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a b s t r a c t

We consider regression models with multiple correlated responses for each design point.
Under the null hypothesis, a linear regression is assumed. For the least-squares residuals
of this linear regression, we establish the limit of the partial sums. This limit is a projection
on a certain subspace of the reproducing Kernel Hilbert space of a multivariate Brownian
motion. Based on this limit, we propose a significance test of Kolmogorov–Smirnov type
to test the null hypothesis and show that this result can be used to study a change-point
problem in the case of linear profile data (panel data). We compare our proposed method,
which does not rely on any distributional assumptions, with the likelihood ratio test in a
simulation study.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In order to find change points in regression models, it is popular to investigate the partial sums of the least-squares
residuals. A non-parametric test (as for instance a test of Kolmogorov–Smirnov type) can then be applied to the limit process
of the partial sums in order to test whether a change point does or does not occur. This technique can also be used to check
asymptotically for linear regression. Note that MacNeill [12,11] and Bischoff [2,3] studied this residual partial sum process
(RPSP) for univariate response and univariate experimental region whereas Xie and MacNeill [16] as well as Bischoff and
Somayasa [4] investigated the case of univariate responsewith amultivariate experimental region. In this paper,we consider
linear regression models with multivariate correlated responses for each design point of a univariate experimental region.

In Section 2, we describe in detail the regression model under consideration in this paper. It is a regression model with
multiple correlated responses. Moreover, we formulate the linear regression model under the null hypothesis. In Section 3,
we present our main result: the p-dimensional RPSP for a regressionmodel with p-variate response. We use these results to
attack the change-point problem in the case of linear profile data (in econometrics also known as ‘‘panel data’’, see Section 4)
and establish a size α-test in Section 5. Mahmoud et al. [13] proposed a modification of a likelihood ratio test (LRT) for the
case of simple linear regression with normally distributed error terms and showed in a simulation study that this test is
superior to other competing control charting approaches (F-test byMahmoud andWoodall [14] and a Shewart-type control
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chart by Kim et al. [10]). For these approaches, an exact specification of the alternative hypothesis is necessary as opposed
to our procedure. Furthermore, by asymptotic considerations ourmethod does not need assumptions about the distribution
of the error terms. In contrast, the approach of Mahmoud et al. [13] heavily depends on the normal distribution. This is also
shown in our simulation study (Section 6). The paper ends with a conclusion in Section 7. Proofs can be found in the last
section.

2. Regression model with multiple correlated responses

In this paper, we consider a compact interval [a, b] ⊆ R as the experimental region. Without loss of generality, it is
assumed [a, b] = [0, 1] in the following. In practice, one has to decide a change-point problem by the information of data
coming froman experimental designwith a finite number of design points. To be able to carry out asymptotic considerations,
we consider a triangular array of design points:

0 ≤ tm,1 < tm,2 < · · · < tm,m ≤ 1, m ∈ N.

Moreover, we suppose an equidistant design (i.e. tm,k =
k
m for k = 1, . . . ,m) to simplify notations. At a first glance letm be

fixed, that is we have m distinct design points. Later we are interested in large sample results, i.e. m → ∞. In each design
point, we observe p responses. Let the vector of responses in tm,k be denoted by Y (k)

= (Y (k)
1 , . . . , Y (k)

p )⊤ ∈ Rp. As usual, we
consider an element x ∈ Rp as a column vector and let x⊤ be the corresponding row vector. For Y (k), k = 1, . . . ,m, the true
regression model is given by

Y (k)⊤
= g⊤(tm,k) + Z (k)⊤ , with E Z (k)

= 0, Cov Z (k)
= Σ, (1)

where g⊤
= (g1, . . . , gp) : [0, 1] → Rp is the true, but unknown vector of regression functions. For technical reasons, we

assume that g is of bounded variation (i.e. g ∈ BV ([0, 1], Rp)), which is no restriction in practice. Furthermore, 0 ∈ Rp is
the vector with components equal to 0 and Σ is a positive definite p × p matrix. In the application of our results to panel
data below, Σ will be known. Let

Y :=


Y (1)⊤

...

