition 54.121, the second 
factors are relatively compact; hence so are the first. For appropriate values 
of t’ --, cc we conclude that 

ww /* M’,BW= -p Jcol,~(-s-l~)sfi-lds, 
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and M g’ is a Levy measure. Thus 

M$?({llxll> l>,= -Blco l,W{llxll >s-‘})+~ ds 

= s ,/x,, > 1 Ilxll -pdWx) < ~0, 

which is equivalent to v= [a, R, M] E$&= (p~Y9: SE ll~ll-~dp(x)<co}. 
Furthermore, because of [16, Theorem 56.21, we have 

[O 0 M’B’] =c. [O 7) * 0 MC8’] 9) a, as t-co. (2.11) 

(Note that M~)({llxll=l})= -al,,,,, M((llxll =s-l})sB-lds=O because 
M is a cr-tinite measure.) Finally, (2.10) and (2.11) imply that 

p, = T,-,[b, 0, N]*e-Bt * G(ajD’), t > 0, (2.12) 

converges to, say, 8, as t + co. Taking t = --p-l log m, m = 42, . . . . we 
conclude that 0, is a stable measure with exponent -/?, which proves the 
decomposition (2.7). 

For the converse, first note that for a stable measure 8, with exponent 
--/I we have for all c > 0, 

8, = qef * 6(b,) (2.13) 

for some b, E E. Second, for 0 < C-C 1, 

TCM$‘(A)=c-8(-#?)[C0 lM(-u-lA)~B-ldu, 
.c 

and therefore 

csTCMc_“)(.)+(-j?)j~ l,M(-u-l.)uS-ldu=M$(.), 
c, 

which implies that [O, 0, ME)] satisfies (2.1); i.e., it is an element of aB. 
Finally, all symmetric Gaussian measures [0, R, 0] with covariance 
operator R satisfy (2.1) with pr = [O, (1 - e-*(2+B)) R, 01. Since %$ forms a 
convolution semigroup, it follows from (2.13) and the above that measures 
of the form (2.7) are in 4Yfi. This completes the proof of our theorem. 

COROLLARY 2.3. For -2 -C p < -1, each element of the class +& is 
contained in the domain of normal attraction of a stable distribution 8, with 
exponent - fi. Moreover, shift vectors x, for the class efl are of the form 
(2.4) with t = -/I-’ log m, m = 1, 2, . . . . 



CLASSESqb 201 

Proof. By definition, I belongs to the domain of normal attraction of 8, 
if there exists a sequence x, E E such that 

T,l,pIZ*m * 6(x,) =j 8, as m-tco. 

If /J = [b, S, N] E %!P, then by (2.12), 

since T,uB[O, S,O]*" = [0, m’+21BS,0] * 6(O), which proves the corollary. 

A similar argument shows for - 1 < /I < 0, each element of the class %$ 
is in the domain of normal attraction of a strictly stable measure yp with 
exponent - p [9]. 

COROLLARY 2.4. Let -2 < /I G -1. Zf p is symmetric and belongs to !& 
then there is a unique symmetric L&y process Y with IE[ (1 Y( 1 )/I -8] < co and 
a symmetric stable measure 9, with exponent -p such that 

t dY(ts) = 0, * Y(Zs( + 00)). (2.14) 

Conversely, if the integral in (2.14) exists, then p E qfl. 

Proof. For symmetric p satisfying (2.1) with pt given by (2.2) and 
(2.4)-(2.6), the Levy process Y is symmetric and als)=O. Moreover, both 
factors in (2.1) are conditionally compact. In fact both converge: the first 
to a stable measure 8, and the second to the integral in (2.14). This follows 
from the fact that 

co, R’,B’, M’,8’]=9 j” 
(031) 

where T( Y( 1)) = [0, R, M] with symmetric M. The proof is complete. 

