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a b s t r a c t

A semiparametric copula model for bivariate survival data is characterized by a parametric
copula model of dependence and nonparametric models of two marginal survival
functions. Efficient estimation for the semiparametric copula model has been recently
studied for the complete data case. When the survival data are censored, semiparametric
efficient estimation has only been considered for some specific copula models such as
the Gaussian copulas. In this paper, we obtain the semiparametric efficiency bound and
efficient estimation for general semiparametric copula models for possibly censored data.
We construct an approximate maximum likelihood estimator by approximating the log
baseline hazard functions with spline functions. We show that our estimates of the copula
dependence parameter and the survival functions are asymptotically normal and efficient.
Simple consistent covariance estimators are also provided. Numerical results are used to
illustrate the finite sample performance of the proposed estimators.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Economic, financial and medical multivariate survival data are typically non-normally distributed and exhibit nonlinear
dependence among their component variables. Somewell-known examples include theDanish Twin Study [30], the diabetic
retinopathy study [9], the dual infection kidneydialysis study [27], and the reproductive health study of the association of age
at a marker event and age at menopause [16]. In all these studies, the assessment of survival functions and the dependence
among component variables, e.g. twins, are of major interests. Another example in financial area is the insurance company
data on losses and allocated loss adjustment expenses (ALAEs) analyzed in [6].

The distribution of bivariate survival data can be characterized by a bivariate survival function. Nonparametric estimation
of the bivariate survival function for right-censored data under independent censorship has been thoroughly studied;
see [29] for a review. However, we focus on semiparametric models in this paper. By Sklar’s [24] theorem, any bivariate
survival function with continuous marginal survival functions can be uniquely represented by its (survival) copula function
evaluated at its marginal survival functions, where the copula function captures all the dependence among the component
variables.We consider a large class of semiparametricmodels for bivariate survival data—the semiparametric copulamodels,
in which a bivariate survival function is modeled as a parametric (survival) copula function evaluated at nonparametric
marginal survival functions. Note that our methodology and theory in this paper can be easily extended to accommodate
multivariate survival data.
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For complete data, i.e., data without censoring or truncation, Oakes [18] and Genest et al. [7] proposed a semiparametric
two-step estimation procedure: In the first step the unknown marginal distribution functions are estimated by rescaled
empirical distribution functions, and in the second step the copula dependence parameter is estimated by maximizing
the estimated log-likelihood function where the marginal distributions are fixed at the estimated ones from the first step.
The two-step estimator of the copula parameter is inefficient in general, see [8], except for the independence case [7] and
Gaussian Copula case [12]. This is because the two-step estimator is generally not the solution of the semiparametric efficient
score equation for the copula parameter. Moreover, the two-step procedure does not produce an efficient estimator of
marginal distribution (survival) function except for the trivial independence case. Intuitively, one could obtainmore efficient
estimates of the copula parameter and the marginal survival functions by utilizing the dependence information contained
in the copula. Chen, Fan and Tsyrennikov [4] proposed a sieve maximum likelihood estimation of a general semiparametric
copula model, and established that their estimators of both the copula parameter and the marginal distributions are
semiparametrically efficient. In addition, their simulation studies demonstrate that the two-step procedure underestimates
the dependence in copula models with strong tail dependence such as Clayton copula, Gumbel copula and others.

On the other hand, the efficient estimation problem is not generally solved for the multivariate survival data when there
is censoring. For right censored data, Shih and Louis [23] and Chen et al. [3] proposed the same two-step procedure as
Oakes [18] and Genest et al. [7] except that the Kaplan–Meier estimators of marginal survival functions are used in the
first step, and developed the corresponding asymptotic theory for inference. Wang and Ding [28] proposed a two-step
procedure for current status data using nonparametric MLE in the first step. This two-step procedure is computationally
convenient but is generally inefficient as discussed above for the complete data. Recently, for similar right censored data, Li,
Prentice and Lin [14] developed the semiparametric efficientmaximum likelihood estimation for the normal transformation
model, which corresponds to the Gaussian copula. However, their estimation approach and the relevant theoretical proofs
are only tailored for the special class of Gaussian copula, and thus cannot be easily generalized to other semiparametric
copula models. To the best of our knowledge, there is no general theory on efficient estimation of semiparametric copula
model for censored data yet.

The purpose of this paper is to develop an efficient estimation procedure of the semiparametric copula model for the
right censored survival data under the general copula framework. Our procedure is based on spline approximation of the
logmarginal hazard functions.We derive the semiparametric efficiency bound for the general semiparametric copulamodel
and show that, under regularity conditions, our proposed estimators are asymptotic normally distributed and achieve
the semiparametric efficiency bound. Although the asymptotic covariance matrix of our estimators have no closed-form
expressions for general semiparametric copulamodels, we provide simple consistent estimates of the asymptotic covariance
matrix of our estimators.

The rest of this paper is organized as follows. Section 2 defines the semiparametric copula models for censored data.
Section 3 presents our proposed estimator and its asymptotic properties. In particular, Section 3.1 gives the exact likelihood
function and the approximate likelihood function under spline approximation of the log marginal hazard functions.
Sections 3.2 and 3.3 focus on the copula dependence parameter. While Section 3.2 contains the semiparametric efficiency
bound calculation and establishes the asymptotic normality and efficiency of our copula parameter estimator, Section 3.3
gives a simple consistent estimator of its asymptotic covariance matrix. Section 3.4 discusses the efficient estimation of
the marginal cumulative hazard functions and consistent estimators of their asymptotic variances. Section 4 presents some
simulation results to illustrate the finite sample properties of the proposed estimator.

2. Semiparametric survival copula models

Consider a pair of possibly correlated survival times (T1, T2) with joint survival function S(t1, t2) = P(T1 > t1, T2 > t2)
and marginal survival functions Sj(tj) = P(Tj > tj) for j = 1, 2. Sklar’s [24] theorem implies that, for continuous Sj’s,
there exists a unique survival copula function C such that S(t1, t2) = C(S1(t1), S2(t2)), where C(·) captures the dependence
structure of (T1, T2). This decomposition of the joint survival function leads naturally to the class of semiparametric survival
copula models in which the marginal survival functions are unspecified, but the survival copula function is parameterized
as C(u, v) = C(u, v; θ0) for some Euclidean parameter θ0. This class of semiparametric models represents the joint survival
function as

S(t1, t2) = C(S1(t1), S2(t2); θ0). (1)

We refer to Nelsen [17] and Joe [11] for properties of different parametric (survival) copulas. The semiparametric copula
model (1) is very general and includes many existing models as special cases. For example, if the Gaussian copula function
is used in (1), the model is equivalent to the normal transformation model considered by Li, Prentice and Lin [14]. If the
Archimedean copula function is used, the model can be transformed into the frailty model for the multivariate survival
data; see [15].

In the following, we will consider the right censored data, and shall use (D1,D2) to denote the censoring times. We
observe (Y1, Y2) ≡ (T1 ∧ D1, T2 ∧ D2) and (δ1, δ2) ≡ (I{T1 ≤ D1}, I{T2 ≤ D2}). The support of the marginal distribution of
Y1 and Y2 is assumed to be a compact interval and is further assumed to be [0, 1] for notational simplicity. We also assume
that (T1, T2) is independent of (D1,D2). This independence assumption allows various censoring mechanisms, e.g., random
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censoring, fixed censoring and no censoring. The above general censoring scheme applies to the loss–ALAE data set [6]where
ALAE is not censored and loss is censored by a constant differing from each individual to another.