Y (m)⊤

 , τm :=

tm,1
...

tm,m

 , g⊤(τm) :=

g⊤(tm,1)
...

g⊤(tm,m)

 , Z :=


Z (1)⊤

...

Z (m)⊤

 .

We assume that Z (1), . . . , Z (m) are independent. Hence, we get the following regression model for the response when the
design τm is used:

Y = g⊤(τm) + Z, with E Z = 0, Cov (vec(Z⊤)) = Im ⊗ Σ . (2)

Thereby Im is the m × m identity matrix, ‘‘⊗’’ denotes the Kronecker-Product and ‘‘vec’’ is the well-known vec-operator
(cf. [7, Ch. 16]).

Let f1, . . . , fd : [0, 1] → R be d ∈ N linearly independent functions in C([0, 1]) ∩ BV ([0, 1]), which are known, where
C([0, 1]) := C ([0, 1], R) is the space of continuous real-valued functions on [0, 1]. We are interested in testing whether
model (2) is a linear regression model, that is whether the null hypothesis

g⊤(τm) = (f1(τm), . . . , fd(τm)) Γ with Γ ∈ Rd×p unknown parameter matrix (3)

holds true. Hence, if the null hypothesis (3) is true, then we have the linear regression model

Y = (f1(τm), . . . , fd(τm)) Γ + Z, with E Z = 0, Cov (vec(Z⊤)) = Im ⊗ Σ

and Γ ∈ Rd×p unknown parameter matrix. (4)

LetW := [f1, . . . , fd] be the linear subspace spanned by f1, . . . , fd. Then, we can formulate the above test problem by

H0 : gj ∈ W , j = 1, . . . , p (5)

against the alternative

H1: ∃j ∈ {1, . . . , p} with gj ∉ W . (6)

PuttingW p
:= W × · · · × W , Eqs. (5)–(6) are equivalent to

H0: g = (g1, . . . , gp)⊤ ∈ W p vs. H1 : g ∉ W p. (7)

Under the null hypothesis (5), we have for all j ∈ {1, . . . , p}

gj(τm) ∈ [f1(τm), . . . , fd(τm)] =: Wm ≤ Rm, (8)
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where ‘‘Wm ≤ Rm’’ means that Wm is a linear subspace of Rm. We can reformulate Eq. (8) according to

g(τm) ∈ W p
m := Wm × · · · × Wm ≤ Rm×p

= Rm
× · · · × Rm.

We assume thatm is large enough that the vectors f1(τm), . . . , fd(τm) are linearly independent and so form a basis ofWm.
Furthermore, form large enough, we have g(τm) ∉ W p

m in the case g ∉ W p. Consequently, we can decide the original test
by

H0 : g(τm) ∈ W p
m vs. H1 : g(τm) ∉ W p

m.

Note that the space of real m × p-matrices is a Hilbert space endowed with the inner product ⟨A, B⟩Rm×p :=
∑p

j=1

⟨a(j), b(j)
⟩Rm = trace(ATB) for A = (a(1), . . . , a(p)), B = (b(1), . . . , b(p)) ∈ Rm×p. Thereby ⟨·, ·⟩Rm is the Euclidean scalar

product in Rm.

3. Residual partial sum process

Let L2 := L12([0, 1], λ) be the Hilbert space of real functions on [0, 1], which are square integrable with respect to the
Lebesgue measure λ. As usual L2 is furnished with the inner product ⟨h, h̃⟩L2 :=


[0,1] hh̃dλ, h, h̃ ∈ L2.