Remark 2.5. Since R’,B’ = --/I(2 + fl)-‘R is a Gaussian covariance 
operator, the existence of the integral (2.14) is equivalent to the fact that 
the measure M’,8) in (2.7) is a Levy spectral measure on the Banach space 
E. As was already pointed out, it is necessary that the corresponding Levy 
measure M have finite (-@moment outside every neighborhood of zero. 
In fact, from a general fact in [8], we have 

If M’,8’ is a Levy measure on a Banach space E, then so 
is MT and s,,x,, z-6 llxll -JV dM(x) < 00 for all E > 0. (2.15) 
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This leads to the following problem: What are the Banach spaces E on 
which the converse of (2.15) holds? That is, can one characterize those 
spaces E such that: 

If A4 is a Levy measure on E with finite ( -fl)-moment 
outside every neighborhood of zero, then M’,B’ is a Levy 
measure. (2.16) 

Note that if (2.16) holds, then for all finite measures m concentrated on the 
unit sphere S of E, 

62(A) = -D I, j: lA(tx) tS-’ dt dm(x) - /I Js Jp lA(fx) tB-l dt dm(x) 

(2.17) 

is a Levy measure (corresponding to a stable distribution on E), since the 
second measure in (2.17) is always finite. Thus Cl, Chap. 3, Theorem 7.91 
implies that E is of stable type -/?. In fact, in spaces E of stable type - j?, 
(2.16) is true, provided M is a measure (not necessarily a Levy measure) 
that integrates llxll -B over E\(O). Thus condition (2.16) defines a subclass 
of the class of Banach spaces of stable type -/? (cf. [ 173 for more on 
geometric characterizations of normed spaces in terms of convergence 
properties of random series). 

Remark 2.6. In view of Theorem 2.2, Corollary 2.4, and [8, Proposi- 
tion 21, it may be of interest to study the following notion. A Banach space 
E may be said to be of L&y type A, where 1 is a finite measure on (0, co), 
if: 

For all Levy measures M on E such that 

l({t: t> llxll-l))dM(x)<~, 

M%4 = I,,,,, Jorn lA(fX) at) dWx)* A &Y(E\{O}), (2.18) 

is a Levy measure. 

Note that when dA(t)= -plco,,,(t) tfl-‘dt, then M<“>=M!$. Of course, 
on a Hilbert space, M$?’ is a Levy measure if and only if M is a Levy 
measure and jllx,, , , [(x/J -B dM(x) < co [7]. 
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3. CONTINUITY OF THE MAPPING YB, -2cj?<l 

In this section we will prove the continuity of a mapping 9O which is 
naturally suggested by Theorem 2.2. In the sequel, we restrict our attention 
to symmetric measures on a Hilbert space H. This is necessitated by the 
fact that an analogue of Theorem 3.1 below is not available for general 
Banach spaces. Let 

29; = 99;(H) = p E 19(H): p is symmetric, s H IIXII -B h(x) < co 
1 

. 

(3.1) 

For ~~99;’ let Y be a DH( [0, KI))-valued random variable with 
stationary, independent increments and Y(0) = 0 such that v = 9( Y( 1)). 
(In short, Y is a Levy process.) Let 

Lqv)=9 1 
( 

rdY(t@) ) 
(0.1) ) 

and define @@ = {9B(v): ~~99;) c4$. Because of Remark 2.6, the 
integral exists, or equivalently, M’,B’ in Theorem 2.2 is a Levy spectral 
measure. Of course, the class @p is a proper subclass of ??$. The mapping 
yfl can be expressed in terms of Gaussian covariance operators (positive- 
definite, trace-class operators on H) and L&y (symmetric) spectral 
measures. Namely, if v = [0, R, M] and gs(v) = [0, R’,B), ME)], then 

R’,B’= -/?(2+/3-‘R, M’,B’(A)= -pj M(-t-‘A)P-‘df. (3.3) 
(%l) 

(Pass to the limit in (2.5) and (2.6), respectively.) For reference we quote 
Theorem VI.5.5 in [20]: 

THEOREM 3.1. [b,, S,, NJ => [b, S, N] if and only if: 

(a) b,-+b in H. 