Remark 2.1. The survival copula C(·, ·) should not be confused with the commonly used copula C̄(·, ·) unless the latter is
radially symmetric, e.g., Gaussian copula. However, the survival copula C is related to C̄ in the following manner:

C(u, v) = u + v − 1 + C̄(1 − u, 1 − v). (2)

3. Semiparametric maximum likelihood estimation

3.1. Maximum likelihood

Suppose n i.i.d. observations {Xi = (Y1i, Y2i, δ1i, δ2i)}
n
i=1 are available. Denote the joint distribution and density for (T1, T2)

as F(·, ·) and f (·.·), the marginal distribution and density as Fj(·) and fj(·) for j = 1, 2. For notational simplicity, we denote
s1 = S1(y1), s2 = S2(y2), Cj(s1, s2; θ) = (∂/∂sj)C(s1, s2; θ), and C12(s1, s2; θ) = (∂2/∂s1∂s2)C(s1, s2; θ). The log-likelihood
for (θ, S1, S2) is written as

ℓ(θ, S1, S2) = δ1δ2 log[C12(s1, s2; θ)f1(y1)f2(y2)] + δ1(1 − δ2) log[C1(s1, s2; θ)f1(y1)]
+ δ2(1 − δ1) log[C2(s1, s2; θ)f2(y2)] + (1 − δ1)(1 − δ2) log C(s1, s2; θ). (3)

Direct maximization of the above exact log-likelihood over an infinite dimensional space containing continuous survival
functions is not feasible. To achieve this, we may need to rewrite (3) in the form of empirical likelihood considering
monotonicity constraints on Sj(·)’s. For example, Li, Prentice and Lin [14] assume that the cumulative hazard function
Λj(·) ≡ − log Sj(·) to be cadlag and piecewise constant in the case of Gaussian copula. Unfortunately, this strategy requires
a case-by-case analysis for different copula functions. In this paper, we propose an approximate log-likelihood approach,
which applies to a general class of copula functions and yields smooth estimate for Sj(·) andΛj(·). Our approach can also be
generalized to consider the cluster survival data of varying sizes.

Denoted the log baseline hazard function as hj(·) ≡ log Λ̇j(·) ≡ log λj(·). Our procedure approximates hj(·) by a linear
combination of a finite number of smooth basis functions, i.e., B-splines, and maximizes the likelihood with respect to the
copula parameter and the B-spline coefficient parameters. Specifically, we approximate hj(·) as follows

hj(t) ≈

K
k=1

γjkBjk(t) = γ ′

j Bj(t), (4)

where Bj(·) is a vector of B-splines. When hj is a smooth function, basis functions can be chosen such that the above
approximation is very accurate. In our theoretical analysis, we assume the parameter space for hj is Fj ≡ {hj(·) : hj ∈

H
rj
c′j
[0, 1] with ∥hj∥∞ ≤ cj}, where Hr

c(Y) is a Hölder ball containing widely used smooth functions in the nonparametric

estimation. Specifically, h ∈ Hr
c(Y) if and only if it is J < r times continuously differentiable on Y and its J-th derivative

satisfies a Hölder condition with exponent κ ≡ r − J ∈ (0, 1], i.e.,

sup
x,y∈Y,x≠y

|h(J)(x)− h(J)(y)|
|x − y|κ

≤ c.

We assume that rj > 1. Given a system of basis functions Bj(t), we define the approximate parameter space as

Fjn =


hj(·) : hj(t) =

Kj
k=1

γjkBjk(t) = γ ′

j Bj(t) and ∥hj∥∞ ≤ cj


,

where Kj → ∞ and Kj/n → 0. Note that, for any h ∈ Hr
c(Y), there exists a spline function γ ′Bwith degree d ≥ (r − 1) such

that, as Kj → ∞,

∥h − γ ′B∥∞ ≍ K−r
j , (5)

where the notation ‘‘≍’’ means that the ratio of both sides is bounded away from zero and infinity [20]. We assume thatΘ
is a compact subset of Rp in which the true value θ0 is an interior point. Let A = Θ × F1 × F2 and An = Θ × F1n × F2n.

Denote the unknown parameters collectively as α = (θ ′, h1, h2)
′ with α0 = (θ ′

0, h10, h20)
′ being the true value. The

log-likelihood (3) can be written as a function of these parameters as

ℓ(α) = δ1δ2 log[C12(s1, s2; θ)s1s2 exp{h1(y1)} exp{h2(y2)}] + δ1(1 − δ2) log[C1(s1, s2; θ)s1 exp{h1(y1)}]
+ δ2(1 − δ1) log[C2(s1, s2; θ)s2 exp{h2(y2)}] + (1 − δ1)(1 − δ2) log{C(s1, s2; θ)}, (6)
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where sj = exp[−
 yj
0 exp{hj(x)}dx] for j = 1, 2. We denote the log-likelihood for the observation i as ℓi(α). The B-spline

estimate of α is defined as

α = (θ ′,h1,h2)
′
= (θ ′,γ ′

1B1,γ ′

2B2)
′
= argmax

α

n
i=1

ℓi(α). (7)

Consequently, the maximum likelihood estimates of the marginal cumulative hazard function and survival function areΛj(y) =
 y
0 exp(hj(s))ds andSj(y) = exp{−Λj(y)}, respectively. In the case of no censoring, i.e., Dj = +∞ for j = 1, 2,

our estimateα is the same as the general sieve estimate proposed in [4]. Note that by modeling the log hazard function
hj directly, our approach naturally leads to the positivity and monotonicity of the resulting cumulative hazard function
Λj(t) =

 t
0 λj(s)ds, and avoids the constrained optimization required in the implementation ofmonotone spline estimation,

e.g., [31].

Remark 3.1. In the theoretical proofs and numerical calculations, the exact values of cj’s required in Fj and Fjn are not
necessary. Instead, only the boundedness condition, equivalently the compactness of parameter spaces and spline spaces, is
needed. Here we assume this boundedness condition, which can be relaxed by invoking the chaining arguments (see [19]),
only for simplifying our theoretical derivations

Remark 3.2. Our B-spline estimation framework is very flexible so that the prior restrictions on the marginal cumulative
hazard function or survival function can be easily taken into account. For example, when the two marginal survivals are
assumed to be equal, we can set γ1 = γ2 = γ and B1(·) = B2(·) = B(·) to obtain (θ,γ ). Another example is that one
marginal survival is of a particular parametric form, e.g., S1(·, z;β) follows the Cox regression exp(−eβ

′zΛ1(·)), but another
is left unspecified. In this case, we can replace s1 and exp{h1(y1)} with S1(y1, z;β) and −[(∂/∂y1)S1(y1, z;β)]/S1(y1, z;β)
in (6) to obtain (θ,β,γ1,γ2).
3.2. Asymptotic properties of the copula estimator

In this section, we show thatθ defined in (7) is asymptotically normal and semiparametric efficient in the sense that it
achieves the semiparametric efficiency bound, i.e., the minimal possible asymptotic covariance matrix over all the regular
estimators.

We first derive the semiparametric efficiency bound using the concept of the hardest one-dimensional submodel as in the
general formulation of Bickel et al. [1]. Consider a class of parametric submodels perturbing around α0 along the directions
v = (v′

θ , v1, v2)
′, i.e., {t → ℓ(α0 + tv) : v ∈ V}. Here V represents some perturbation space and is defined as the closure of

the linear span of {α − α0 : α ∈ A}. For each fixed v ∈ V, the corresponding parametric submodel has the score function

ℓ̇(x;α0)[v] = (d/dt)|t=0ℓ(α0 + tv)

= v′

θ ℓ̇θ (x;α0)+ ℓ̇h1(x;α0)[v1] + ℓ̇h2(x;α0)[v2], (8)

where

ℓ̇θ (x;α) =
∂H(s1, s2; θ)

∂θ
, (9)

ℓ̇hj(x;α)[vj] =

vj(yj)− Gj[vj](yj)


δj − Gj[vj](yj)

∂H(s1, s2; θ)
∂sj

sj, (10)

and

H(s1, s2; θ) = δ1δ2 log C12 + δ1(1 − δ2) log C1 + δ2(1 − δ1) log C2 + (1 − δ1)(1 − δ2) log C,

Gj[vj](yj) =

 yj

0
exp(hj(x))vj(x)dx.