Then Lp2 = {h : [0, 1] → Rp
|


[0,1] h

⊤hdλ < ∞} = L2 × · · · × L2, endowed with the inner product ⟨h, h̃⟩Lp2 :=∑p
j=1⟨hj, h̃j⟩L2 =


[0,1] h

⊤h̃dλ for h = (h1, . . . , hp)
⊤, h̃ = (h̃1, . . . , h̃p)

⊤
∈ Lp2, is a Hilbert space. Furthermore, W p

=

[f1, . . . , fd]p is a linear subspace of Lp2, where f1, . . . , fd are known functions, see Section 2.
In order to test the hypotheses (7), we investigate the partial sums of the p-dimensional residuals in model (3). For that

we use the partial sum operator Tm, which embeds a vector a = (a1, . . . , am)⊤ ∈ Rm in the space C([0, 1]) by

Tm


a1

...
am


 (z) =

⌊mz⌋−
i=1

ai + (mz − ⌊mz⌋)a⌊mz⌋+1, z ∈ [0, 1]

where ⌊z⌋ := max{z̃ ∈ Z | z̃ ≤ z} and
∑0

i=1 ai = 0. The partial sum operator Tm×p embeds Rm×p
= Rm

× · · · × Rm in the
space C([0, 1], Rp) = C([0, 1]) × · · · × C([0, 1]). We define Tm×p with the help of Tm. For this, let A ∈ Rm×p be a m × p
matrix with columns a(1), . . . , a(p), then

Tm×p :


Rm×p

→ C([0, 1]) × · · · × C([0, 1])
A → Tm×p(A)(z) =


Tm(a(1))(z), . . . , Tm(a(p))(z)


, z ∈ [0, 1].

Note that Tm, and so Tm×p, is a linear mapping.
In the following, we make use of the vector-valued version of the Donsker theorem (see [8]).

Theorem 1. Let (ξi)i≥1 be an i.i.d. sequence of randomvariableswith values inRp and E ξ1 = 0, Cov ξ1 = Σ, Σ positive definite.
Then

1
√
m

Σ−1/2Tm×p


ξ⊤

1
...

ξ⊤

m




⊤

D
−→ Bp with m → ∞,

whereas Bp is the p-dimensional Brownian motion with independent components and ‘‘
D

−→’’ means weak convergence.

The residuals of the linear model (2) are correlated and by that they do not fulfill the i.i.d. assumption of the
preceding theorem. Hence, we cannot directly use this vector-valued version of the Donsker theorem to establish the
p-dimensional RPSP.

For a mapping h : [0, 1] → R, we define in the following h(τm) as above (i.e. h(τm) =

h(tm,1), . . . , h(tm,m)

⊤
∈ Rm) and

sh : [0, 1] → R with sh(t) =

∫ t

0
h(z)dz, t ∈ [0, 1].

The function sh is also known as the signal coming from h.
The functions gj, fi are of bounded variation and consequently Riemann integrable. Furthermore, the design τm is uniform

(i.e. tm,k =
k
m for k = 1, . . . ,m) and so we obtain form → ∞,

1
m

Tm

gj(τm)


−→ sgj in C([0, 1]) for j = 1, . . . , p (9)

1
m

Tm (fi(τm)) −→ sfi in C([0, 1]) for i = 1, . . . , d. (10)
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PuttingWH :=

sf1 , . . . , sfd


the test problem (7) is equivalent to

H0 : sg ∈ W p
H := WH × · · · × WH vs. H1 : sg ∉ W p

H (11)

where sg :=

sg1 , . . . , sgp

⊤.WH is a linear subspace of

H := H1
:= {sh : [0, 1] → R | h ∈ L2} ,

the reproducing kernel Hilbert space (RKHS) of the one-dimensional Brownianmotion (see [3]), which is furnished with the
inner product ⟨sh, sh̃⟩H = ⟨h, h̃⟩L2 (sh, sh̃ ∈ H). Analogously

Hp
:=


sh : [0, 1] → Rp

| h ∈ Lp2


= H × · · · × H

is the RKHS of the p-dimensional Brownian motion. W p
H is a linear subspace of Hp, where Hp is furnished with the inner

product

⟨sh, sh̃⟩Hp :=

p−
j=1

⟨shj , sh̃j⟩H = ⟨h, h̃⟩Lp2 =

∫
[0,1]

h⊤h̃dλ

for sh = (sh1 , . . . , shp)
⊤, sh̃ = (sh̃1 , . . . , sh̃p)

⊤
∈ Hp.

