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Abstract

In this paper we investigate the weighted bootstrap for U-statistics and its properties. Under
very general choices of random weights and certain regularity conditions, we show that the
weighted bootstrap method with U-statistics provides second-order accurate approximations
to the distribution of U-statistics. We shall prove this via one-term Edgeworth expansions of
weighted U-statistics.
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1. Introduction

Let X1, ..., X, be a sequence of independent and identically distributed (i.i.d.)
random variables with common distribution function (d.f.) F. For a symmetric
kernel function /(x,y), we define a U-statistic by

2
Up= > hy, (1)
tonln—1) 1<;<n ’

where h; = h(X;, X;) with E(h(X1, X>)) = 0. Further, we define

g(x) = E(h(X1, X2)| X1 = x) — 0.
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Throughout the paper, it is assumed that ag = Var(g(X1)) >0 and let, for each n>2
and real x,

Fy(x) :p(

Asymptotic normality of F,(x) was first established by Hoeffding (1948) [11] under
the condition ag < o0. A more accurate approximation to F,(x) can be obtained by
Edgeworth expansions, which were studied very extensively by various authors in the
past two decades, including Callaert et al. [4], Bickel et al. [3], Lai and Wang [15],
Maesono [18], Bentkus et al. [2] and Putter and van Zwet [21]. For our purpose in
this paper, it is enough to describe an Edgeworth expansion with remainder term of

size o(n~!/?). Define

Ein(x) = ®(x) — —=(x* — 1) (x), 2)

V(U _9)<x).

20,

where
y =0, {Eg* (X)) + 3E(g(X1)g(X2)h(X1, X2))}.

Then if E|h(X;, X5)]’ < oo and g(X;) is non-lattice, we have
sup | Fy(x) — Ein(x)] = o(n”'7?).

See Bickel et al. [3] for instance.
In the event that F is unknown, we can estimate F,(x) by the one-term empirical
Edgeworth expansion defined by

Ein(3) = #(3) = 572 = L),
where 7 is a consistent estimator of y. Clearly, Eln(X) provides a second-order
accurate estimate to F,(x). An alternative way to obtain a second-order accurate
estimate to Fy(x) is via Efron’s bootstrap in a more direct way. For a description of
this, see Helmers [10] or Lai and Wang [15] for instance.

In this paper, we shall investigate yet another method to estimate F,(x), namely
the generalized bootstrap or weighted bootstrap method for U-statistics. As its name
implies, the method involves placing random weights to each term /(X;, X;) in the
original U-statistic U,. The resulting statistic will be referred to as the weighted
bootstrap U-statistic of U,. The issue of consistency under different weights and
kernel functions has been studied by many authors; see Janssen [14], Huskova and
Janssen [12,13], Dehling and Mikosch [6] and others. It is the purpose of this paper
to study higher-order performance of the weighted bootstrap U-statistics under
various choices of random weights.

It is worth mentioning that the weighted bootstrap in the case of means has been
well studied so far. See the monograph by Barbe and Bertail [1] and the references
therein. In particular, results on the second-order accuracy under various situations
in the case of means were given by Weng [24], Haeusler et al. [8], Lo [17] and others.
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Finally, we remark that the results of this paper differ from those in Tu [23], in which
he constructed a weighted bootstrap U-statistic by using Jackknife pseudo-values.

The paper is organized as follows. In Section 2, we shall show that under rather
weak conditions, the weighted bootstrap method for U-statistics provides a second-
order accurate estimate to the target distribution function F,(x). We shall prove this
by way of establishing Edgeworth expansions for the weighted (bootstrap) U-
statistics, which is treated in Section 3. Proofs of all the main results are given in
Section 4. Finally, some technical details will be relegated to Section 5.

2. Main results for weighted bootstrap U-statistics

In this section, we introduce the weighted bootstrap U-statistics and study their
properties. The weight function can either be dependent or independent. For ease of
exposition, we shall deal with them separately.

2.1. Dependent weights

Let {W,;,1<j<n} be a sequence of random weights independent of the data
{X1, ..., X,,}. Define the weighted bootstrap U-statistic by

1
UW,1 =5 Z Wm‘I/V,l/hij. (3)
n*
There are many ways to choose the weights 17,,;. For instance, (3) reduces to Efron’s
bootstrap U-statistics if multinomial weights are chosen, i.e.,

(Wl ..., W) ~ Multinomial {n;n~", ... n7'}.