Note that the definition of the score function and Fisher information requires some regularity conditions, i.e. Condition R1,
which we defer to later sections when we present the asymptotic results. The Fisher information of the parametric model
is thus calculated as I0(v) = E{ℓ̇(α0)[v]}

2. Since I0(v) is a quadratic form of v, we refer to it as the Fisher norm and denote
it as ∥v∥2. We assume that the information I0(v) is bounded away from zero in the following sense: there exists a constant
c0 > 0 such that I0(v) ≥ c0(|vθ | + ∥v1∥

2
2 + ∥v2∥

2
2) for all v = (v′

θ , v1, v2)
′. This positive information assumption rules out

the irregular cases for which there exist parametric submodels with zero information.
To obtain the semiparametric efficiency bound of θ , we first focus our attention on the transformed variable ρλ(α0) =

λ′θ0 for any fixed λ ∈ Rp. Estimation of ρλ(α0) in the semiparametric model ℓ(α) corresponds to the estimation of
ψλ(t) = λ′(θ0 + tvθ ) at t = 0 in the above perturbed submodel, which has the Cramér–Rao lower bound

CRλ(v) =
[ψ̇λ(0)]2

I0(v)
=
(λ′vθ )

2

∥v∥2
.
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The largest Cramér–Rao lower bound in the above class of parametric submodels, i.e.,

CR∗

λ = sup
v∈V:∥v∥>0

CRλ(v) = sup
vθ

 λ′vθv
′

θλ

inf
v1,v2

∥v∥2

 , (11)

corresponds to the semiparametric efficiency bound for estimating λ′θ0; see [1]. A more transparent form of CR∗

λ is obtained
as follows.

Let T denote the closure in L2(P), where P is the probability measure of the underlying data generating process, of
the linear span of {

2
j=1 ℓ̇hj(α0)[vj]}. Let (w∗

1k, w
∗

2k) be the k-th coordinate projection of ℓ̇θ (α0) onto T in the sense that
(w1k, w2k) → E{[ℓ̇θ (α0)]k +

2
j=1 ℓ̇hj(α0)[wjk]}

2 achieves its minimal at (w∗

1k, w
∗

2k). Define

ℓ0 = ℓ̇θ (α0)+

2
j=1

ℓ̇hj(α0)[w̄
∗

j ] and I0 = Eℓ0ℓ′

0, (12)

where w̄∗

1 = (w∗

11, . . . , w
∗

1p)
′ and w̄∗

2 = (w∗

21, . . . , w
∗

2p)
′. Considering the fact that the projection of v′

θ ℓ̇θ (α0) onto T is2
j=1 ℓ̇hj(α0)[v

′

θ w̄
∗

j ], we can decompose ∥v∥2
≡ E{ℓ̇(α0)[v]}

2 as

v′

θ
I0vθ + E


2

j=1

ℓ̇hj(α0)[v
res
j ]

2

,

where vresj ≡ vj − v
′

θ w̄
∗

j for j = 1, 2. Thus, by setting vresj = 0, i.e., vj = v′

θ w̄
∗

j , we obtain infv1,v2 ∥v∥2 in (11) as v′

θ
I0vθ , which

further reduces the form of (11) to

CR∗

λ = sup
vθ

λ′vθv
′

θλ

v′

θ
I0vθ = λ′I−1

0 λ, (13)

where the optimizer is v∗

θ =I−1
0 λ by the Cauchy–Schwarz inequality. According to the above analysis, we know that the

largest Cramér–Rao lower bound of estimating λ′θ0 is achieved in the parametric submodel t → ℓ(α0 + tv∗), where

v∗
=


v∗

θ

v∗

1
v∗

2


=

 Ip
(w̄∗

1)
′

(w̄∗

2)
′


×I−1

0 λ and Ip is the p × p identity matrix. (14)

By some algebra, we can derive that ∥v∗
∥
2

= λ′I−1
0 λ based on (12).

Sinceθ is asymptotically efficient if and only if λ′θ is asymptotically efficient for any λ ∈ Rp, it follows from (13) that
the largest Cramér–Rao lower bound of estimating θ0 in a p-dimensional parametric submodel isI−1

0 . This lower bound is
achieved in the p-dimensional submodel s → ℓ(α0 + u∗s), where

s =

s1
...
sp

 and u∗
=

 Ip
(w̄∗

1)
′

(w̄∗

2)
′


.

The above parametric submodel is called the least favorable submodel (LFS) and its corresponding Cramér–Rao bound is the
semiparametric efficiency bound for estimating θ0. The score function, i.e.,ℓ0, and information matrix, i.e.,I0, of the LFS are
called the efficient score function and efficient information matrix in the semiparametric literature. Given the above LFS,
we can obtain an asymptotic linear expansion of the efficient estimate, which involves u∗. This expansion suggests a plug-in
efficient estimate if u∗ can be estimated consistently. However, this plug-in estimation approach is in general not feasible
since there is no closed-form expression of u∗.

Our estimator θ defined in the previous subsection does not require the knowledge of u∗. We will show that θ is
asymptotically normal and semiparametric efficient by applying a general theory in Appendix A.1, i.e., Lemma A.1, which
works for any sufficiently smooth functional ρ(α). In particular, we will assume ρλ(α) = λ′θ to show Theorem 3.1; see
Appendix A.3 for details.

Theorem 3.1. Suppose that ConditionsM1 and M2 in the Appendix hold andI0 is nonsingular, we have
√
n(θ − θ0)

d
−→N


0, Ĩ−1

0


. (15)

3.3. Consistent estimator for the asymptotic covariance matrix of θ̂

The asymptotic covariance matrix ofθ , which is related to the infinite dimensional optimization problem (11), usually
has no closed-form except in some special case, e.g., bivariate Gaussian copulamodel for the complete data in [12]. However,
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we can use the approximate likelihood to construct an explicit estimator ofI0 by treating it as the parametric likelihoodwith
increasing dimension.

We define the B-spline version of score functions:

ℓ̇γ1(X;α) =

ℓ̇h1(X;α)[B11], . . . , ℓ̇h1(X;α)[B1K1 ]

′
,

ℓ̇γ2(X;α) =

ℓ̇h2(X;α)[B21], . . . , ℓ̇h2(X;α)[B2K2 ]

′
.

Hence, the observed information for (θ ′, γ ′

1, γ
′

2)
′ is

J =

Iθθ Iθγ1 Iθγ2Iγ1θ Iγ1γ1 Iγ1γ2Iγ2θ Iγ2γ1 Iγ2γ2

(p+K1+K2)×(p+K1+K2),

whereIjk =
n

i=1 ℓ̇j(Xi;α)ℓ̇′

k(Xi;α)/n, for j, k = θ, γ1, γ2. The observed information can be used to empirically check the
positive information assumption stated in Section 3.2: existence of zero or extremely small eigenvalues ofJ would suggest
violation of the assumption.