Note that Hp is also a linear subspace of C([0, 1], Rp). Bischoff [3], see also [4], showed that there exists a projector
prWH

: C([0, 1]) → WH which coincide with the orthogonal projector onto WH in H if prWH
is restricted to H .

Consequently,

prWp
H

:


C([0, 1]) × · · · × C([0, 1]) → WH × · · · × WH

u1, . . . , up
⊤

→

prWH

(u1), . . . , prWH
(up)

⊤ (12)

is the corresponding projector for the multivariate case. For a subspace U , we denote in the following, by U⊥ the orthogonal
space and by prU (resp. prU⊥ = id − prU ) the orthogonal projector onto U (resp. U⊥). With this notation, the least-squares
residuals of the linear model under H0 given in Eq. (4) can be expressed by pr

Wp
m

⊥(Y ) = Y − prWp
m
(Y ). Now we are in the

position to state our main result.

Theorem 2. Let f1, . . . , fd ∈ C([0, 1]) be known, linearly independent functions with bounded variation, W p
:= [f1, . . . , fd]p,

W p
m := [f1(τm), . . . , fd(τm)]p and W p

H := [sf1 , . . . , sfd ]
p.

Consider model (2) under the null hypothesis, i.e.

Y = (f1(τm), . . . , fd(τm)) Γ + Z with E Z = 0, Cov (Z (1)) = Σ, Z (1), . . . , Z (m) i.i.d.
and Γ ∈ Rd×p unknown parameter matrix.

Then we have for m → ∞,

1
√
m

Σ−1/2Tm×p


pr

Wp
m

⊥(Y )
⊤ D

−→ pr
Wp

H
⊥


Bp , (13)

where Bp is the p-dimensional Brownian motion.

The proof of this theorem can be found in the last section of this paper.
Note that we do not make any assumptions about the distribution of the error terms Z (1), . . . , Z (m)- except for the mean

value and the covariance matrix.

4. Linear profile data

In this section, we show that a change-point problem for linear profile data can be described by the linear regression
model introduced in Section 2. We get this result by a two-step procedure: first, we estimate the parameter vectors for each
profile. In the second step, we analyze these estimates by a linear model with multiple correlated responses under the null
hypothesis that the profile data have no change point.

In practice, it is of common interest to test whether all of a fixed numberm, say, of independent samples follow the same
known linear model. To be more precise let

W (j)
= Xβ(j)

+ ϵ(j), β(j)
∈ Rp unknown (14)

be the true linear model for each j ∈ {1, . . . ,m}, where

(A1) X ∈ Rn×p is the corresponding design matrix of explanatory variables with rank(X) = p ≤ n, and
(A2) ϵ(j) is the vector with i.i.d. components ϵ

(j)
1 , . . . , ϵ

(j)
n having mean 0 and variance σ 2.
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Model (14) is called the ‘‘jth linear profile’’ and the aim is to test

H0:β = β(1)
= · · · = β(m). (15)

For that we estimate β(j) by the least-squares estimator β̂(j). With our assumptions (A1)–(A2), we have β̂(j)
= (XTX)−1

XTW (j) with

E

β̂(j)


= β(j) and Cov


β̂(j)


= σ 2 

XTX
−1

=: Σ . (16)

In case σ 2 is unknown, our proposed procedure can also be used by replacing σ 2 with a consistent estimator for σ 2 under
H0 (see Section 5). So we can assume that without loss of generality, Σ is a known positive definite matrix. Furthermore
β̂(1), . . . , β̂(m) are independent since the different samples

W (1), . . . ,W (m) are assumed to be independent.