Another example is the Bayesian bootstrap U-statistics which can be formed by
choosing the weights {W,;, | <j<n} from a Dirichlet distribution, i.e.,

(rf1 Wi, .o,n”! W) ~ Dirichlet(1,1,...,1).

For more examples, see Mason and Newton [19], Dehling et al. [5] and Huskova and
Janssen [13]. Note that in all these examples, the weights {W,;, 1<j<n} are
dependent random variables satisfying

n
W,,j?(), Z an =n. (4)
=1
Here we choose the random weights of the following form:
Y, o= 1
W:?f with Y:Z; Y;, (5)

where Y;’s are i.i.d. strictly positive random variables (independent of Xj). Clearly,
the weights in (5) satisfy (4).
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Let P*(-) denote the conditional probability given X, ..., X,. Let

1 & 2 n—1
=Sy, Up=— S b=,
Apj n ; ik In I’l(n+1) Z ij n+1 ny

i<j
k#j
4 4 & n—1 2
2= v =ty <anj_ ; Um) | (©)
Jj=1 j=1

For an arbitrary random variable Z, write
K(Z) =1 —sup {|Eexp{it(Z — EZ)}| : EZ*/(8E|Z|*)<|f|<2n'/}. (7)

We shall elaborate more on the above definitions. The definitions of ¢2 and o7, are
two slightly different versions of the variance estimators of ¢2, which are related by
o2, = o>+ 4(n+ 1)">U2. The definition of x(Z) is related to the smoothness of the
r.v. Z, see Remark 2.2 below, for instance.

Our first theorem shows that the distribution function of the weighted bootstrap
U-statistic, appropriately centered and normalized, can provide a second-order
accurate approximation to the distribution function F,(x) of the standardized U-
statistic U,.

Theorem 2.1. Suppose that

(AD) E|h)* < o0,

(A2) Ely\ <o, x(Y))>0,

(A3) (EY\)? = Var(Yy), E(Y,—EY\)}/(Var(Y)))** =1,
(Ad) x(g(X1))>0.

Then we have

e (YU~ U

Oln

sup =on™'?), as. (8)

<x} — F,(x)

The proof of Theorem 2.1 follows easily from Theorem 3.1 in the next section and
the next theorem, which gives an Edgeworth expansion of weighted bootstrap U-
statistics.

Theorem 2.2. Suppose that conditions (A1)—(A3) in Theorem 2.1 hold, then we have

Oln

sup
X

=o(n™'?), as. 9)

where E\,(x) was given in (2).

Remark 2.1. The centering value U, in (8) cannot be replaced by U,. To see why,
note Uy, — U, = -2U,/(n+1) = OI,(n*I/Z). Therefore, by replacing Uy, by U,, a
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bias term of size O(n~'/?) will be introduced in the Edgeworth expansion. On the
other hand, ¢y, can be replaced by o, since o2, = o> + 4(n + 1) >U2.

Remark 2.2. If the distribution of Z is non-lattice or the Cramer condition
limy, o, |[Ee"| <1 is satisfied, then it can be shown that iminf, e, zy )62
k(Z)>0.

Remark 2.3. The weights Y’s satisfying conditions (A2) and (A3) in Theorem 2.1
can be easily found. For instance, one can choose Y to follow Gamma distribution
function with p.d.f.

fr(y) = e g ) (x),

I(o)y

where the two parameters (o, y) can be determined by the two restrictions in (A3).

2.2. Independent weights

Notice that the above chosen weight function W,; are dependent weights. It is
also of interest to consider the case of independent weights. In other words, let
&; be 1.1.d. random variables independent of X;. Here, the weights £;’s need not
be non-negative. Define the weighted bootstrap U-statistics with independent
weights &’s by

1
n oy
Note that Ue is of random quadratic form. Write
pe = E&y, ré = Var(&)).

Dehling and Mikosch [6] discussed the consistency of the distribution function of Uk
under the conditions u; = 0 and r% = 1. The next theorem gives a parallel result to
that of Theorem 2.1.

Theorem 2.3. Assume that
(Bl) E|h12|3<OO, K(g(Xl))>Oa

(B2) El¢ <0, x(&)>0,
(B3) (E&\)? = Var(&)), E(& — E&) /(Var(é)? = 1.

Then we have

(Y )

HeTeOn
where a, is defined as in (6).