The theory of parametric inference implies that the information for θ is of the formI =Iθθ −IθηI−1
ηη
Iηθ , (16)

where η = (γ ′

1, γ
′

2)
′,Iθη = (Iθγ1 ,Iθγ2),Iηθ =I ′θη , and

Iηη =

Iγ1γ1 Iγ1γ2Iγ2γ1 Iγ2γ2

.

We use (16) as our estimator forI0. The next result shows that this estimator is consistent.

Theorem 3.2. Under ConditionsM1–M6 in the Appendix, we haveI P
→ Ĩ0.

We call the following Condition R1 as the regularity conditions for the semiparametric copula models in consideration:

R1. C(s1, s2; θ), C1(s1, s2; θ), C2(s1, s2; θ) and C12(s1, s2; θ) are twice continuously differentiable w.r.t. (s1, s2, θ)when θ is
around θ0.

Note that the true baseline hazard functions λj are bounded away from zero since λj = exp(hj) and hj belongs to some
Hölder ball with bounded supremumnorm. Under R1 and some othermild conditions, we can show that ConditionsM1–M6
are satisfied; see Appendices A.2 and A.4 for more details. In fact, we verify R1 in seven commonly used copula functions,
including Gaussian, Gumbel and Clayton copulas, listed in Appendix B of Chen et al. [3] which gives explicit expressions of
those copulas and their derivatives.

The rigorous proof of Theorem 3.2, which heavily relies on the empirical processes theory, will be given in Appendix A.5.
Here, we give some theoretical insight why the result holds without resorting to the empirical processes tool. First we
observe from (11) and (13) that

λ′I−1
0 λ = sup

v∈V:∥v∥>0

|λ′vθ |
2

∥v∥2
.

Thus, we expectI to be consistent if it can be characterized as

λ′I−1λ = sup
(vθ ,γ1,γ2)∈Rp×RK1×RK2


|λ′vθ |

2

∥v∥2
n


, (17)

where ∥ · ∥n is the estimated Fisher norm, i.e.,

∥v∥2
n =

1
n

n
i=1

{v′

θ ℓ̇θ (Xi;α)+ γ ′

1ℓ̇γ1(Xi;α)+ γ ′

2ℓ̇γ2(Xi;α)}2. (18)

Note that (18) can be further written as

v′

θ
Iθθvθ + 2v′

θ
Iθη γ1γ2


+ (γ ′

1, γ
′

2)
Iηη γ1γ2


. (19)

To verify thatI indeed satisfies (17), we rewrite the right hand side of (17) as

sup
vθ

 |λ′vθ |
2

inf
(γ1,γ2)

∥v∥2
n

 . (20)
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According to (19), for fixed vθ , ∥v∥2
n is minimized when (γ ′

1, γ
′

2)
′
= −I−1

ηη
Iηθvθ with the minimum value being v′

θ
Ivθ . Thus

(20) becomes supvθ {|λ
′vθ |/v

′

θ
Ivθ }. An application of the Cauchy–Schwarz inequality similar to (13) confirms (17).

We next provide an intuitive explanation on the consistency ofI . Define a B-spline estimate (γ̄ ∗

j )
′Bj of w̄∗

j (i.e., the
characteristics of the LFS), where [γ̄ ∗

j ]Kj×p = (γ ∗

j1, . . . , γ
∗

jp), ((γ
∗

1k)
′, (γ ∗

2k)
′)′ = −I−1

ηη
Iηθ1k and 1k represents the p-vector

with its k-th element as one and others as zeros, for j = 1, 2 and k = 1, . . . , p. We can rewrite (16) as the following explicit
form

I =
1
n

n
i=1


ℓ̇θ (Xi;α)+

2
j=1

ℓ̇hj(Xi;α)[(γ̄ ∗

j )
′Bj]

⊗2

. (21)

Thus the aboveI can be viewed as a plug-in estimate of the efficient informationI0 defined in (12). We expectI to be
consistent ifα is consistent and (γ̄ ∗

j )
′Bj is a consistent estimate of w̄∗

j which is implicitly required to be smooth. The latter
consistency could be verified under our Conditions M1–M6.

3.4. Asymptotic properties of marginal cumulative hazard estimator

Our asymptotic analysis for the copula estimator in Section 3.2 can be generalized to the other estimators which can be
expressed as smooth functional of the B-spline estimator, i.e., ρ(α), according to Lemma A.1 in the Appendix. This is the
case for the cumulative hazard estimator Λj(yj) in this section, which can be written as a smooth transformation ofα, say
ρΛj(α) =

 yj
0 exp(hj(x))dx = Λj(yj). Following similar discussions in Section 3.2, we expect the B-spline estimate Λj(yj) to

be asymptotically normal and semiparametric efficient with the asymptotic variance

Vj = sup
v∈V:∥v∥>0

{Gj0[vj](yj)}2

∥v∥2
,

whereGj0[vj](yj) =
 yj
0 exp(hj0(x))vj(x)dx. The asymptotic normality and semiparametric efficiency ofSj(yj) trivially follows

since it is a smooth transformation of Λj(yj).

Theorem 3.3. Suppose that ConditionsM1–M2 in the Appendix hold and Vj < ∞. Then for any fixed yj ∈ (0, 1), we have
√
n(Λj(yj)−Λj0(yj))

d
−→N(0, Vj),

√
n(Sj(yj)− Sj0(yj))

d
−→N


0, S2j0(yj)Vj


.

Moreover, Λj(yj) andSj(yj) are semiparametric efficient.

In general, there is no closed-form for Vj even for the Gaussian copula and independence copula. However, we are able
to provide an explicit B-spline estimate for Vj given below. For simplicity, we assume j = 1 for now. Following similar
derivations forI in Section 3.3, we know that a consistent information estimator of γ1 is

Iγ1 =Iγ1γ1 − (Iγ1θ ,Iγ1γ2)Iθθ Iθγ2Iγ2θ Iγ2γ2
−1 Iθγ1Iγ2γ1


.

Note that Λ1(y1) is proven to be efficient and is also a function of γ1, i.e., Λ1(y1) =
 y1
0 exp(γ ′

1B1(x))dx. This implies the
asymptotic variance estimator, i.e., the Cramér–Rao lower bound estimator, for Λj(yj) is of the following form:V1 =G′

1n[B1]I−1
γ1
G1n[B1],

where G1n[B1] = (G1n[B11](y1), . . . ,G1n[B1K1 ](y1))
′ and G1n[B1k](y1) =

 y1
0 exp(h1(s))B1k(s)ds. We expect V1 to be

consistent ifα is consistent. The asymptotic variance estimator forSj(yj) is simply exp[−2
 yj
0 exp(γ ′

j Bj(s))ds]Vj.

4. Simulation studies

We performed a series of simulation studies to examine the finite sample properties of the proposed semiparametric
efficient estimator (and its asymptotic covariance matrix estimate (16)) and to compare it with the two-step estimator of
Chen et al. [3]. In all simulation setups, the marginal distributions of T1 and T2 were specified as exponential distribution
with unitmean, and the censoring distributionwas chosen to be exponential withmean 2. Two censoringmechanismswere
used for the simulation setups: (1) both variableswere censored at the same censoring time; (2) the variableswere censored
independently from the same censoring distribution. For each simulation run, we randomly simulated 100 subjects. The
experiment for each simulation setup was repeated 400 times.

Now we give the details of the copula model specification for the simulation setups. We use the following convention:
when we refer to a named copula function, we mean that the named copula function is applied to the marginal distribution
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Table 1
Summary of simulation results comparing the two-step procedure (2-step) and the efficient joint
estimation (joint). Reported are the mean squared errors (MSEs) of estimating the copula parameter
(θ ), Spearman’sρ, Kendall’s τ , and themean integrated squared errors (MISEs) of the hazard functions.
The MSEs for θ marked with * and the MSEs for ρ and τ are the actual numbers multiplied by 100.