Let Y :=

 β̂(1)⊤

.

.

.

β̂(m)⊤

 be the m × p matrix containing the least-squares estimations and let Z :=

 β̂(1)⊤
− β⊤

.

.

.

β̂(m)⊤
− β⊤

. Specifying the

notation of Section 2, we have d = 1 and put f1 = 1 where 1 is the constant mapping identical 1, i.e. 1(t) ≡ 1 ∈ R for all
t ∈ [0, 1]. Furthermore Γ = β⊤

∈ R1×p. If (15) holds true, then using the above notation we have the linear regression
model

Y = f1(τm)Γ + Z with E Z = 0, Cov (vec(ZT )) = Im ⊗ Σ (17)
and Γ ⊤

= β ∈ Rp unknown parameter vector.

Thereby f1(τm) =: 1m ∈ Rm is the vector whose components are all equal to 1.
Conversely, if (15) is false, then a change point occurred and (17) does not hold. Therefore, we can test hypothesis (15)

by checking the linear model (17), see Section 5.

5. Test for linear profile data

As already mentioned in Section 4, model (17) is a specific form of model Eq. (4) with d = 1 and f1 = 1. Consequently,
we haveW = [1] and s1(t) =


[0,t] 1dλ = t for t ∈ [0, 1]. Furthermore, as alreadymentioned in an example by Bischoff [3],

pr[1](u)(t) = (u(1) − u(0)) · t for u ∈ C([0, 1]) and t ∈ [0, 1]. Consequently, projection (12) can be written as

prWp
H

:


C([0, 1], Rp) → W p

H

u(·) → (u(1) − u(0)) · id(·)

whereas id(t) = t for all t ∈ [0, 1]. Under the null hypothesis ‘‘g(·) ∈ W p’’, the residual partial sum limit process (cf.
Theorem 2) is given by pr

Wp
H

⊥(Bp) = Bp
0, the so-called standard p-dimensional Brownian bridge on [0, 1]. An intuitive one-

dimensional test statistic is the maximum of the Euclidean norm of the p-dimensional process. To be more precise, let

Rm(t) :=
1

√
m

Σ−1/2Tm×p


pr

Wp
m

⊥(Y )
⊤

(t), t ∈ [0, 1].

Then, our proposed test statistic is maxt∈[0,1] ‖Rm(t)‖Rp .
On http://www.ku-eichstaett.de/mgf/statistik/Forschung/R.en you can find a way how to compute the proposed test

statistic in a convenient way using R [15].
Because of the ‘‘Continuous Mapping theorem’’, see [1], we have the following convergence under H0:

‖Rm‖Rp
D

−→ ‖Bp
0‖Rp form → ∞. (18)

Note that the limit process is the well-known Bessel bridge. In order to check (17), we apply a test of Kolmogorov–Smirnov
type to the Bessel bridge and we get an asymptotic size α-test, α ∈ (0, 1), by

Reject H0 ⇐⇒ sup
t∈[0,1]

‖Rm(t)‖Rp > kα.

Thereby kα > 0 is a constant such that P (supt∈[0,1] ‖B0,p(t)‖Rp > kα) = α. Note that for given α, the corresponding value
kα can be explicitly calculated by the formula (see [9, Eq. (3.21)]):

P(max
t∈[0,1]

‖B0,p
t ‖Rp ≤ kα) =

4

Γ
 p
2

 √
2
p
kpα

∞−
n=1


γ p−2

2 ,n

p−2
· exp

−

[
γ p−2

2 ,n

]2
2k2α



Jp/2


γ p−2

2 ,n

2 (19)

http://www.ku-eichstaett.de/mgf/statistik/Forschung/R.en
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where Γ (·) is the gamma function, J p−2
2

is the modified Bessel function of the first kind and γ p−2
2 ,n is the positive zero of

J p−2
2
, n = 1, 2, . . . .
Note that in case the model under study is not correct, the RPSP for large enoughm is approximatively given by

pr
Wp

H
⊥(Bp) + drift-term.