=o(n™'?), as., (10)

}—mm

sup
X
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Variations of the last theorem exist. For instance, define

- Z(f f] — ) (& — Hf)(fj - Hé)) (hj — Uy).

i#j Ti

We have the following theorem.

Theorem 2.4. Assume that the conditions of Theorem 2.3 hold except that (E&))* =
Var(&,) is now removed. Then we have

*{\/ﬁﬁé

-2
=o(n , a.s. 11
e (1) (1)

sup|P
X

<x} — Fy(x)

The rates of convergence in (11) can be improved under slightly higher moment
conditions.

Theorem 2.5. Suppose that

(CD) Elha|*< o0, x(g(X1))>0,
(C2) E|g <0, «(&)>0,
(C3) B, - E¢))/(Var(é))* = 1.

Then we have

*{\/ﬁUcr

HeTeTy

= 0(n*logn), a.s. (12)

sup |P

<X} — Fy(x)

3. Edgeworth expansion for weighted U-statistics

To prove the main results of the last section, we need to establish Edgeworth
expansions for weighted U-statistics, which could also be of independent interest.
Edgeworth expansions for (non-weighted) U-statistics have been studied very
extensively in the past two decades. References are Callaert et al. [4], Bickel et al. [3],
Lai and Wang [15], Maesono [18], Bentkus et al. [2] and Putter and van Zwet [21].

Let X1, ..., X, be a sequence of independent and identically distributed (i.i.d.)
generic random variables, which could be different from those given in previous
sections. Let £(x) and y(x, y) be real functions in its arguments. For some sequences
of real numbers b,;, ¢,; and d,;, we define

T, = B Z bn]X +- Z ané 3/2 Z dnljw is ]

i<j

where B2 = Z};] bﬁj. Many statistics of interest can be put in the form of 7,. In this

section, we shall derive an Edgeworth expansion for the distribution of 7). As an
application, we shall refine an Edgeworth expansion obtained by Bickel et al. [3].
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Furthermore, the expansion will also be useful in proving the main theorems
presented earlier in this paper.

Define
Esy(x) = ®(x) + Liy(x) + Lay(x),
where
Lln Z - bn]AX]/Bn) - ¢(X)) - % ¢<2) (X),

Loy(x) = Kl,,di< )(x) — K2p®(x)
with K, and Kzn given by

Kn I’lB" Zl: bnjcnj Xlé(Xl))

1
KZn W Z bnibnjdnijE(XlXle(leXZ))~

n1<i<j<n

The next theorem states that E,,(x) provides a second-order accurate approximation
to the distribution of 7,, under appropriate conditions.

Theorem 3.1. Suppose that

DD Ex, =0, ExX?=1, E|X|’<w, x(X;)>0,
(D2) Eé(Xl) =0, E[w(XlaXZ)‘XI] =0, =12

(D3) For the sequences by;, c,; and dy;j, there exist absolute constants Iy, ..., l4, which
are independent of n, F, £ and \, such that
1 n
=S bi=0h>0, =Y byl <h< 13
Z 1 n ]:Zl | ]| 2 <00, ( )
1 n
3 i <h< oo, m—z Z dy;<ly<oo, for all m>1. (14)
J= i=
J#l

Then we have that for any n=2,
sup |P(T,<x) — Ep(x)| < Cln*l(Xl)(i +p+ ﬁ)nfz/3 logn + Cf*n~", (15)
X
where
p=E&(X), B=EXi]’, and I =Ey* (X, X>).

In the remainder of this section, we shall give a more explicit expression of E,,(x).
Write

1, = sup| Ly, (x 633 Z by

n /
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Under condition (13), we shall show that 11, = o(n‘l/ 2). In fact, similar to Theorem
2.3 of Hall [9], it follows that

I,< CB, > by E(1X\ P I{|by X1| > B,})
=

+ GBS by E(XI{|byXi| < By}, (16)
=1

where (here and below) I{B} denotes the indicator function for a set B. By applying
(13), we get that for all 1<j<n,

B,1>lll/2nl/2 and |b,1j|<121/3n1/3.

Therefore, there exists a constant Cy>0 such that
E(IX\ P H{|byX\| > B.}) <SE(IX\ P I{| X\ | > Con'°}),
|bu| E(XTT{|by X1 < By })

<BEIXi|" + |by| E(X{I{B}* < |by X1| < B.})
<BPEIX\* + BE( X1 T{|X1|> Con'/}).

These estimates, together with (16), imply II, = o(n~'/?). Therefore, combining (16)
and Theorem 3.1 yields the following theorem.