Setup Method Euclidean parameter Hazard functions
θ ρ τ Func. # 1 Func. #2

1 2-step 0.214* 0.231 0.231 11.010 10.044
Joint 0.178* 0.193 0.205 5.019 4.594

2 2-step 0.236* 0.254 0.254 11.010 10.351
Joint 0.195* 0.211 0.220 4.162 3.840

3 2-step 0.163 0.199 0.242 10.089 9.585
Joint 0.163 0.133 0.180 4.774 4.646

4 2-step 0.168 0.175 0.223 10.089 10.023
Joint 0.170 0.132 0.182 4.299 4.117

5 2-step 0.154 0.145 0.190 10.420 8.713
Joint 0.159 0.107 0.155 5.153 4.719

6 2-step 0.169 0.159 0.208 10.420 9.938
Joint 0.180 0.119 0.172 5.024 4.817

7 2-step 0.374 0.200 0.216 10.592 9.875
Joint 0.298 0.135 0.154 5.295 5.187

8 2-step 0.397 0.213 0.229 10.592 10.281
Joint 0.321 0.142 0.163 5.127 5.323

functions to define the bivariate joint distribution function; when we use the prefix ‘‘survival’’ on a named copula function,
we mean that the named copula function is applied to the marginal survival functions to define the bivariate joint survival
function.
• Setup 1. Gaussian copula, same censoring time. The copula function has the form

C(u1, u2; θ) = Ψ (Φ−1(u1),Φ
−1(u2); θ),

where Ψ is the distribution function of bivariate standard normal with correlation coefficient θ and Φ(·) is the
distribution function of the standard normal distribution. The copula parameter used is θ = 0.8. The corresponding
values of Spearman’s ρ and Kendall’s τ are 0.786 and 0.590.

• Setup 2. Gaussian copula, independent censoring. This setup is the same as Setup 1, except that independent censoring
is used.

• Setup 3. Gumbel copula, same censoring time. The copula function has the form

C(u1, u2; θ) = exp[−{(− log u1)
θ
+ (− log u2)

θ
}
1/θ

].

The copula parameter used is θ = 3. The corresponding values of Spearman’s ρ and Kendall’s τ are 0.849 and 0.667.
• Setup 4. Gumbel copula, independent censoring. This setup is the same as Setup 3, except that independent censoring is

used.
• Setup 5. Survival Gumbel copula, same censoring time. This setup is the same as Setup 3, except that the Gumbel copula

is applied on the marginal survival functions to define the joint survival function.
• Setup 6. Survival Gumbel copula, independent censoring. This setup is the same as Setup 5, except that independent

censoring is used.
• Setup 7. Survival Clayton copula, same censoring time. The copula function has the form

C(u1, u2; θ) = {(u−θ
1 + u−θ

2 )− 1}−θ
−1
.

The copula parameter used is θ = 3. The corresponding values of Spearman’s ρ and Kendall’s τ are 0.786 and 0.600.
• Setup 8. Survival Clayton copula, independent censoring. This setup is the same as Setup 7, except that independent

censoring is used.

Both the two-step procedure and our efficient joint estimation procedurewere applied to each simulated data set. Table 1
reports the mean squared errors (MSEs) of estimation of the copula parameter θ , Spearman’s ρ, Kendall’s τ , and the mean
integrated squared errors of estimation of themarginal hazard functions. For estimating ρ and τ , the joint estimation always
yields smaller MSEs. For estimating θ , the MSEs of the joint estimation are not always smaller. We think the asymptotic for
estimating θ has not kicked in for the sample size in consideration; when we increased the sample size, we observed that
the MSEs of the joint estimation become smaller than the 2-step procedure. On the other hand, the advantage of the joint
estimation is profound in the estimation of the marginal hazard functions. The reduction of mean integrated squared errors
is more than 50% in most setups. Table 2 shows that the average of estimated variance are reasonably close to the Monte
Carlo variance of the copula parameter estimates. The estimated variance is biased towards giving conservative inference,
but this bias gradually goes away when the sample increases.
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Table 2
Comparison of estimated variances (est var) and Monte Carlo variances (var) of the copula parameter
estimates. The results for setups 1 and 2 are multiplied by 100.

Setup 1 Setup 2 Setup 3 Setup 4 Setup 5 Setup 6 Setup 7 Setup 8

Var 0.178 0.195 0.155 0.164 0.139 0.156 0.252 0.272
Est var 0.226 0.250 0.183 0.200 0.155 0.167 0.290 0.310
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Appendix

A.1. Asymptotic normality and efficiency of smooth functionals

We present a general theory on the asymptotic normality and semiparametric efficiency of ρ(α), where ρ : A → R1 is
a sufficiently smooth functional.

We first introduce some necessary notations. Under the assumption that ℓ(α) is second order differentiable around α0,
we define the second order directional derivative ℓ̈(α)[va, vb] as (d/dt)|t=0ℓ̇(α0 + tvb)[va]. The Fisher inner product and
Fisher norm on the space V are defined as

⟨v,v⟩ = E

ℓ̇(α0)[v]ℓ̇(α0)[v] and ∥v∥2

= ⟨v, v⟩ , (A.1)

respectively. Of course, we know that ∥v∥2 also equals −Eℓ̈(α0)[v, v]. We form a Hilbert space (V, ∥ · ∥) by defining V to be
the completion of V under the Fisher norm. It is easy to show that V = {v = (v′

θ , v1, v2)
′
∈ Rp

× L2([0, 1]) × L2([0, 1]) :

∥v∥ < ∞}, where L2([0, 1]) = {v(·) :
 1
0 v

2(s)ds < ∞}.
For any v ∈ V and any smooth functional ρ(·), we define

ρ̇(α0)[v] = lim
t→0

ρ(α0 + tv)− ρ(α0)

t
and ∥ρ̇(α0)∥ = sup

v∈V:∥v∥>0

|ρ̇(α0)[v]|

∥v∥
. (A.2)

We assume that v → ρ̇(α0)[v] is a linear functional, and also assume the following smoothness condition S on ρ(·).

S. (a) For any v ∈ V, ρ(α0 + tv) is continuously differentiable for small t and ∥ρ̇(α0)∥ < ∞.
(b) There exist constants ω > 0 and ε > 0 such that, for any v ∈ V with ∥v∥ ≤ ε,

|ρ(α0 + v)− ρ(α0)− ρ̇(α0)[v]| = O(∥v∥ω),
∥α − α0∥

ω
= oP(n−1/2).

The Riesz representation theorem implies that there exists a v∗
= ((v∗

θ )
′, v∗

1 , v
∗

2)
′
∈ V such that

⟨v∗, v⟩ = ρ̇(α0)[v] for all v ∈ V and ∥v∗
∥ = ∥ρ̇(α0)∥. (A.3)

The concrete form of v∗ depends on the form of ρ(·).
We assume the following convergence rate conditionM1 and semiparametric copula model conditionM2 in Lemma A.1.

Define Πnv
∗ and Πnα0 respectively as the projection of v∗ and α0 onto An in terms of the Fisher inner product defined

above. Let Gnf = (1/
√
n)
n

i=1(f (Xi)− Ef ).