For such a result, a consistent estimation for the variance is needed under the alternative. There are several possibilities
for such estimations, see, for instance, Hall and Marron [6] and the papers cited by Dette et al. [5]. Dette et al. [5] give a
comparison of estimations for the variance. They point out that such estimations can be bad for a finite sample and a good
choice of the estimator heavily depends on the true regression function. For our simulations under alternatives we apply,
however, the usual variance estimator of the linear model. So we underestimate the power by our simulations on the one
hand, but on the other hand we have not to assume any further knowledge on the regression function under the alternative.

6. Simulation study

We present simulations concerning the change-point situation in the case of linear profile data (see Section 4) for our
proposed method (residual partial sum method: RPSM, see Section 5) and for the LRT developed by Mahmoud et al. [13].
For our analysis, we used R [15].

In the following, we use in principle the same simulation conditions as Mahmoud et al. [13]. So we have, by using the
notation of Section 4, m independent profiles, each of size n = 10 with a polynomial regression having p parameters (i.e.
p = 2 means straight line regression). The design matrix for each profile is assumed to be

X =


1 0 02

· · · 0p−1

1 0.2 0.22
· · · 0.2p−1

...

1 1.8 1.82
· · · 1.8p−1

 ∈ Rn×p.

We set the variance σ 2
:= 1 and the significance level for the test to α := 0.04, as in [13]. Consequently, we get with (19)

for the critical value of our proposed test kα = 1.622751.
For the error terms, we simulate three different distributions: normal, lognormal and gamma (each standardized).

6.1. Number of profiles m fixed

In this section, we only consider the case of a straight-line regression (i.e. p = 2) and two cases for m: 20 and 10. All
results in this section are based on 1000 runs.

6.1.1. Situation under H0

Our simulations for m = 20 profiles show that the LRT do not meet the significance level in case we have non-normal
distributed error terms. The significance level α = 0.04 can only be achieved by the normal distribution:

• normal distribution: relative number of rejection = 0.037
• lognormal distribution: 0.757
• gamma distribution: 0.465.

So, the LRT heavily depends on the assumption of normally distributed errors, as even stated by Mahmoud et al. [13].
Consequently, for the lognormal and the gamma distribution the LRT cannot be applied. In contrast to that, our proposed
RPSM is a distribution-free method. It achieves the significance level for all distributions under study (see Fig. 2).

6.1.2. Comparison under alternatives: normal error terms
For the normal distribution, we compare the power of LRT with the power of RPSM. The types of shifts alternatives

investigated in our simulation for them = 20 profiles are sustained step shifts, as in [13], taking place after samplem0 with
m0 ∈ {10, 15, 18, 19}. In particular, the following step shifts in the parameters were considered:

1. shifts in the intercept from 1 to 1 + λ σ
√
n = 1 +

λ
√
10

and

2. shifts in the slope from 1 to 1 + δ σ
√
SXX

= 1 +
δ

√
8.124038

(for a definition of SXX see [13])

with λ, δ ∈ {0, 0.5, . . . , 5}. Each value is based on 1000 runs.
Our comparison of RPSM and LRT in the normal distribution case leads to the results presented in Fig. 1. Consequently,

in the case of normally distributed error terms, RPSM is similar to LRT if the change point occurs in or near the
middle of profiles. Otherwise, LRT is superior. However, the proposed test by RPSM can be improved by a weighted test
procedure.
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Fig. 1. Power of RPSM and LRT with normal distributed error terms by a change in the intercept (left) and slope (right) inm0 .