(b) For all bounded continuous functions f on H\(O) that vanish in 
some neighborhood of zero, 

(c) For every E > 0, the sequence T,., of S-operators defined by 
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is relatively compact, and 

lim lim inf (y, T,,, y) = lim lim sup (y, T,,, y) = (y, Sy). 
E--r0 n-m E--10 n-m 

Also recall that a family {U,} of S-operators is relatively compact 
provided 

and 

supTr U,=sup f (e,, Ude,)<cc 
a OL il=l 

(3.4) 

lim sup f (e,, U,e,)=O 
m-r02 OL n=m 

(3.5) 

for some (whence all) orthonormal basis {e,} of H. 
Before stating our main result, we need the following lemma. 

LEMMA 3.2. Let E be a separable Banach space, and denote by C,(E) the 
space of all bounded, continuous functions on E vanishing on a neighborhood 
of 0. For measures M, and A4 on E\{O} such that [,,X,,,E llxll -BdM,(x) 
c 00 for all E > 0, and similarly for M, the following are equivalent: 

(i) lim j” gdM,= j” gdM, gECo(E), n-m E E 

and lim sup 
s-00 n I ,,x,, >s IIxII-~ dM,(x) = 0. 

(ii) lim j g(x) llxll -p dM,(x) = / g(x) II-4 -B dM(x), ge C,(E). n-m E E 

Proof (i) * (ii) Pick E >O, and let g be an element of C,(E) 
bounded by c>O. Select s>O such that M({x: llxll =s})=O and 
supn jrtx,, ,s llxll -j dM,(x) < E/C. Apply (i) tof(x) = g(x) II4 -’ 1 +ll G,+)y 
which is bounded and whose discontinuity points have M-measure 0 (cf. 
[2, Theorem 5.2.iii]). Then 

lim j g(x) lI.41-B dM,(x) = j” g(x) llxll -B dWx). n-+m llxll<s IIXII s .Q 

Since sup, lh zs g(x) [(x(1 -B dM,(x)l GE, (ii) follows. 
(ii) * (i) From (ii) we infer that the measures IIxJ( -B d&l,(x), n > 0, are 

tight outside every neighborhood of 0. Hence the second condition of (i) 
follows. Furthermore, if g is bounded, continuous, and vanishes on a 
neighborhood of 0, then the same is true for g(x) llxl18. Applying (ii) to the 
latter function gives (i). 
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THEOREM 3.3. For v,, v E 99;(H), the following are equivalent: 

(4 v, =- v and lim n-r o. j, Ilxll -p dv,(x) = jH Ilxll -B dv(x). 

(b) @(v,) =-Ya(v). 

Proof. Write v, = [0, R,, M,] and v = [0, R, M]. By [l, Proposi- 
tion 3.21 (restated in terms of the distributions of the random variables), 
(a) is equivalent to 

v, * v and lim sup I s-00 n 
,,x,, >s ll~ll-~ dv,(x) = 0. 

Applying [lo, Theorem 21, (3.6) is equivalent to 

(3.6) 

v, * v and lim sup s s-co n 
,,x,, ,s IIxII-~ dM,(x) = 0. (3.7) 

If we now apply Theorem 3.1 and Lemma 2.2, the proof of our theorem is 
reduced to showing that the conditions 

6) lim,+ m lH g(x) IIxII-~ dM,(x) = jH g(x) IIxII-~ dM(x) for all g 
bounded, continuous, and vanishing on a neighborhood of 0 

and 

(ii) lim,,,liminf,+,(y, T,,,y)=lim,,,limSup,,,(y, T,,,Ey) 
= (y, Ry), where for each E > 0 the sequence T,,, is as in 
Theorem 3.1 with S, = R, and N, = M,, and is relatively 
compact 

are equivalent to 
(i’) lim,, o. 1 f d(M,)‘,B’ = j f dM’,B’ for all f bounded, continuous, 

and vanishing on a neighborhood of 0 
and 

(ii’) for each E > 0, the sequence (T,,J’,B’ of S-operators as in 
Theorem 3.1, with S, = (R,)‘,B’ and N, = (M,)‘,B’ as in (3.3), is 
relatively compact and satisfies 

lim lim inf (y, (T,,,):) y) 
c-0 n-a 

= lim lim sup (y, (T,,,)‘,B’ y) = ( y, R’,B)y). 
E’O n-t* 

C(i), (ii)] =z- [(i’), (ii’)] For any bounded, continuous function f on H 
vanishing on a neighborhood of 0, the function 