M1. We assume that ∥Πnv
∗
− v∗

∥ = o(1) and ∥α − α0∥ = oP(δn) for some δn = o(n−1/3) satisfying δn × ∥Πnv
∗
− v∗

∥ =

o(n−1/2).
M2. Let An(δn) = {αn ∈ An : ∥αn − α0∥ ≤ δn}, where δn is defined in M1. We assume that

sup
αn∈An(δn)

Gn

ℓ̇(αn)[Πnv

∗
] − ℓ̇(α0)[Πnv

∗
]
 = oP(1), (A.4)

and

E{ℓ̈(αn)[vn, vn] − ℓ̈(α0)[vn, vn]} = O(δ3n), (A.5)

for all αn ∈ An(δn) and vn ∈ V satisfying ∥vn∥ = O(δn).
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Lemma A.1. Suppose that Conditions S andM1–M2 hold. Then, we have
√
n(ρ(α)− ρ(α0))

d
−→N


0, ∥ρ̇(α0)∥

2 ,
and ρ(α) is semiparametrically efficient.

The proof of Lemma A.1 is completely analogous to that of Theorem 1 in [4], which applies the general theory of Shen [21]
to semiparametric copula models, and is thus skipped.

A.2. Verifications of conditions M1–M2

To verify the convergence rate of α in M1, we can apply Theorems 1–2 in [22]. In fact, the conditions C1–C2 of their
Theorem 1 are easily satisfied with α = β = 1 since we use the convenient Fisher norm and ℓ(α) is bounded in
the present setting. We also know that the ϵ-entropy number of the class of function {ℓ(α) − ℓ(Πnα0) : α ∈ An} is
O((K1 ∨ K2) log(1 + (c1 ∨ c2)/ϵ)) (in terms of L∞-norm) according to Lemma 2.5 of van de Geer [25]. This yields that
δn = O((n−1/2K 1/2

1 ∨ K−r1
1 ) ∨ (n−1/2K 1/2

2 ∨ K−r2
2 )) in view of (5). Therefore, by choosing

Kj ≍ n1/(1+2rj) for j = 1, 2, (A.6)

we have δn = O(n−r/(2r+1)), where r = r1 ∧ r2. The range that rj > 1 implies 1/3 < r/(2r + 1) < 1/2.
To derive the rate of ∥Πnv

∗
−v∗

∥needed in ConditionM1,weusually need to show that the Riesz representer v∗ has some
smoothness. As discussed in Appendix A.1, the form (and also the property) of v∗ depends on that of ρ(·). For illustrative
purpose, we focus on the case that ρ = ρλ(α) = λ′θ , which corresponds to Section 3.2 on the copula parameter; see Proof of
Theorem 3.1 below. Specifically, we shall show thatw∗

jk solves a system of integral equations through which its smoothness
is implied by reasonable assumptions on the underlying density of X , the form of the copula function and the smoothness
of hj0’s. Recall that (w∗

1k, w
∗

2k) is defined as the minimizer of

(w1k, w2k) → E


[ℓ̇θ (α0)]k +

2
j=1

ℓ̇hj(α0)[wjk]

2

.

Let ek denote a p-vector whose k-th element is 1 and other elements are zero. The above minimization problem can be
restated in terms of the Fisher norm as follows:

(w∗

1k, w
∗

2k) = argmin
(w1k,w2k)

∥(ek, 0, 0)− (0, w1k, w2k)∥
2.

By the Hilbert projection theorem, (w∗

1k, w
∗

2k) exists and is unique in the topology induced by the Fisher norm. According to
the positive information assumption stated in Section 3.2, the Fisher norm is stronger than the L2 norm and thus (w∗

1k, w
∗

2k)
exists and is unique in L2.

Clearly, (w∗

1k, w
∗

2k) solves the following stationary equation:

E


[ℓ̇θ (α0)]k +

2
j′=1

ℓ̇hj′ (α0)[w
∗

j′k]


2

j=1

ℓ̇hj(α0)[wjk]


= 0 (A.7)

for any w1k, w2k ∈ L2([0, 1]) and k = 1, 2, . . . , p. In general, (A.7) corresponds to the system of integral equations that
involves (w∗

1k, w
∗

2k). For notational simplicity, we write

ℓ̇hj(α)[wjk] = wjk(yj)δj −
 yj

0


δj +

∂H(s1, s2; θ)
∂sj

sj


exp(hj(x))wjk(x)dx

≡ wjk(yj)δj −
 yj

0
Aj(x)wjk(x)dx.

Denote [ℓ̇θ (α0)]k as Lk. We next analyze each term of the expansion in (A.7) as follows:

E{Lkwjkδj} = E{wjkE(Lkδj|Yj)} =

 1

0
wjk(yj)E(Lkδj|yj)fYj(yj)dyj ≡

 1

0
wjk(x)Bj(x)dx,

E

Lk

 Yj

0
Aj(x)wjk(x)dx


= E

 Yj

0
Aj(x)wjk(x)dxE(Lk|Yj)


=

 1

0

 1

0
E(Lk|yj)1{yj ≥ x}fYj(yj)dyj


Aj(x)wjk(x)dx

≡

 1

0
wjk(x)Cj(x)dx,
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E{w∗

1kδ1w1kδ1} =

 1

0
fY1(x)E(δ1|Y1 = x)w∗

1k(x)w1k(x)dx ≡

 1

0
D11(x)w∗

1k(x)w1k(x)dx,

E{w∗

1kδ1w2kδ2} =

 1

0

 1

0
w∗

1k(x)w2k(x̄)E(δ1δ2|Y1 = x, Y2 = x̄)fY1,Y2(x, x̄)dx̄dx

≡

 1

0

 1

0
w∗

1k(x)w2k(x̄)D12(x, x̄)dx̄dx,

E

w∗

1kδ1

 Y1

0
A1(x)w1k(x)dx


=

 1

0

 1

0
w∗

1k(y1)E(δ1|y1)fY1(y1)1{x ≤ y1}A1(x)w1k(x)dxdy1

≡

 1

0

 1

0
w∗

1k(x)w1k(x̄)E11(x, x̄)dx̄dx,

E

w∗

1kδ1

 Y2

0
A2(x)w2k(x)dx


=

 1

0

 1

0
w∗

1k(y1)w2k(x)A2(x)

×

 1

0
fY1,Y2(y1, y2)E(δ1|Y1 = y1, Y2 = y2)1{x ≤ y2}dy2


dxdy1

≡

 1

0

 1

0
w∗

1k(x)w2k(x̄)E12(x, x̄)dx̄dx,

E
 Y1

0
A1(x)w∗

1k(x)dx
 Y1

0
A1(x)w1k(x)dx


=

 1

0

 1

0
w∗

1k(x)w1k(x̄)P(Y1 ≥ x ∨ x̄)A1(x)A1(x̄)dx̄dx

=

 1

0

 1

0
w∗

1k(x)w1k(x̄)F11(x, x̄)dx̄dx,

E
 Y1

0
A1(x)w∗

1k(x)dx
 Y2

0
A2(x)w2k(x)dx


=

 1

0

 1

0
w∗

1k(x)w2k(x̄)P(Y1 ≥ x, Y2 ≥ x̄)A1(x)A2(x̄)dx̄dx

=

 1

0

 1

0
w∗

1k(x)w2k(x̄)F12(x, x̄)dx̄dx,

where fYj is the density function for Yj and fY1,Y2(y1, y2) is the joint density for (Y1, Y2). We can also define D22, E21, E22 and
F22 for other cross terms in similar fashion. In summary, (A.7) is expanded as 1