6.1.3. Comparison under alternatives: non-normal error terms
In the non-normal case, Fig. 2 shows the power for m = 10 (with change point after profile m0 = 5, 8, 9) and m = 20

(with m0 = 10, 15, 18, 19) profiles. Again we investigate the case of a change point in the intercept term as well as in the
slope term, see Section 6.1.2. Our proposedmethod fulfills the conditions for a size α-test and the power increases for larger
shifts. To bemore precise, RPSM has the largest power, when the change pointm0 occurs in the middle of them profiles and
power decreases asm0 tends to the edge of its domain {0, 1, . . . ,m}. Furthermore, RPSM leads to moderate results already
form = 10 andm0 = 5, 8, 9 (pictures in the lower row). As our asymptotic is inm → ∞, power increases fromm = 10 to
m = 20 (see also Section 6.2).

In order to have a feeling about the variation of the value of our test statistic, we also present in Fig. 3 boxplots of the
test statistics for the case m = 10,m0 = 5 and m = 20,m0 = 10 together with the reference value kα = 1.622751. Each
value in both Fig. 2 and Fig. 3 is based on 1000 runs. The boxplots for all the other parameters look similar and are therefore
omitted here.

6.2. Asymptotic considerations

In this section, we present simulation results for m → ∞, our asymptotic in Theorem 2. By this we want to give a
feeling about the accuracy of the approximation by the asymptotic distribution. For that, we simulated values for m =

10, 20, 30, . . . , 200 profiles and p = 2, 4, 8 as well as different values for n, whereby the number of simulation runs was
4000.
Quality of the limit process. The plots shown in the left column of Fig. 4 indicate that for n = 10 fixed and p large (i.e. p = 8),
the significance level α = 0.04 (dotted line) can hardly be achieved. This is due to the fact that a polynomial regression with
p = 8 parameters for n = 10 observations is an over-fitted model. If the ratio of parameters per profile p to the number of
observations per profile n is more natural, then the α-level can be achieved for moderate values of m. This can be seen by
the right column of Fig. 4, where we have chosen n = 5p.
Power. Since the significance level α cannot be achieved for n = 10 and p near n (see preceding section), we only investigate
the case n = 5p in this section. All data points are based on 4000 runs.

In Fig. 5 we considered the case of a small change in the intercept (i.e. λ = 1) after profile m0 := ⌊
m
3 ⌋ for m = 10,

20, . . . , 200. Thereby ⌊z⌋ := max{z̃ ∈ Z | z̃ ≤ z} for z ∈ R as above.

7. Conclusion

Weestablished the asymptotic distribution of themultivariate RPSP in a regressionmodelwithmultivariate independent
response variables Y (1), . . . , Y (m)

∈ Rp in Theorem 2.
We used this result in order to decide the change-point problem in the case of linear profile data, where each profile has

the same design matrix X. To be more precise, our proposed method can be used to test

H0 : β(1)
= β(2)

= · · · = β(m)

where β(j)
∈ Rp is the unknown parameter vector of the jth linear profile (j = 1, . . . ,m). The method under consideration

is an asymptotic size α-test, whereby the asymptotic is form → ∞.
We studied our RPSM in a simulation study and compared it with the modified LRT by Mahmoud et al. [13]:
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Fig. 2. Power of RPSM by a change in the intercept (top) and slope.

• In contrast to the RPSM, the LRT does not achieve the significance level for m = 20 and p = 2 in the case of Gamma or
log-normally distributed error terms.

• The LRT was in Mahmoud et al. [13] only presented for the case p = 2, whereas our procedure can also be applied to
larger values of p. RPSM needs, however, the same design matrix X for each profile.

• In the case of normally distributed data, we can compare LRT and RPSM: if the change point occurs in the middle of the
profiles, the LRT performs slightly better than RPSM. Otherwise, if the change point is near the boundary of its domain,
the LRT is superior to RPSM.

• RPSM can be implemented in statistical packages using standard procedures. Consequently, the implementation is quite
fast.