T(x) = ibl’“’ f(tx/\lxll) tS-’ dt 
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has the same properties. Since 

we obtain (i’) from (i). Furthermore, by (3.3), 

4s (y, x)* dM,(x) tS+l dt 
0 E Q llxll =s et-1 

B =-- 
2 + B (Y, x>* dM,(x) llxll GE 

+&*+fi I (y,x)” Il~ll-(*+~)dM,(x) . 
IIXII 2-E I 

Denoting by UMnlE the S-operator given by the second integral in the 
bracket, we have 

(y, (T 1"'~) = - n,e m &c-y, T,,,y)+ (Y, UM”,EY)J (3.8) 

Since 

(Y, U,“,,Y)=JHl(,,*,,>E)(X)E 2+8<~, x/ll4l>* lbll -B dM,(x), 

(i) and [2, Theorem 5.2.iii] imply lim,, ao (y, U,“,, y) = (y, U,,, y), 
y E H, provided M( { x: jlxll = E } ) = 0. Furthermore, since M integrates 
(y, f )* over the unit ball of H, the Lebesgue dominated convergence 
theorem gives 

lim s c2+~(y,x)* llxll-‘2+8’dM(x)=0. (3.9) 
e-0 E<IIXII<l 
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Finally, we have lim, -* ,, lim, _ Q, (y, UMM,E y) =O. Thus (ii’) follows from 
(ii) and (3.8), completing the proof that (a)*(b). 

[(i’), (ii’)] * [(i), (ii)] From (i’) we have that the sequence 
(M,)‘,B’, n > 0, is conditionally compact outside every neighborhood of 
zero. Thus for each q > 0 and E > 0 there exists a compact set K, s H\ (0) 
such that for all n > 0, 

E 2 (K)‘,B’ K n 1x1 llxll > ~1, 
s 

1 

3 -p M,(t-‘(K;n {x: J\x(I > q))) tPel dt 
l/2 

Since [ 1,2] . K, is compact, the sequence (M,) is conditionally compact 
outside every neighborhood of zero. Suppose M, is a limit point of (M,} 
with corresponding subsequence (M,,}. By (3.3) for any r > 0, 

wx (Ix: 11x11 > r}) 
co 

=- 
cl [, , ,,x,, > f 11x11 -B dM,(x) 1 tB-’ dt 

=r B 
s ,,x,, ,* Ilxll-’ dM,(x)- M,({x: llxll > r}), (3.10) 

and similarly for h4. If MO( (x: llxll = r}) = M’,8)( {x: I(x(I = r}) = 0, then 

:\rnw (M,)',B'( (x: IJxJJ > i-1) = Mg’( (x: IJxJJ > r}) 

,!‘-“, Md(Ix: Ilxll > r}) = Md{x: llxll > r}), 

so 

lim n,- o3 5 ,,x,, ,1 IIxII-~ dM,,b) = h(r) 

exists. Set 

k(t) = j,,X,, ,I llxll-B dM,(x) and g(t) = j,,X,, ,I Ilxll-B dM(x). 
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Since each h, is nonincreasing, by (i’), (3.10), and the dominated con- 
vergence theorem, 

s 00 
= h(t) tp-’ dz 

I 

for all but countably many Y. Thus the monotonicity of g and h imply 
g=h; i.e., for all r>O, 

lim n,~a, s ,,x,,,T llxll-pdM,,(x)=j,,~,,>~ llxll-BdWx) 

= 
f ,,x,, >, llxll -B dM,(x). 