Theorem 3.2. Suppose that
Ehy,<oo, Elg(Xi) <o, x(g(X1))>0.

Then for all n=2,
sup |Fn(x) - Eln(x)|

2 3 3\ 2
C <Eh12+E|Q(/§1)| >n2/3 logn+ Cy <EQ(X1)| ) !

S\ @2 T . 3

+ S B0 PHlgx0) 2 Vg
+ SR (g0n) [ Hlo(x) < Vo ) )

4

where E,(x) was given in (2).

4. Proofs of main results

In this section, we give proofs of the theorems. Since Theorem 3.1 will be used in
the proofs of other theorems, we shall provide its proof first.
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From here on, we shall denote by A, A4y, A;,..., some positive constants
independent of n, and by C, Cy,Ci,..., some positive absolute constants
independent of n, F and /. All these constants may be different at each occurrence.

For ease of presentation, we write >, . and >, for >, and >0 i iipc,
respectively.

4.1. Proof of Theorem 3.1

We may assume n>=ng, where ng is chosen suitably large. Write

(0) = (1),

1 _p
Q1,1 <1+Z 7;(t 2t2>e 22

(pz,,(z) — (zzKln — PKy)e P2,

m m—1 n
nm :Ill Z n]é +n73/2 Z Z dm]lﬁ A/HX
Jj=1 i=1 j=i+l

Simple calculation shows that

[ e () + Lin()] = 01, (1),

o0

o0
/ AL (x) = ity (1),

o0
From these and Esseen’s smoothing lemma [20], it follows that (noting E|X; |3 =1)
sup|P(T, <x) — Exn(x)|
X

dE2n (.X)

dx

N

[ 1B = 01,(0) i, (0] i+ s
tH<n

X

4
<Z I_jn+C1n72/3(|K1n‘ +|K2n|+ﬁ)a (18)
=1

where

Iln _ / |t|71 |EeitT,, _ EeitSn _ l.lE(An7,1€”S")| dt
| ‘<nl/10

fn= / 1 [Ee"™S — ¢y, (1)),
[f) <n!/10
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s,
b= [ B = oy (0] d
7] <n!/10

L, = / |V T d.
n'/10 < |t| <n?/3

To prove (15), in the following, we obtain bounds for each term in (18).
We first deal with the terms |Kj,| and |K3,| in (18). Note that (13) implies that

hn<By<>  (1+1by[)<(1+h)n (19)
J=1
Also by the Cauchy-Schwartz inequality, we have
> (bulby) < (Z |5y ) (Z b5j>, k=2,3. (20)
=1

i<j

Hence it follows from (19) and (20) that
n

(Kin| < - Z (bij +C5j>(] +p)<C1n_l/2(1 +p),

1
4nB,
1 _
|K2n|<mz (bpibh; + dy) (1 + ) < Con™ 2 (14 2).

noj<j

Next we investigate the terms [;;, for 1 <i<4 in (18).
First we estimate /;,. By Taylor’s expansion,

. . . . 1
et = ¢tSneitdnn — it (1 +itdy 45 (if) A5 e 'M”'”"), Inl<1.
Using (14), it can be easily shown that
2
EA,,,<Cn” 2m(2 + p).

Thus, we have
1
sy [ HE@) di<Cr s p).
2 |t|<n!/10 ’

Secondly we estimate I,,. Using similar arguments to the proof of Lemma 5.2.1 in
Hall [9] and also noting that |b,;|</s*n'/3 for all j, we have

2
12n< 82 ;:1 bnj+ C2 <B3 E |bn]| E|X1| )

n j
<O P+ G ' (E| X )

Thirdly we estimate I3,,. For simplicity, we write

by X;
%n‘lv lplj_ W]lp( is j)

Zj:
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Let R(z) = €” — 1 —iz. Using the inequality |R(z)|<|z|* for all 1<a<2 and the
assumption EX? = 1, we find by Taylor’s expansion that

EW; oM ZiZ)))

=EW;(1+itZ; + R(tZ;))(1 + itZ; + R(tZ;)))

= — PEW,;ZiZ;) + EQ;l(i)(ZiR(1Z)) + Z;R(tZ:)) + R(tZ)R(1Z;)]}
— £y + 015(2),

where /; and 0,;(¢) satisfy
Iy = |buibjcui| B, | E(Xi Xt (X1, X2))| < C2V2 (b + i) [, (1)

ni” nj

101(0)| < 211 PE(Wy 22| + 1,2,2]))
< 20tPEIX X5 (X0, Xo) (bl Bug] + (1Bus bl |/ B