• The RPSM leads to good (power) results for all the three distributions under study.
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• Even for small m (i.e. m = 10, 20), the RPSM performs already well if the ratio of the number of parameters per profile
p to the number of observations per profile n is not too large.

For the change point problem in the case of linear profile data with the same design matrix X, we recommend the RPSM
when the error distribution is unknown.

8. Proofs

In order to prove the results given in Section 3, we have to introduce some further notation.
Consider the space Wm = [f1(τm), . . . , fd(τm)] given in (8), which is a linear subspace of Rm. With Wm,H := Tm(Wm)

and

W p
m,H := Wm,H × · · · × Wm,H , we have W p

m,H = Tm×p(W p
m).

Furthermore W p
m,H is a linear subspace of Tm×p(Rm×p) and consequently also a subspace of the RKHS Hp. Consider the

following inner product on Tm×p(Rm×p):

⟨Tm×p(A), Tm×p(B)⟩m×p := m · ⟨A, B⟩Rm×p for A, B ∈ Rm×p,

which is themultivariate analogous to the univariate case considered by Bischoff [3]. Lemma 3.1 in [3] states that for a ∈ Rm,
we have

Tm(prWm(a)) = prTm(Wm)(Tm(a)).

Consequently, for a matrix A ∈ Rm×p,

Tm×p(prWp
m
(A))⊤ = prTm×p(W

p
m)(Tm×p(A)⊤) = prWp

m,H
(Tm×p(A)⊤) (20)

holds true. With this, we get for the response variable Y = g(τm) + Z and for the associated residuals in Theorem 2

Tm×p(prWp
m

⊥(Y ))⊤ = Tm×p(Y )⊤ − prTm×p(W
p
m)


Tm×p(Y )⊤


= pr

Wp
m,H

⊥


Tm×p(Y )⊤


. (21)
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In case u and (um)m∈N are real continuous functions on [0, 1] with um −→ u in C([0, 1]), [3, p. 5] proved that

prWm,H
(um) −→ prWH

(u). (22)

Since the corresponding projections prWp
m,H

and prWp
H

are defined component wise, the following lemma is an immediate
consequence of (22).

Lemma 3. Let u, (um)m∈N ∈ C([0, 1], Rp) with um converges to u in C([0, 1], Rp) for m → ∞; then,

prWp
m,H

(um) −→ prWp
H
(u) in C([0, 1], Rp) for m → ∞.

Now we are in the position to prove our main result (Theorem 2):

Proof. We have Y = g(τm) + Z with Cov (vec(Z⊤)) = Im ⊗ Σ . Let c = (c1, . . . , cp)⊤ ∈ Rp and h = (h1, . . . , hp)
⊤

∈ W p
m,H .

Then, one gets

c⊤prWp
m,H

(h) =

p−
j=1

cjprWm,H
(hj) = prWm,H

(c⊤h).

This leads to

AprWp
m,H

(h) = prWp
m,H

(Ah) for any A ∈ Rp×p.

Consequently, we have under H0 in connection with (21):

1
√
m

Σ−1/2Tm×p


pr

Wp
m

⊥(Y )
⊤

=
1

√
m

Σ−1/2Tm×p


pr

Wp
m

⊥(Z)
⊤

=
1

√
m

Σ−1/2pr
Wp

m,H
⊥


Tm×p(Z)⊤


= pr

Wp
m,H

⊥


1

√
m

Σ−1/2 Tm×p(Z)⊤


. (23)

Since Z fulfills the conditions of the vector-valued Donsker theorem (Theorem 1), we have

1
√
m

Σ−1/2 Tm×p(Z)⊤
D

−→ Bp form → ∞.

Applying the ‘‘Continuous Mapping theorem’’ [1], one gets form → ∞ with Lemma 3, that the RPSP (23) converges weakly
to pr

Wp
H

⊥(Bp). This proofs the theorem. �
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