0
[w1k(B1 − C1)+ w2k(B2 − C2)]dx +

 1

0
[w∗

1kw1kD11 + w∗

2kw2kD22]dx

+

 1

0

 1

0
[w∗

1kw2k + w1kw
∗

2k]D12dx̄dx −

 1

0

 1

0
[(w1kw

∗

2kE21)+ (w∗

1kw2kE12)]dx̄dx

−

 1

0

 1

0
[w∗

1kw1kE11 + w∗

2kw2kE22]dx̄dx −

 1

0

 1

0
[w1kw

∗

1kE11 + w1kw
∗

2kE12]dx̄dx

+

 1

0

 1

0
[w∗

1kw1kF11 + w1kw
∗

2kF12]dx̄dx −

 1

0

 1

0
[w2kw

∗

1kE21 + w2kw
∗

2kE22]dx̄dx

+

 1

0

 1

0
[w∗

1kw2kF12 + w∗

2kw2kF22]dx̄dx = 0, (A.8)

where we have used the shortened notations, e.g.,
 1
0

 1
0 w

∗

1k(x)w2k(x̄)D12(x, x̄)dx̄dx.
Since (A.8) holds for anyw1k, w2k ∈ L([0, 1]), we can show that

(B1 − C1)+ w∗

1kD11 =

 1

0
w∗

2k(E21 + E12 − D12 − F12)dx̄ +

 1

0
w∗

1k(E11 + Ē11 − F̄11)dx̄, (A.9)

where Ē11(x, x̄) = E11(x̄, x), F̄11(x, x̄) = F11(x̄, x). Hence, the smoothness ofw∗

1k is determined by that of h10, h20, the density
forX, (∂/∂θ)|α=α0H(s1, s2; θ), (∂/∂s1)|α=α0H(s1, s2; θ) and (∂/∂s2)|α=α0H(s1, s2; θ). In the end, by applying Lemma5 in [5],
we can figure out more primitive conditions on the above quantities in order to obtain the desired smoothness of w∗

1k,
i.e., belongs to some Hölder ball. Note that the smoothness ofw∗

jk is not required in the application of the above lemma (we
need the factw∗

jk ∈ L2([0, 1]), though). Similar smoothness analysis also applies tow∗

2k.
To verify the asymptotic equicontinuity Condition (A.4) inM2, we can use Lemma 3.4.2 of van der Vaart andWellner [26].

This boils down to calculate the bracketing entropy HB(ϵ,Gn, L2(PX )), where Gn ≡ {ℓ̇(αn)[vn] − ℓ̇(α0)[vn] : αn ∈
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An(δn), vn ∈ An}. Under regularity conditions R1, we have HB(ϵ,Gn, L2(PX )) = O((K1 ∨ K2) log(1 + δn/ϵ)). In addition,
we have Ef 2 ≤ δ2n , where δn = O(n−r/(2r+1)), and ∥f ∥∞ ≤ M < ∞ for any f ∈ Gn.

The verification of (A.5) in M2 is more tedious, and thus a set of sufficient conditions is provided here. We first write
down the explicit form of ℓ̈(α)[v, v] based on (6):

ℓ̈(α)[v, v] = v′

θ

∂2H
∂θ2

vθ − v′

θ

2
l=1

∂2H
∂θ∂sl

Gl[vl] +

2
i,j=1

∂2H
∂si∂sj

sisjGi[vi]Gj[vj] −

2
l=1


∂H
∂sl

slNl[vl] + Gl[v
2
l ]δl


, (A.10)

where H = H(s1, s2; θ) and Nl[vl] = Gl[v
2
l ] − G2

l [vl]. We write αn = (θ ′
n, h1n, h2n)

′ and vn = (v′

θn, v1n, v2n)
′. We define

sl0 = exp[−
 yl
0 exp(hl0(x))dx] and sln = exp[−

 yl
0 exp(hln(x))dx]. The same notation rule applies to Gl[vl] and Nl[vl]. Based

on (A.10), we have the following sufficient conditions for (A.5):

E

∂2K(αn)

∂θ2
−
∂2K(α0)

∂θ2


. ∥αn − α0∥,

E

∂2K(αn)

∂θ∂sl
Gln[vln] −

∂2K(α0)

∂θ∂sl
Gl0[vln]


. ∥vn∥ ∥αn − α0∥,

E

∂2K(αn)

∂si∂sj
sinsjnGin[vin]Gjn[vjn] −

∂2K(α0)

∂si∂sj
si0sj0Gi0[vin]Gj0[vjn]


. ∥vn∥

2
∥αn − α0∥,

E

∂K(αln)

∂sl
slnNln[vln] −

∂K(α0)

∂sl
sl0Nl0[vln]


. ∥vn∥

2
∥αn − α0∥,

E

Gln[v

2
ln] − Gl0[v

2
ln]


. ∥vn∥
2
∥αn − α0∥,

where K(·) = log C(·), log C1(·), log C2(·) or log C12(·) and . denotes smaller than, up to an universal constant.

A.3. Proof of Theorem 3.1

We apply Lemma A.1 to prove Theorem 3.1 by taking ρλ(α) = λ′θ for any fixed λ ∈ Rp with 0 < ∥λ∥ < ∞. Therefore, it
suffices to show that Condition S holdswhenI0 is nonsingular. Condition S(b) is trivially satisfiedwithω = ∞ sinceρλ(α) is a
linear functional. It remains to show that∥ρ̇λ(α0)∥ < ∞. This follows from thenonsingularity ofI0 since∥ρ̇λ(α0)∥

2
= λ′I−1

0 λ
as shown in (11) and (13) according to (A.2). �

A.4. Conditions M3–M6 and verifications

Define ∥α − α0∥s = ∥θ − θ0∥ +
2

j=1 ∥hj − hj0∥∞. Let

Sk(X;α,wk) = [ℓ̇θ (X;α)]k +

2
j=1

ℓ̇hj(X;α)[wjk],

N0 = {α ∈ An : ∥α − α0∥s ≤ ϵn},

ρjn = max
1≤k≤p

inf
f∈Fjn

∥f − w∗

jk∥∞.

M3. We assume that

E sup
wk∈F1n×F2n

|Sk(X;α,wk)− Sk(X;α0, wk)|
2 . ∥α − α0∥

2
s (A.11)

for all α ∈ N0,
j

∥w∗

jk − wjk∥
2
2 . E{Sk(X;α0, w

∗

k )− Sk(X;α0, wk)}
2, (A.12)

and

∥ℓ̇hj(α0)[w
∗

jk] − ℓ̇hj(α0)[wjk]∥2 . ∥w∗

jk − wjk∥∞, (A.13)

where ∥ · ∥2 represents the L2 norm, for allwjk ∈ Fjn.
M4. We assume that ∥w∗

jk∥∞ < cj for j = 1, 2 and k = 1, . . . , p, and ρjn → 0 for j = 1, 2.
M5. We assume that ϵn → 0 in N0 and E[supα∈N0,wk∈F1n×F2n

|Sk(X;α,wk)|
2
] ≤ const. < ∞ for any k = 1, . . . , p.

M6. We assume that ∥α − α0∥s = oP(1).
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Based on the form of Sk(X;α,wk) and the definition of ∥ · ∥s, we can easily verify (A.11) when the regularity conditions
R1 are satisfied. The assumption (A.12) is essentially the positive information assumption stated in Section 3.2. As for
(A.13), it follows from the explicit form of ℓ̇[α](·) and the fact that Gj[·] is a bounded linear operator. The verification of the
convergence rates in assumption M4 follows from the smoothness result ofw∗

jk derived in Appendix A.2. The smoothness of
w∗

jk ensures the boundedness ofw∗

jk but not necessarily implies ∥w∗

jk∥∞ < cj for the cj used in the definition of Fj, although
we expect this holds when cj is chosen sufficiently large. Thus the first part of assumption M4 is necessary. In practice, we
can get indication of the validity of ∥w∗

jk∥∞ < cj by checking the spline estimate of w∗

jk’s, defined as in (A.16) but with the
boundedness requirement removed from F1n and F2n. The triangular inequality together with the regularity conditions R1
implies M5. We can apply Theorem 3.1 of Chen [2] to show the consistency ofα in M6.