< ClPPOB) (A2 + bl B + b B2) ¥, (22)
m/ )
Therefore, we have
n73/2 Z E(lﬁyeits” S -3/2 Z it(Zi+Z;) E(eit(S,ﬁZ;ij))
i<j i<j
:n_3/2ley+01,] H i (2
i<j k#i,j
i<j k;él j
=073 (P Py + 03(1))
i<j
= — Kol 4 Ruu(1), (23)
where, for |¢|<n'/!° and suitably large n, we can apply Lemma A.4 in the Appendix
to obtain
2 ﬁ 1 _p»
1025(2)| = H () —e <C<ﬁ+ﬁ (b7 +b;21_/)) (2 + e /8,
k#i,j

42
1035(1) [ < 41015(1)e ™/ + 1l 1025 ()|,

1 _
|Ru(1)| < 3/22(‘”91:/ >|+|1,,|(\f Z(bii—i-bij))(zz—l—z(’))e /8

i<j

< C BB  4n 2B) (1] + 1 )e
< () ( 3/4(14_'[5) +ﬂ2 71)(|l| + |l|6)eit /8
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Similarly, we have that

1
ZZ )etS) = itKi,e % 4 Rys(1), (24)

where  R,s(r) satisfies  |Rys(2)|<C(n*(p + ) + )|t + |1 )e "8, Tt
follows from (23) and (24) that

Ly <Cin 0+ p+ )+ Con ™' B (25)
Finally we estimate Iy,. First define
Q = {k : min(1/2, b/5*) < \/albu|/B.<2b )1} (26)
Then from Lemma A.5 in the Appendix, there exists 0 <ky <1 such that
#{Q} = kon, (27)

where #{Q} denotes the number of elements in Q.

Without loss of generality, we assume that lz/lf/2>1/2 and by, ..., by €9Q.
For 2<m<kyn, write

1 & o
Su=2 > buXe, Sp=— Z b X
B, k=1 B, k#i,j
Similar to (17)—(22) of Bickel et al. [3], we find that for any 2<m<kyn,
|Ee" T St | 41l Pm(i+ p)/? sup  |E"SH | + Cn2m(i + p)2.(28)

I1<i#j<n

Since b, €Q and lz/lfﬁ} 1/2, i.e. there exists C such that

1/2<V/lbul /By < C< o0, (29)
it is well known that there exists ¢y >0 such that when |¢]| < %(E\XIP)*I\/E,
|EeztS,n

gefc“mt“/n, ‘EeltS,,', <e*£‘o(m72)t /n‘ (30)

Choosing m = [M} + 1, it follows from (28) and (30) that

Cotz

/ i B T |de< C(1 + 2+ p)n 4. (31)
W<l < EXP) A

On the other hand, it follows from x(X;)>0 and (29) that if
HEX )" n<|t|<2n' and n is suitable large, then

ithyy

|Ee B

<1 7K7(X1).

Therefore, it can be easy shown that when I (E|X,]’)"'/n<|f|<2n"/'0 and n is
suitable large,

|E€”S’” | <e7mx(X|) and |EeitS,‘;xf| <€7<l7172)K(X1)~
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These inequalities, together with (28) by choosing m = [4logn/x(X;)] + 2, imply
that

/ ‘1‘71|Eei[Tn|dl<CKil(Xl)(l +/1+p)n*2/3 log n. (32)
%(E\X1|3)’]ﬁ<|t\<n2/3

From (31) and (32), it follows that
L, <Cr ' (X)) (1 + A4 p)n 2 logn.

Substituting the above estimates for [,’s and Kj,’s into (18), (15) follows
immediately and hence we complete the proof of Theorem 3.1.

4.2. Proof of Theorem 2.2

To use Theorem 3.1, put

w,=EY1, t =Var(Yy),

1 _ 1
77/:,5_()/]_#))% 1/]:; 17]’
y j=1
n—1
bnj = dpj — T U]n7 dm’j = hl] — U]n.

From the above definitions, it follows that

— _ 1 2 1 &

Y = Hy + nty, ) Z dnij = Ulnv - Z dnij = bniv
Az n L

J#i

VY — 5 = (Vi = ) + 1, (Y = ) + (Yo = 1) (Y = py).