Now [2, Theorem 5.43 implies that the conditions of Lemma 3.2.i obtain 
with MO in place of M; so applying Lemma 3.2 gives (i), with M replaced 
by M,,. Because of (3.8) and the monotonicity in E of all the expressions 
therein, we also obtain (ii) for the sequence M,. and some Gaussian 
covariance operator RO. Applying the implication (a)=(b) to v,,=> v0 = 
[0, R,, M,], we obtain Y8(vnC) * YB(v) = [0, (R,):), (&I,)$]. Since the 
mapping YB is one-to-one, we see that R0 = R and M, = M, yielding (i) 
and (ii). Thus (b) =z. (a), and the proof is complete. 

COROLLARY 3.4. Let v, = [0, R,, M,], v = [O, R, M] EYE;. The 
following are equivalent: 

(a) v,, * v and lim,, o3 SUP,, Jllxi,, r Ilxll -B dM,(x) = 0. 
(b) .Yfl(v,) a@(v). 

ProoJ This result follows from the fact that (a) of Theorem 3.3 is 
equivalent to (3.6), which is in turn equivalent to (a) of our corollary, as 
mentioned in the beginning of the proof of Theorem 3.3. 

The class Y9(E) of all infinitely divisible measures on E can be 
described as the smallest closed subsemigroup of 9(E) containing all 
symmetric Gaussian measures and all shifted Poisson measures of the form 
[x, 0, n&y)] for x, y E E and Iz > 0. Using the homeomorphism 9fi 
between 99;(H) and the symmetric measures in 9!&(H), we shall describe 
a set of generators of C&(H). 
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COROLLARY 3.5. For -2 < fl< -1, the class &i(H) of all symmetric 
measures in eD(H) is the smallest closed subsemigroup of 99(H) containing 
the set ‘Z$ of all symmetric Gaussian measures and all compound Poisson 
measures [0, 0, Uf,.,], where 

M,;(A)=/; l,.Jtz) tS-’ dt, A -‘(H\UW (3.11) 

for a, 1>0 and llzj[ = 1. 

Proof: Since M,, integrates J(x\J ’ A 1, it is a Levy measure on H. Note 
that for y #O and A = [U, Z] = {x: x/llxll E U, J(x(I EZ}, 

~(YEw)= -B IIYll-q~y” L4(~Y/llYllW% 

ie *., [O 0 ~(Y)(~)]EB 9 9 
For each nm>O, Ief’ A,,j~ H\(O) be pairwise disjoint Bore1 sets with 

diam(Anj) <n-l, O#A,, j= 1,2, . . . . and ui A,= H\(O), and choose 
x,,~ E A, for all n and j. For v = [O, 0, M] E Y95(H), set a,,j= M(A,), 
n, j = 1, 2, . . . . Then setting M,,=~~=, u,~~(x,,~), it is well known that 
[0, 0, M,] JV outside every neighborhood of 0 (cf. [l, p. 18, Ex. 131). 
Now, for large r, letting B, denote the closed ball of radius r about 0, 

I ,,x,, ,, I141-B dMn(x) 

< 1 J IlxnjII-‘dM 
{j:An,nL$#O] Anj 

< c 
{i:Attjn$Z0) 

2-” S,, IIXnj-xII -’ dM+ J 
[ 

(JxII -’ dM 
A W 1 

<2-%14(B;-,)+2-s 
s ,,x,,,r-l llxl’-BdM* 

By Corollary 3.4, Y8( [0, 0, M,]) =>48(v). 
Since Gaussian measures are invariant under fS, up to multiplication by 

the constant -p/(2 + /3), and YP is a homomorphism with respect to 
convolution, the proof of our corollary is complete. 

Remarks 3.6. (i) It might be worthwhile to note that the generators 
4 are of the same form for all b > -2 (cf. [6,8, lo]). Moreover, for 

68314112.4 
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B > -1, the measures M,, integrate J(xJI A 1, so they are LCvy measures on 
any Banach space [ 11. 

(ii) Since the thermodynamic limit distributions in the Ising model 
are closely related to the classes eD with - 2 < B < - 1 (cf. Remark 2.1), 
one would like to interpret the set of “generators” 4 in the context of 
statistical physics. This and similar questions will be the subject of a future 
work. 
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