A.5. Proof of Theorem 3.2

For simplicity, wewrite Sk(X;α0, wk) and Sk(X;α,wk) as S0k [wk](X) andSk[wk](X), respectively. Based on the definitions
ofI0 andI , i.e., (12) and (21), we know their (k, k′)-th entries can be written asI0(k, k′) = ES0k [w

∗

k ]S
0
k′ [w

∗

k′ ], (A.14)

I(k, k′) =
1
n

n
i=1

Sk[w∗

k ](Xi)Sk′ [w∗

k′ ](Xi), (A.15)

where w∗

k = ((γ ∗

1k)
′B1, (γ

∗

2k)
′B2). Note that

w∗

k = arg min
w∈F1n×F2n

PnS2k [w]. (A.16)

Assumption M5 implies that {Sk(x;α,w) : α ∈ N0, w ∈ F1n × F2n} is P-Glivenko–Cantelli. It follows from Corollary 9.27 of
Kosorok [13] that, uniformly overwk, wk′ ∈ F1n × F2n,

1
n

n
i=1

Sk[wk](Xi)Sk′ [wk′ ](Xi) = ESk[wk]Sk′ [wk′ ] + oP(1). (A.17)

Thus, uniformly overwk, wk′ ∈ F1n × F2n,ESk[wk]Sk′ [wk′ ] − ES0k [wk]S0k′ [wk′ ]
 ≤ E

Sk[wk](Sk′ [wk′ ] − S0k′ [wk′ ])
+ E

S0k′ [wk′ ](Sk[wk] − S0k [wk])


≤


ES2k [wk]E

Sk′ [wk′ ] − S0k′ [wk′ ]
2

+


E

S0k′ [wk′ ]

2 E Sk[wk] − S0k [wk]
2

≤ oP(1), (A.18)

where the last inequality follows from assumptions (A.11) (together with the consistency ofα) and M5. Combining (A.17)
and (A.18), we have obtained that

sup
wk,wk′∈F1n×F2n

1n
n

i=1

Sk[wk](Xi)Sk′ [wk′ ](Xi)− ES0k [wk]S0k′ [wk′ ]

 = oP(1), (A.19)

which implies thatI(k, k′) = ES0k [w∗

k ]S
0
k′ [w∗

k′ ] + oP(1). (A.20)

To finish the proof, we need to introduce w∗

k ≡ argminwk∈F1n×F2n E{S0k [wk]}
2 as a bridge. It suffices to show that

ES0k [w∗

k ]S
0
k′ [w∗

k′ ] − ES0k [w∗

k ]S
0
k′ [w∗

k′ ] = oP(1), (A.21)

ES0k [w∗

k ]S
0
k′ [w∗

k′ ] −I0(k, k′) = oP(1). (A.22)

By an argument similar to (A.18), we know that (A.21) holds under assumption M5 if E{S0k [w∗

k ] − S0k [w∗

k ]}
2

= oP(1) for
k = 1, . . . , p. We will show later that

E(S0k [w∗

k ] − S0k [w∗

k ])
2

= E(S0k [w∗

k ])
2
− E(S0k [w∗

k ])
2. (A.23)

It follows from (A.19) and w∗

k ∈ F1n × F2n that

E(S0k [w∗

k ])
2
− E(S0k [w∗

k ])
2

=
1
n

n
i=1

S2k [w∗

k ](Xi)− E(S0k [w∗

k ])
2
+ op(1),

= Mn(w∗

k )− M(w∗

k )+ oP(1).
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Note that

Mn(w∗

k )− M(w∗

k ) ≤ Mn(w∗

k )− M(w∗

k ) ≤ Mn(w∗

k )− M(w∗

k )

by the definitions ofw∗

k andw∗

k . Therefore, by (A.19), we obtainMn(w∗

k )−M(w∗

k ) = oP(1), which further implies (A.21). Sim-
ilarly, to show (A.22) holds, we need only show that E(S0k [w∗

k ]− S0k [w
∗

k ])
2

= oP(1). By the definitions ofw∗

k andw∗

k , we have

E(S0k [w∗

k ] − S0k [w
∗

k ])
2

= inf
g1∈F1n,g2∈F2n

E


2

j=1

ℓ̇hj(X;α0)[w
∗

jk] −

2
j=1

ℓ̇hj(X;α0)[gj]

2

. inf
g1∈F1n,g2∈F2n


2

j=1

E

ℓ̇hj(X;α0)[w

∗

jk] − ℓ̇hj(X;α0)[gj]
2

.

2
j=1


inf

gj∈Fjn
E

ℓ̇hj(X;α0)[w

∗

jk] − ℓ̇hj(X;α0)[gj]
2

.

2
j=1


inf

gj∈Fjn
∥w∗

jk − gj∥2
∞


. O(ρ2

1n ∨ ρ2
2n) → 0,

based on assumptions (A.13) and M4.
It remains to show that (A.23) holds. The argument is complicated by the fact that Fjn is not a linear space and so the

Pythagorean theorem does not directly apply. Let F
Ď
jn be similarly defined as Fjn except that the boundedness restriction is

removed. LetwĎ
jk be defined similarly asw∗

jk except that the projection is onto F
Ď
jn . By the Pythagorean theorem, (A.23) holds

if w∗

jk is replaced by wĎ
jk. Thus we need only show that ∥w

Ď
jk∥∞ ≤ cj, since it implies that wĎ

jk = w∗

jk. The smoothness of w∗

jk
implies that it is bounded. Wemake the assumption that ∥w∗

jk∥∞ < cj; this assumption is satisfied for large enough cj. Then
by the approximation theory, there existswjk ∈ F

Ď
jn such that ∥wjk∥∞ < cj and ∥wjk −w∗

jk∥∞ = O(ρjn). The same argument
as at the end of the previous paragraph yields

j

E(S0k [w
Ď
jk] − S0k [w

∗

jk])
2

= O(ρ2
1n ∨ ρ2

2n).

This together with Condition (A.12) implies that
j

∥w
Ď
jk − w∗

jk∥
2
2 = O(ρ2

1n ∨ ρ2
2n).

Therefore,
j

∥w
Ď
jk − w̃jk∥

2
2 = O(ρ2

1n ∨ ρ2
2n).

Using relationship between the L∞ and L2 norm on a spline space (see [10]), we obtain that

∥w
Ď
jk − w̃jk∥∞ ≤


Kj∥w

Ď
jk − w̃jk∥2 =


KjO(ρ1n ∨ ρ2n) = o(1).

The last equality uses ρjn ≍ K−α
j for some α > 1/2 [20]. Hence ∥w

Ď
jk∥∞ ≤ ∥w̃jk∥∞ + o(1) ≤ cj, as desired. The proof is

complete. �

A.6. Proof of Theorem 3.3

We need to verify Condition S in order to apply Lemma A.1. It follows from the definition of ρΛj(α) =
 yj
0 exp(hj(x))dx

that ρ̇Λj(α0)[v] = Gj0[vj](yj) =
 yj
0 exp(hj0(x))vj(x)dx. We can verify thatw = 2 in Condition S(b) by the Taylor expansion.

Thus, we have ∥α−α0∥
2

= oP(n−1/2) since we have shown that ∥α−α0∥ = OP(n−r/(2r+1)), where 1/3 < r/(2r+1) < 1/2.
We also assume that Vj, which is exactly ∥ρ̇Λj(α0)∥

2, is finite. This competes the proof. �
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