Therefore, we obtain (recall u} = 7} and hence EY{ = 2u3)

1 _ _
ﬁ(n_z 3 vivm - Y U1n> < sz}
i#]

1 & —
(Y;Y; — ﬂ)zf)dnij +n_2 Z <2:“; - Y]‘Z)U1n> <Y x}
=1

{
{
(o St
(

3/2
\/ﬁ(ﬁ” — I’l/O'ln i<

Z niq/dmj + R, < (1 + 2ﬁ+ﬁ2)x>

7i(x)<(1 +n2>x+Rn1>, (33)
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where
2u? — Y? U 1
o y J _ 1n
q; .“f ’ n I’l3/20'1 ; qj
Gn = \/_O'm ]Z Mibw + 75— 3/2 ; i1l
i Ui
(x) = N (giI{lg;| < Vn} — E{q;I{|q;| <v/n}}) — 2,

— e S (Elgt{lg]> Vi) - g1 {lg]> Vi),
n =1

Note that in (33), we have turned the distribution function of the weighted
bootstrap U-statistic v/n(Uw, — Uy,)/01, into the distribution of some statistic of
the form given in Theorem 3.1, which can now be used for our proof below. First we
shall prove the following relations:

sup  P(|Gy|=|x|) = O(n " logn) as., (34)

x2>5logn

sup  sup =o(n™'?), as. (35)

x2<10logn Y

P <Gn +% 2”: ﬁj(XKy) — En(»)
J=1

Denote by E* the conditional expectation given the data X, X5, ..., X,,. In terms of
Lemmas A.1-A.2, En? =1 and no?, = 4" it follows from Theorem 3.1 that

for any fixed xeR,

(G +- Z j(x ) - £5,()

<O () (14 E*n(x) + Elmy [ )n > logn + Cy(Elny [')*n!
<A1+ x*)nPlogn, as., (36)

j=1 n]’

sup

where E5, (y) = @(v) + Lin(y) + Lan(y),

bt =3 £ {0y i)~ 901} - 507
8

5/2,.3
oy, i

2

n3/2ay, bnibnjdn@f¢<3) )

Lony) = o 37 by (117} () B0 () —
=

and we also used the following estimate:

E'n(x)<4x*En; + 801, UL, <A(1 +x7%), as.
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Recalling (16) and using (A.3) and (A.4) in Lemma A.2, we have that

9’ (X1) 3
L (]
sup|Li n(y) + 6{@ )
. - Eg(Xy)’ . .
<An ‘/za §. l: by, — - +o(mn™ ) =o(n™1?), as. (37)
n’ j= 9

Noting 377, by = 2Uin, E* |0 (x)] <(E*n2(x))*<A4(1 + |x|) and using Lemmas
A.l1 and (A.5) in Lemma A.2, we have that

Eg(X)g(X2)hi2 )
sup  sup|Lon(y) + —— =527 ()
x2<10logn ¥ 2\/ﬁ0'3
<A, sup E*mni(x)] Az 82 i<; bui n/dm/ Eg(X1)g(X2)hi2
S e l0een P VIl o3 n? 207
= on™'?), as. (38)

It follows from (36)—(38) that

SUPx2<10log n Sup
y

<Gn+’11 y ~_;'(@<J’>—E1n(y)

1
< sup sup|E;, () — En()| + O log’ n)
x2<10logn ¥
Eg*(X1)

Ll()+6\/_0'3

o0 )(y)’

Eg(X1)g(X2)h1

+  sup  sup|La(y) + N W) +o(n™/?)

x2<10logn ¥

= omn™'?), as.,

which implies (35).
Similarly to the proof of (35), we can obtain that (note that G, does not include x)

sup  |P*(G,>1x]) — (1 = Ena(|x])| = O logn),  as.,
x2>=51logn
sup [P (G, < — |x|) — Ein(—|x])| = O(n* logn), aus.
x2>5logn
These, together with sup,2 510, ,|1 — E1a(|x])| <An2, imply (34).
Next we finish the proof of Theorem 2.2. Recall EY} = 2u; and E]| Y|P < o0, by
Markov’s inequality, we get

P2 =Aon ) <A’ Eq)} < 4on~3 (39)
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and

&n = E(lq " H]a1| = v/n}) 0. (40)
It follows from (40) that

P(|Ru| = 2n1%) < n3/4/s3/4E*|Rn1\3/2

Ul n 32

Oln

< A V2V —o(n71?), as. (41)

In terms of (39)—(41), we get
l n
An <P* Gn - ~ <(1 -3/5 1/2
(x) ( 20 WS
+ P20 ) + PY(|Ra| 26,/ '?)
(G +- Z ni(x)<(l+n" 39Yx + &}~ />+0(n1/2), a.s.

Similarly, we have

1 n
Ap(x)=P" (Gn +Z Z () <(1 —n3)x - 8,1/2711/2) —o(n'?), as.
=

From these relations and (35), it follows that

sup  [4,(x) = Ein(x)|
< sup sup

x2<10 logn
1 n
PGt~ > i(x)<y | — Ew(y)
x2<10logn ¥ ! n]z:l: ’ !

+  sup |ER((1+ Ci)x + Co) — Eng(x)| + o(n™'/?)

x2<10 log n

=o(n™'?), as., (42)

where we assume |Cy,| = n3/3,|Cy,| = &n '2n=1/2 and use the following elementary
estimate: when |p,| + |g,| >0

sup |<15(k)[(1 + )X+ qu] — 45(k>(x)\<A(|pn| +|gn|), for k=0,1,2,....
X

On the other hand, by applying the second last equality in (33), (34) and (39),
sup |4, (x) = Ein(x)]
x2>10 log n

< sup P*(Gn>(1+2ﬁ+ﬁ2)x+|Rn|)+ sup |1 — Epu(x)]

x2>101logn x2>101logn
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< sup PYG=x/2)+ P21+ 77| =1/4)

x2=101logn

+ P*([R,|=1/4)+ O(n?)
— o(n_l/z), a.s., (43)

where we use the estimate P*(|R,|>1/4) < An~5*E|q |

as in (41).
Note that (9) follows from (42) and (43), we finish the proof of Theorem 2.2.

, a.s. which can be proved

4.3. Proof of Theorems 2.3-2.5

We first prove Theorem 2.5. Put {; = (&; — p;)/7:. As in (33), we obtain

P*{ Vn Uggx}P*{
HeTEOy

2 n 1
+ g, 2 U g, O by Un><x}.

2
\Vho, 4

J=

Z Cj(anj - Un)
1

So Theorem 2.5 follows easily from Lemmas A.2 and A.3 in the Appendix and
Theorems 3.1 and 3.2.

The proofs of Theorems 2.2 and 2.4 can be shown similarly and hence omitted
here.
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Appendix. Some technical lemmas
In this section, we give some lemmas which are complement to the main results.

Lemma A.l. Let f(xi, ..., xm) be a real-valued function symmetric in its arguments.
Define a U-statistic by

U =" Y X X,), nzm.

I<ihi<--<ip<n
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Assume that E|f (X1, ..., X))’ <oo. Then

n"U,(f) >0 as. for 0<p<l,
I’ll_l/p|Un(f)_Ef(Xla~--,Xm)|_)0 a.s. fOV 1<p<2’
N

Tgnﬁfn(f) —Ef(X1,...., Xn)| >0 as. forp=2.

Proof. For 0<p <2, the results are from Gine and Zinn [7]. For p = 2, see Lee [16]
or Serfling [22].

The notations used in Lemmas A.2 and A.3 below are the same as those in
Theorem 2.2 and its proof.

Lemma A.2. Assume that E|h12|3 < 0. Then,

%Z Zd5U<C<oo for any m,n>=1, (A.1)
i
I j'#i
1< ;
~Y I’ <Ci<o, (A.2)
=1
1 ;
0 bf,j—’Eg(Xl) as., (A.3)
Jj=1
1 n
- > by Eg(X))’ as., (A.4)
=1
1 1
= > Duibujdny =5 E(9(X1)g(X2)ha) ~ as. (A.5)
i<j

Proof. We shall only prove (A.3) below. The proofs for others are similar and hence
will be omitted. By the definition of b,;, it follows that

1 ¢ n—1
by =— hiy — Ehy) — —— (U, — Eh

y n;(jk 12) . (Ui 12)
k#j

Iy n—1 (n—2)*

_Z ; (/’ljk _Eh12) + <_m 2 (h,j —E/’l12) +mEh12>
D <j
k+#j

=8+ 0y, say. (A.6)
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Write h]fk = hj — Eh1>. Simple calculations show that

1< %2 7 % 1 Lk LK
s Z: Z hii Z hiehiy + 5 > T,
=

%k jEk#L JEk#EI#m
:Zln +ZZn +ZBn7 say.
It follows from E|hp|* < oo that
E|h1§h13|<E|h12| <00, Elhhshy|<Eh,] <o,
Using Lemma A.1, we obtain that
0,-0, Z,-0, Z,—-0, as,

1" jm

= Iy, > Ehhishi, = Eg(X)), as.

J<k<1<m

Therefore,
1 n
-3 SI-Eg(x)), as.
n ‘=
=

Similarly, we get

1
- Z 2 Ehi,hiy = Eg(X1)?,  as.,

S

N

-1
5 ="
1

Un —>Eh12, a.s.

S|
~.
Il

In view of the above estimates, we have that
—Z Z (S} +3870,+ 38,00+ 0)) > Eg(X,)’, as.
—1

Thus (A.3) is proved.

Lemma A.3. Assume that E|hy|* < co. Then

1 n
S (ay = U Eg(X) = o) as,
=1

1
;Z yj — ) — Eg(X))? =o(n™ %) as.,

195

(A.7)
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1
2 Z (ani — Un)(anj — Uy)(hij — Uy)
i<j

— %E(g(Xl)g(Xz)hlz) =o(n™ as. (A.10)

Proof. We only prove (A.10). The others are similar and will be omitted. Again
writing h}‘k = hjx — Eh1>. As in Lemma A.2, we have that

1 n
E3
*;E: e — zE, e =S) = Qs say
k=1 j#k
k#j

Therefore, it follows that

2 Z Aapi — anj n)(h[j - (]11)

i<j

= S ssh — L ST (1508 Oty (8- 0)(S - 0)):

i<j i<j
Noting that from Lemma A.1, we get
0, = o(n"'?logn), as.

So in order to prove (A 10), it remains to show

— Z SiSihy — 5 E(g(X1)g(Xa)hia) = o(n™"/*) as., (A.11)
i<j

2 Z (s +S;+ O+ (S 0)(S; — Q;)) —0(1) as. (A.12)
i<j

As in (A 7), we have that

W *2 *3
S S gk X A Y ) Y A
i<j I;éj;ék¢m z#/;ék i#]
Since E|hp|* < oo, we have that

E(|hishisyhiy| ) < Elhys)* < 0.

Now noting E(hi;/154h7,) = E(g(X1)9(X2)h12), (A.11) follows by applying Lemma
A.l.
Similarly, we can prove (A.12). We finish the proof of Lemma A.3.

Lemma A.4. Assume that EX| = 0, EX? = 1 and E|X,|> < o0. Let 7, (1) = Ee/"nXi/B:
where by satisfies (13) and By = Y7, b Then for any i#j, there exists n>0 such
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that for |t|<nn'/® and suitably large n,

II 70 —e 2

k#i,j

gA(\/_E|X1| += (b§,+b2 ))(12+t4)e’2/8.

Proof. From (13), |b,;|</A"*n'/3 and B,>nl,, it follows that for all k,

tzbﬁk b2
1< < nk< 2 71/3

197

(A.13)

Hence, there exists #>0 such that when |¢|<#n'/°, for all k, |,(¢)|>1/2. Now by

applying the classical results (e.g., see [20] p. 109), we get for |¢| <nn'/®

large n,

n

H 7k (1)

()] Iy (0)]) <"

H AUIES

K#i,j k=1
and
72 L L _2
H () — e "< H Vk(t)_HVk(t) + HVk(t)_e e
K#i,j K#i,j k=1 k=1
— _42
<|TT O] i (0) = 1|+ Cn PEX Pl e/
k#i,j

< C (\/I_E|X1| 4= (b2 +b2)>(z2+z4)ef2/8.

The proof of Lemma A.4 is completed.

and suitably

Lemma A.5. If (13) holds, then there exists 0<ko<1 such that #{Q} >k n, where o

is given in (26) and #{A} denotes the number of elements in A.

Proof. Let Q) = {k : v/albu|/B,=>min (1/2,,/1/*)}, @y = {k : /nl|bu|/B. <

212/[3/2}. Clearly, Q = Q1" 2;. In view of (13), it follows that

(536

) n )

jeQ €D
<= +Z(”’) +—
_B#2)

nl2 4’
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which implies #{Q} >3 /(16/3)n. So the lemma is proved by taking ko = /3 /(1613). Also
from (13) and applying Cauchy—Schwartz inequality, it is easy to see that ko< 1/16.
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